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Introduction

 LHC run II underway
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Many numerical NLO tools: Formcalc [Hahn ’99], Golem (PV) [Binoth et al ’08], Rocket [Ellis et al ’09], 

NJet [Badger et al ’12], Blackhat [Berger et al ’12], Helac-NLO [Bevilacqua et al ’12], MCFM [Campbell et al 

’01], MadGraph5_aMC@NLO (see V. Hirschi, M. Zaro, C. Zhang’s talk), GoSam (see G. Ossola’s talk), 

OpenLoops (see J. Lindert, P. Maierhofer’s talk), Recola (see S. Uccirati’s talk), MadGolem, MadLoop, 

MadFKS, …

Next step: NNLO automation

 NLO automation thanks to on-shell reduction methods [Bern, Dixon, Dunbar 

& Kosower ’94,…, Ossola, Papadopoulos & Pittau ’06] to Master integrals (MI): 

(pentagons), boxes, triangles, bubbles and tadpoles:

 Multi-loop calculations are required for precision physics

Introduction



LH Wishlist 2013 (I)
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[SM working group report ’13]

Introduction
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LH Wishlist 2013 (II)

[SM working group report ’13]

Introduction



Integra(l)/(nd) reduction @ 2-loops
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Introduction

Coherent framework for reductions for two- and higher-loop amplitudes:

 A finite basis of Master Integrals exists at two-loops [A. Smirnov, Petukhov ’10]:

 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’11-’15]

 Integrand reduction with polynomial division in general QFT’s [Ossola & Mastrolia ’11, 

Zhang ’12, Badger, Frellesvig & Zhang ’12-’15, Mastrolia et al ’12-’15, Kleis et al ’12]
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Introduction

Coherent framework for reductions for two- and higher-loop amplitudes:

 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’11-’15]

 Integrand reduction with polynomial division in general QFT’s [Ossola & Mastrolia ’11, 

Zhang ’12, Badger, Frellesvig & Zhang ’12-’15, Mastrolia et al ’12-’15, Kleis et al ’12]

 By now reduction substantially understood for two- and (multi)-loop integrals

 Reduction to MI used for specific processes: Integration by parts (IBP) [Tkachov ’81, Chetyrkin

& Tkachov ’81]

 Missing ingredient: library of Master integrals (MI)

 A finite basis of Master Integrals exists at two-loops [A. Smirnov, Petukhov ’10]:



A massive planar pentabox
 Interested in two-loop, five-point diagrams with one external mass

 Massless propagators

 Relevant e.g. for virtual-virtual contribution to 2 → 3 LHC processes such as 

𝑯+ 𝟐𝒋, 𝑽 + 𝟐𝒋, 𝑽𝒃 𝒃 (Les Houches Wishlist) at NNLO QCD

 Six-scale integrals at two-loops
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 All other 8 or less propagator (2-loop, 5-point, 1-mass) planar diagrams are 

reducible to diagrams in the above families

 Three planar topologies:

We will use SDE approach (see talk by C. Papadopoulos)

P1 P2 P3

Introduction
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 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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x-parametrize

orMassless external legs:

Massive external legs:

𝑥 = 1

[Papadopoulos ’14, 

Papadopoulos, 

Tommasini, CW ’14]
Review: SDE approach

Simplified 

DE method



 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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x-parametrize

𝑥 = 1

x-parametrize

General:

Massless external legs:

Massive external legs:

𝑥 = 1

[Papadopoulos ’14, 

Papadopoulos, 

Tommasini, CW ’14]
Review: SDE approach

or

Simplified 

DE method



 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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 Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants 

and reduce r.h.s. by IBP identities (we use FIRE5 [A.V. Smirnov ’14]):

x-parametrize

𝑥 = 1

x-parametrize

General:

Massless external legs:

Massive external legs:

𝑥 = 1

[Papadopoulos ’14, 

Papadopoulos, 

Tommasini, CW ’14]
Review: SDE approach

or

Simplified 

DE method



Example: one-loop triangle
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Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x



Example: one-loop triangle

 Differentiate to x and use IBP to reduce:
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Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x

 Agrees with expansion of exact solution:

 Subtracting the singularities and expanding the finite part leads to:
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x-parametrization for pentabox

 For all MI that we have calculated, the above criteria could be easily met

 Often enough to choose the external legs such that the 

corresponding massive MI triangles (found by pinching 

external legs) are as follows: 

Massive 

planar 

pentabox

 x-parametrization for P1 family (74 MI in total):

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE
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Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

x-parametrization for pentabox

 For all MI that we have calculated, the above criteria could be easily met

 Often enough to choose the external legs such that the 

corresponding massive MI triangles (found by pinching 

external legs) are as follows: 

 DE for P1 are known and integration underway in terms of GP’s

 Reduction for P2 done (75 MI in total), P3 underway (bottleneck)

Massive 

planar 

pentabox

 x-parametrization for P1 family (74 MI in total):

Introduce x
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 Integration of a linear DE:

Dealing with boundary conditions
Massive 

planar 

pentabox
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 Integration of a linear DE:

Often correctly reproduces 𝑥 → 0 behavior of 𝑀𝐺(𝑥, 𝑠, )!

 Integrand 𝐼[𝑥] contains branch points or poles at 𝑥 = {𝑥1, 𝑥2, … ,∞} of form (𝑥 − 𝑥𝑖)
𝑚+𝑛𝜖

 Also possible to integrate from either 𝑥1, 𝑥2, … ,∞ instead from integration boundary 𝑥 = 0

Dealing with boundary conditions
Massive 

planar 

pentabox
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 Integration of a linear DE:

Often correctly reproduces 𝑥 → 0 behavior of 𝑀𝐺(𝑥, 𝑠, )!

Not well understood yet why this is so and if will persist in future!

 Alternative: use analytical/regularity constraints or asymptotic expansion in 𝑥 → 𝑥𝑖

 Integrand 𝐼[𝑥] contains branch points or poles at 𝑥 = {𝑥1, 𝑥2, … ,∞} of form (𝑥 − 𝑥𝑖)
𝑚+𝑛𝜖

 Also possible to integrate from either 𝑥1, 𝑥2, … ,∞ instead from integration boundary 𝑥 = 0

Observation: Boundary always captured by integration from 𝑥 = 0 or appropriate 𝑥𝑖

Dealing with boundary conditions
Massive 

planar 

pentabox



Example of boundary calculation
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 Two-loop triangle:

 DE:

 A naïve integration from lower boundary 𝑥 = 0 misses a boundary term (collinear region)

Massive 

planar 

pentabox



Example of boundary calculation
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 Two-loop triangle:

 DE:

 A naïve integration from lower boundary 𝑥 = 0 misses a boundary term (collinear region)

 Try instead to integrate from poles 𝑥1 = (𝑠12−𝑠34)/𝑠12 or 𝑥2 = (𝑠12−𝑠34 + 𝑠51)/𝑠12

 Integrating from 𝑥1 = (𝑠12−𝑠34)/𝑠12 (one-mass case) misses boundary term (collinear)

 From 𝑥2 = (𝑠12−𝑠34 + 𝑠51)/𝑠12 (equal-mass case) we capture boundary term (hard):

Massive 

planar 

pentabox



The massless pentabox case
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 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1

Massive 

planar 

pentabox



The massless pentabox case
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 Limits 𝑥 → 1 and 𝜖 → 0 may not commute:

May contain 

divergent 

log(1 − 𝑥)
terms!

May contain 

(1 − 𝑥′)−1+𝑛𝜖

singularities!

 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1

Massive 

planar 

pentabox



The massless pentabox case
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 Possibility: integrate from pole 𝑥 = 1 instead of 𝑥 = 0, but then might miss boundary term

 Even if boundary behavior captured, would have to integrate twice: 1) 𝑥 ≠ 1 and 2) 𝑥 = 1

 How to perform the resummation in algorithmic and efficient manner?

 Limits 𝑥 → 1 and 𝜖 → 0 may not commute:

May contain 

divergent 

log(1 − 𝑥)
terms!

May contain 

(1 − 𝑥′)−1+𝑛𝜖

singularities!

 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1

Massive 

planar 

pentabox



Resumming logs of (1 − 𝑥)
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 The (1 − 𝑥)𝑛𝜖 behavior is captured by the DE itself!

 Corresponds to singularities in (1 − 𝑥) in the DE

 Exponents 𝑛 are the residues of these singularities

 For coupled systems one has:

[J. Henn, A.V. Smirnov, 

V.A. Smirnov ’13]

(see V. Smirnov’s talk)

 Solution (generally might 

contain powers of log(1 − 𝑥)):

Massive 

planar 

pentabox



Resumming logs of (1 − 𝑥)
13

 The (1 − 𝑥)𝑛𝜖 behavior is captured by the DE itself!

 Corresponds to singularities in (1 − 𝑥) in the DE

 Exponents 𝑛 are the residues of these singularities

 For coupled systems one has:

 Exponents 𝑛 are determined by the DE itself

 The coefficients 𝑐𝑛 found by matching logs of (1 − 𝑥) to solution of 𝑥 ≠ 1 case:

 Massless pentabox:

 Solution (generally might 

contain powers of log(1 − 𝑥)):

Massive 

planar 

pentabox

[J. Henn, A.V. Smirnov, 

V.A. Smirnov ’13]

(see V. Smirnov’s talk)
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Partial results for P1 (I)
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Results

 Pentabox P1, its x-parametrization:

 Still to be done: P1 𝜺−𝟒 𝜺−𝟑 𝜺−𝟐 𝜺−𝟏 𝜺𝟎

𝐺111000−11111

𝐺11100001111

𝐺111−10001111

𝐺111001−11111

𝐺11100101111

𝐺111−10101111

  





 















 







Partial results for P1 (II)
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 Numerical agreement in Euclidean region found with Secdec [Borowka, Heinrich et al ’11-’15]: 

solution of DE

Results

 Analytical:

 Secdec:
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Summary and Outlook

Summary 

and 

Outlook

 In progress: two-loop pentaboxes with one massive 

external leg

 SDE method captures boundary terms by choosing the 

boundary at an appropriate branch point or pole

 Massless limit captured by resumming logs of (1 − 𝑥)

 Can be done by algorithmic matching
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Summary and Outlook

Summary 

and 

Outlook

Thank you very much!

 In progress: two-loop pentaboxes with one massive 

external leg

 SDE method captures boundary terms by choosing the 

boundary at an appropriate branch point or pole

 Massless limit captured by resumming logs of (1 − 𝑥)

 Can be done by algorithmic matching



Backup slides



Comparison of DE methods
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Simplified DE method:

 Introduce external parameter x to capture 

off-shellness of external momenta:

 Differentiate w.r.t. parameter x:

 Parametrization: pinched massive triangles 

should have legs (not fully constraining):

 Check if constant term (𝜖 = 0) of residues of 

homogeneous term for every DE is an integer:

1) if yes, solve DE by “bottom-up” 

approach to express in GP’s; 2) if no, 

change parametrization and check DE again

 Boundary term almost always captured, if 

not: try 𝑥 → 1/𝑥 or asymptotic expnansion

Traditional DE method:

 Solve perturbatively in 𝜖 to get GP’s if 

 𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen properly

 Choose  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } and use chain rule 

to relate differentials of (independent) 

momenta and invariants: 

 Differentiate w.r.t. invariant(s)  𝑠𝑘:

 Solve above linear equations: 

 Make rotation                          such that: 

[Henn ’13]

 Solve DE of different  𝑠𝑘′ to capture 

boundary condition



Bottom-up approach

 In practice individual DE’s of MI are of the form:
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Bottom-up: 

 Solve first for all MI with least amount of denominators 𝑚0 (these are often 

already known to all orders in 𝜖 or often calculable with other methods)

 After solving all MI with 𝑚 denominators (𝑚 ≥ 𝑚0), solve all MI with 𝑚+ 1
denominators

 Notation: upper index “(𝑚)” in integrals 𝐺{𝑎1…𝑎𝑛}
(𝑚)

denotes amount of 

positive indices, i.e. amount of denominators/propagators

 Often:
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GP-structure of solution

 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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GP-structure of solution

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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GP-structure of solution

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

 Formal solution:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:



GP-structure of solution

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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 Formal solution:

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

MI expressible in GP’s:

Fine print for coupled DE’s: if the non-diagonal piece of 𝜖 = 0 term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of 

matrices 𝑟𝑥(0) are integers, then above “GP-argument” is still valid



Uniform weight solution of DE
 In general matrix in DE is dependent on ϵ:
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 Conjecture: possible to make a rotation                         such that:

 Explicitly shown to be true for many examples [Henn ’13, Henn, Smirnov et al ’13-’14]

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen correctly:

 Solution is uniform in weight of GP’s:

[Kotikov’10, Henn ’13]



Example of tradition DE method: one-loop 
triangle (1/2)

 Consider again one-loop triangles with 2 massive legs and massless propagators: 
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 General function:

 Four linear equations, of which three independent because of invariance under 

Lorentz transformation [Remiddi & Gehrmann ’00], in three unknowns: 

 Solve linear equations: 
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 Agrees with exact solution:

 Solve by usual subtraction procedure:

 Boundary condition follows by plugging in above solution in

Example of tradition DE method: one-loop 
triangle (2/2)
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Open questions

 Is there a way to pre-empt the choice of x-parametrization without having 

to calculate the DE?

 Why are the boundary conditions naturally taken into account by the DE?

 How do the DE in the x-parametrization method relate exactly to those 

in the traditional DE method?


