

 (\mathbf{R})

Electroweak corrections with MADGRAPH5_AMC@NLO

Marco Zaro, LPTHE-UPMC in collaboration with S.Frixione, V.Hirschi, D.Pagani, H.-S. Shao

> Radcor-Loopfest@UCLA 15-06-2015

Motivation

 No clear sign of new physics seen at LHC Run I, good agreement between data and SM; Run II has just started!

 New physics state will likely manifest as tiny deviations from the SM: Accurate predictions strongly needed!

Accurate predictions in a nutshell

• Expand the cross-section as a series in the couplings

$$d\sigma = d\sigma_0 \left[1 + \frac{\alpha_s}{2\pi} \Delta_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta_2 + \dots \right]$$
$$+ \frac{\alpha}{2\pi} \Delta_1' + \left(\frac{\alpha}{2\pi}\right)^2 \Delta_2' + \dots \right]$$

- Strong coupling dominates, but non-QCD effects must be accounted to achieve precision
- Roughly speaking: NLO EW ~ NNLO QCD

EW corrections: how to

 In the general case, several coupling combinations contribute to a given process at LO

- In the general case, several coupling combinations contribute to a given process at LO
- Typically the 'LO' is identified with the blob featuring the largest power of α_s

- In the general case, several coupling combinations contribute to a given process at LO
- Typically the 'LO' is identified with the blob featuring the largest power of α_s
- NLO QCD corrections can be computed by attaching QCD particles to the LO

- In the general case, several coupling combinations contribute to a given process at LO
- Typically the 'LO' is identified with the blob featuring the largest power of α_s
- NLO QCD corrections can be computed by attaching QCD particles to the LO
- NLO EW corrections can be computed by attaching EW particles to the LO...

- In the general case, several coupling combinations contribute to a given process at LO
- Typically the 'LO' is identified with the blob featuring the largest power of α_s
- NLO QCD corrections can be computed by attaching QCD particles to the LO
- NLO EW corrections can be computed by attaching EW particles to the LO...
- ... and attaching QCD particles to the LO with one less power of α_s

In practice:

- EW corrections are a more complex problem, yet similar to QCD ones
- Lot of book-keeping (in particular on coupling orders)
- Loops:
 - Renormalize the full model
 - Higher rank loop integrals (still $R \le D$)
 - Interfere QCD loops with EW borns (and viceversa)
- Real emissions: keep track of the splitting type to generate the correct born-like counterterms
- Modern techniques for QCD corrections can be extended to tackle EW ones

EW corrections in MADGRAPH5_AMC@NLO

- Loop computation: MadLoop Hirschi et al, arXiv: 1103.0621
 - Uses OPP or TIR
 - UV renormalisation in the $\alpha(m_Z)$ or G_{μ} scheme (model feature)
 - Well advanced validation for complex-mass scheme
- IR subtraction and integration: MadFKS Frederix et al, arXiv:0908.4272
 - Code modified to account for more than one type of counterterms
 - All kind of EW/QCD splittings are accounted for
 - New version will be able to keep track of contributions from different coupling order combinations, and exact scale uncertainties via reweight
- MC@NLO Matching with parton shower
 - Work in progress

Physics results

• Appetizer: tt production at the LHC

Marco Zaro, 15-06-2015

0.00

0.05

0.10

0.15

expected uncertainty

100

0L

100

200

300

500

400

600 σ_{#w} [fb]

EW corrections to tt production Motivation

- ATLAS and CMS see some 'anomaly' on the top p_T distribution and $t \overline{t}$ invariant mass
- Data are softer than NLO QCD MonteCarlos (up to 30-40%)

• Is it an EW effect?

Contributions to the cross-section

- LO₂ has only $g\gamma$ and $b\overline{b}$ initial states; dominant γ -initiated contribution, need for PDFs with photons
- NLO₂ formally also includes heavy boson radiation (HBR). HBR not included for tt

EW corrections to $t\overline{t}$ production

EW corrections to tt production Comments

- EW corrections account at most -10% at large pT,
 -5% at large mass
- Photon effect as large as EW corrections, but almost 100% uncertain
- Subleading corrections (LO₃, NLO_{3,4}) very small

g 00000

EW corrections to $t\overline{t} + W/Z/H$ Motivation

12

- ttH offers unique access to top Yukawa coupling
- Unlike QCD, EW effects introduce non ~y_t² dependence of the cross-section
- Expected accuracy on y_t at Run II: 10-5% with $_g$ $\sqrt[g]{000}$
- Searches in the boosted scenario: EW corrections

enhanced by Sudakov logs $(log(p_T/m_W))$

Plehn, Salam, Spannowsky, arXiv:0910.5472

EW corrections to $t\overline{t} + W/Z/H$ Motivation

- ttV measured at Run I, still large statistical uncertainties
- EW corrections needed for high-precision Run II measurements
- Multilepton/leptons+jets signatures: ttV background to many BSM searches and to ttH

Setup

more in Frixione, Hirschi, Shao, Zaro, arXiv:1504.03446

- EW corrections computed in the $\alpha(m_Z)$ scheme $(G_{\mu} \text{ also available})$
- Particle masses:
 - m_t=173.3 GeV
 - mw=80.385 GeV

m_H=125 GeV

- mz=91.188 GeV • NNPDF2.3 QED PDF, quoted uncertainties @68%CL
- Ren./Fac. scale choice:

$$\mu = \frac{H_T}{2}$$

тт

LO+NLO QCD scale uncertainties in the range

$$\frac{1}{2}\mu \le \mu_R, \mu_F \le 2\mu$$

• Two scenarios: inclusive and boosted: $p_T(t, \overline{t}, W/Z/H) > 200 \text{ GeV}$

Results for tTH and tTZ: Total rates (within boosted cuts)

$t\bar{t}H:\sigma(\mathrm{pb})$	$13 { m TeV}$		$t\bar{t}Z$: $\sigma(\mathrm{pb})$	$13 { m TeV}$
LO QCD	$3.617 \cdot 10^{-1} \ (1.338 \cdot 10^{-2})$		LO QCD	$5.282 \cdot 10^{-1} \ (1.955 \cdot 10^{-2})$
NLO QCD	$1.073 \cdot 10^{-1} \ (3.230 \cdot 10^{-3})$		NLO QCD	$2.426 \cdot 10^{-1} \ (7.856 \cdot 10^{-3})$
LO EW	$4.437 \cdot 10^{-3} (3.758 \cdot 10^{-4})$		LO EW	$-2.172 \cdot 10^{-4} \ (4.039 \cdot 10^{-4})$
LO EW no γ	$-1.390 \cdot 10^{-3} \ (-2.452 \cdot 10^{-5})$		LO EW no γ	$-5.771 \cdot 10^{-3} (-6.179 \cdot 10^{-5})$
NLO EW	$-4.408 \cdot 10^{-3} \ (-1.097 \cdot 10^{-3})$		NLO EW	$-2.017 \cdot 10^{-2} \ (-2.172 \cdot 10^{-3})$
NLO EW no γ	$-4.919 \cdot 10^{-3} (-1.131 \cdot 10^{-3})$		NLO EW no γ	$-2.158\cdot 10^{-2}\ (-2.252\cdot 10^{-3})$
HBR	$3.216 \cdot 10^{-3} \ (2.496 \cdot 10^{-4})$		HBR	$5.056 \cdot 10^{-3} \ (4.162 \cdot 10^{-4})$
$t \bar{t} H$: $\delta(\%)$	$13 { m TeV}$	_	$tar{t}Z:\delta(\%)$	$13 { m ~TeV}$
NLO QCD	$29.7^{+6.8}_{-11.1} \pm 2.8 \ (24.2^{+4.8}_{-10.6} \pm 4.5)$		NLO QCD	$45.9^{+13.2}_{-15.5} \pm 2.9 \ (40.2^{+11.1}_{-15.0} \pm 4.7)$
LO EW	$1.2 \pm 0.9 \ (2.8 \pm 2.0)$		LO EW	$0.0 \pm 0.7 \ (2.1 \pm 1.6)$
LO EW no γ	$-0.4 \pm 0.0 (-0.2 \pm 0.0)$		LO EW no γ	$-1.1 \pm 0.0 (-0.3 \pm 0.0)$
NLO EW	$-1.2 \pm 0.1 \ (-8.2 \pm 0.3)$		NLO EW	$-3.8 \pm 0.2 \ (-11.1 \pm 0.5)$
NLO EW no γ	$-1.4 \pm 0.0 \ (-8.5 \pm 0.2)$		NLO EW no γ	$-4.1 \pm 0.1 \ (-11.5 \pm 0.3)$
HBR	0.89 (1.87)		HBR	0.96~(2.13)

- NLO EW correction have modest impact on inclusive xsect, but can be important in the boosted regime (same order of QCD uncertainties)
- Boosted regime enhances photon contribution in LO-EW
- HBR contributions remain small

Marco Zaro, 15-06-2015

MCnet

Results for $t\bar{t}H$ and $t\bar{t}Z$:

distributions

Marco Zaro, 15-06-2015

 $13 \, \mathrm{TeV}$

 $1.265 \cdot 10^{-1} (3.186 \cdot 10^{-3})$

 $6.515 \cdot 10^{-2} \ (2.111 \cdot 10^{-3})$

 $-8.502 \cdot 10^{-3} (-5.838 \cdot 10^{-4})$

 $-8.912 \cdot 10^{-3} (-6.094 \cdot 10^{-4})$

 $8.219 \cdot 10^{-3} (4.781 - 10^{-4})$

13 TeV

 $\overline{51.5^{+14.8}_{-13.8} \pm 2.8} (\overline{66.3^{+21.7}_{-19.6} \pm 3.9})$

0

0

 $-6.7 \pm 0.2 \ (-18.3 \pm 0.8)$

 $-7.0 \pm 0.2 \ (-19.1 \pm 0.6)$

6.50(15.01)

Results for tTW: total rates (within boosted cuts)

$t\bar{t}W^+$: $\sigma(\mathrm{pb})$	$13 { m TeV}$	$t ar{t} W^-$: $\sigma({ m pb}$)
LO QCD	$2.496 \cdot 10^{-1} \ (7.749 \cdot 10^{-3})$	LO QCD	
NLO QCD	$1.250 \cdot 10^{-1} \ (4.624 \cdot 10^{-3})$	NLO QCD	
LO EW	0	LO EW	
LO EW no γ	0	LO EW no γ	1
NLO EW	$-1.931 \cdot 10^{-2} \ (-1.490 \cdot 10^{-3})$	NLO EW	
NLO EW no γ	$-1.988 \cdot 10^{-2} \ (-1.546 \cdot 10^{-3})$	NLO EW no	γ
HBR	$9.677 \cdot 10^{-3} \ (5.743 \cdot 10^{-4})$	HBR	
$t\bar{t}W^+$: $\delta(\%)$	$13 { m TeV}$	$t\bar{t}W^-$: $\delta(\%)$	ł
NLO QCD	$50.1^{+14.2}_{-13.5} \pm 2.4 \ (59.7^{+18.9}_{-17.7} \pm 3.1)$	NLO QCD	
LO EW	0	LO EW	
$\begin{array}{c} {\rm LO~EW} \\ {\rm LO~EW~no~} \gamma \end{array}$	0 0	LO EW LO EW no γ	/
$\begin{array}{c} \text{LO EW} \\ \text{LO EW no } \gamma \\ \hline \\ \text{NLO EW} \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -7.7 \pm 0.2 \ (-19.2 \pm 0.7) \end{array}$	$\begin{array}{c} \text{LO EW} \\ \text{LO EW no } \gamma \\ \hline \text{NLO EW} \end{array}$	/
LO EW LO EW no γ NLO EW NLO EW no γ	$\begin{array}{c} 0\\ 0\\ -7.7\pm0.2\ (-19.2\pm0.7)\\ -8.0\pm0.2\ (-20.0\pm0.5)\end{array}$	LO EW LO EW no γ NLO EW NLO EW no	$\frac{\gamma}{\gamma}$
LO EW LO EW no γ NLO EW NLO EW no γ HBR	$\begin{array}{c} 0\\ 0\\ -7.7 \pm 0.2 \ (-19.2 \pm 0.7)\\ -8.0 \pm 0.2 \ (-20.0 \pm 0.5)\\ 3.88 \ (7.41)\end{array}$	LO EW LO EW no γ NLO EW NLO EW no HBR	γ γ

- EW corrections larger than $t\bar{t}H/Z$, in particular with boosted cuts
- HBR enhanced by parton luminosities: $t\overline{t}WW$ has gg, $t\overline{t}W$ only $q\overline{q}$

Results for $t\bar{t}W$:

distributions

Marco Zaro, 15-06-2015

aMC@NLC

raph5

Conclusions

- NLO EW predictions will be very important for accurate physics at the LHC RunII
- Automation of EW corrections in MADGRAPH5_AMC@NLO well advanced
- Results (obtained automatically) for $t\overline{t}$ and $t\overline{t}X$ (X=H/Z/W)
 - EW corrections seem not to explain the tt 'anomaly' seen by ATLAS and CMS
 - ttX (in particular ttW) can receive large corrections, specially in boosted regimes

CALIFORNIA REPUBLIC