The calculation of a massive planar pentabox with a differential equation method

Chris Wever (N.C.S.R. Demokritos)

C. Papadopoulos, D. Tommasini, C. Wever [work in progress]

Funded by: APISTEIA-1283 HOCTools

Radcor-Loopfest, UCLA, 15-19 June 2015

- SDE approach to loop integrals
 - A massive planar pentabox
- Partial results
- Summary and Outlook

2

Introduction

- LHC run II underway
- Multi-loop calculations are required for precision physics
 - NLO automation thanks to on-shell reduction methods [Bern, Dixon, Dunbar & Kosower '94,..., Ossola, Papadopoulos & Pittau '06] to Master integrals (MI): (pentagons), boxes, triangles, bubbles and tadpoles:

Many numerical NLO tools: Formcalc [Hahn '99], Golem (PV) [Binoth et al '08], Rocket [Ellis et al '09], NJet [Badger et al '12], Blackhat [Berger et al '12], Helac-NLO [Bevilacqua et al '12], MCFM [Campbell et al '01], MadGraph5_aMC@NLO (see V. Hirschi, M. Zaro, C. Zhang's talk), GoSam (see G. Ossola's talk), OpenLoops (see J. Lindert, P. Maierhofer's talk), Recola (see S. Uccirati's talk), MadGolem, MadLoop, MadFKS, ...

Next step: **NNLO** automation

3

LH Wishlist 2013 (I)

Process	State of the Art	Desired			
Н	$d\sigma @ NNLO QCD (expansion in 1/m_t)$	$d\sigma @ NNNLO QCD (infinite-m_t limit)$			
	full m_t/m_b dependence @ NLO QCD	full $m_{\rm t}/m_{\rm b}$ dependence @ NNLO QCD			
	and @ NLO EW	and @ NNLO QCD+EW			
	NNLO+PS, in the $m_t \to \infty$ limit	NNLO+PS with finite top quark mass effects			
H + j	$d\sigma$ @ NNLO QCD (g only)	$d\sigma @ NNLO QCD (infinite-m_t limit)$			
	and finite-quark-mass effects	and finite-quark-mass effects			
	@ LO QCD and LO EW	@ NLO QCD and NLO EW			
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma(VBF)$ @ NNLO QCD + NLO EW			
	$d\sigma(VBF)$ @ NLO EW				
	$d\sigma(gg)$ @ NLO QCD (infinite- m_t limit)	$d\sigma(gg)$ @ NNLO QCD (infinite- m_t limit)			
	and finite-quark-mass effects @ LO QCD	and finite-quark-mass effects			
		@ NLO QCD and NLO EW			
H + V	$d\sigma$ @ NNLO QCD	with $H \rightarrow b\bar{b}$ @ same accuracy			
	$d\sigma$ @ NLO EW	$d\sigma(gg)$ @ NLO QCD			
	$\sigma_{\rm tot}({\rm gg})$ @ NLO QCD (infinite- $m_{\rm t}$ limit)	with full $m_{\rm t}/m_{\rm b}$ dependence			
tH and	$d\sigma$ (stable top) @ LO QCD	$d\sigma$ (top decays)			
$\overline{\mathrm{t}}\mathrm{H}$		@ NLO QCD and NLO EW			
$t\bar{t}H$	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)			
		@ NLO QCD and NLO EW			
$\mathrm{gg} \to \mathrm{HH}$	$d\sigma @ NLO QCD (leading m_t dependence)$	$d\sigma @ NLO QCD$			
	$d\sigma @ NNLO QCD (infinite-m_t limit)$	with full $m_{\rm t}/m_{\rm b}$ dependence			

Table 1: Wishlist part 1 – Higgs (V = W, Z)

[SM working group report '13]

4

LH Wishlist 2013 (II)

Process	State of the Art	Desired		
V	dσ(lept. V decay) @ NNLO QCD	dσ(lept. V decay) @ NNNLO QCD		
	$d\sigma$ (lept. V decay) @ NLO EW	and @ NNLO QCD+EW		
		NNLO+PS		
V + j(j)	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)		
	$d\sigma$ (lept. V decay) @ NLO EW	NNLO QCD + NLO EW		
VV′	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma$ (decaying off-shell V)		
	$d\sigma$ (on-shell V decays) @ NLO EW	NNLO QCD + NLO EW		
$gg \rightarrow VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays}) \otimes \text{NLO QCD}$		
Vγ	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V \text{ decay})$		
	$d\sigma$ (PA, V decay) @ NLO EW	NNLO QCD + NLO EW		
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD		
	massive b	+ NLO EW, massless b		
VV'γ	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
VV'V"	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
$\gamma\gamma$	$d\sigma @ NNLO QCD + NLO EW$	q_T resummation at NNLL matched to NNLO		

Table 3: Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

[SM working group report '13]

5

Integra(I)/(nd) reduction @ 2-loops

A finite basis of Master Integrals exists at two-loops [A. Smirnov, Petukhov '10]:

Coherent framework for reductions for two- and higher-loop amplitudes:

Jn N=4 SYM [Bern, Carrasco, Johansson et al. '09-'12]

Maximal unitarity cuts in general QFT's [Johansson, Kosower, Larsen et al. '11-'15]

Integrand reduction with polynomial division in general QFT's [Ossola & Mastrolia '11, Zhang '12, Badger, Frellesvig & Zhang '12-'15, Mastrolia et al '12-'15, Kleis et al '12]

5

Integra(I)/(nd) reduction @ 2-loops

A finite basis of Master Integrals exists at two-loops [A. Smirnov, Petukhov '10]:

Coherent framework for reductions for two- and higher-loop amplitudes:

Jn N=4 SYM [Bern, Carrasco, Johansson et al. '09-'12]

Maximal unitarity cuts in general QFT's [Johansson, Kosower, Larsen et al. '11-'15]

- Integrand reduction with polynomial division in general QFT's [Ossola & Mastrolia '11, Zhang '12, Badger, Frellesvig & Zhang '12-'15, Mastrolia et al '12-'15, Kleis et al '12]
- By now reduction substantially understood for two- and (multi)-loop integrals
- Reduction to MI used for specific processes: *Integration by parts* (IBP) [Tkachov '81, Chetyrkin & Tkachov '81]
- Missing ingredient: library of Master integrals (MI)

6

A massive planar pentabox

- Interested in two-loop, five-point diagrams with <u>one</u> external mass
- Massless propagators
 - Relevant e.g. for virtual-virtual contribution to $2 \rightarrow 3$ LHC processes such as $H + 2j, V + 2j, Vb\overline{b}$ (Les Houches Wishlist) at NNLO QCD
- Six-scale integrals at two-loops
- Three planar topologies:

 All other 8 or less propagator (2-loop, 5-point, 1-mass) planar diagrams are reducible to diagrams in the above families

We will use SDE approach (see talk by C. Papadopoulos)

Introduction
SDE approach to loop integrals
A massive planar pentabox
Partial results

Summary and Outlook

Example: one-loop triangle

Simplified DE method

Example: one-loop triangle

Simplified DE method

Introduction
SDE approach to loop integrals
A massive planar pentabox
Partial results

Summary and Outlook

9

x-parametrization for pentabox

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

- For all MI that we have calculated, the above criteria could be easily met
- Often enough to choose the external legs such that the corresponding massive MI triangles (found by pinching external legs) are as follows:

9

x-parametrization for pentabox

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

- For all MI that we have calculated, the above criteria could be easily met
- Often enough to choose the external legs such that the corresponding massive MI triangles (**found by pinching external legs**) are as follows:

x-parametrization for **P1** family (74 MI in total):

DE for **P1** are known and integration underway in terms of GP's Reduction for **P2** done (75 MI in total), **P3** underway (bottleneck)

Massive

planar pentabox

Dealing with boundary conditions

0

Integration of a linear DE:
$$\partial_x G[x, s, \epsilon] = H[x, s, \epsilon] * G[x, s, \epsilon] + \tilde{I}[x, s, \epsilon]$$
$$MG[x, s, \epsilon] - MG[x \to 0, s, \epsilon] = \int_0^x dx' I[x', s, \epsilon]$$
$$= \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \int_0^x dx' \left(I[x', s, \epsilon] - \sum_n x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] \right)$$
$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\text{integrable}}^{(k)}[x', s, \epsilon]$$

Massive

planar pentabox

Dealing with boundary conditions

10

 $\begin{aligned} \text{Integration of a linear DE:} \quad & \partial_x G[x, s, \epsilon] = H[x, s, \epsilon] * G[x, s, \epsilon] + \tilde{I}[x, s, \epsilon] \\ & MG[x, s, \epsilon] - MG[x \to 0, s, \epsilon] = \int_0^x dx' I[x', s, \epsilon] \\ & = \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \int_0^x dx' \Big(I[x', s, \epsilon] - \sum_n x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] \Big) \\ & = \underbrace{\sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon]}_{n \in \epsilon} + \sum_k \epsilon^k \int_0^x dx' I_{\text{integrable}}^{(k)}[x', s, \epsilon] \end{aligned}$

Often correctly reproduces $x \to 0$ behavior of $MG(x, s, \epsilon)!$

Integrand I[x] contains branch points or poles at $x = \{x_1, x_2, ..., \infty\}$ of form $(x - x_i)^{m+n\epsilon}$ Also possible to integrate from either $x_1, x_2, ..., \infty$ instead from integration boundary x = 0

Massive

planar pentabox

Dealing with boundary conditions

0

 $\begin{aligned} \text{Integration of a linear DE:} \quad & \partial_x G[x, s, \epsilon] = H[x, s, \epsilon] * G[x, s, \epsilon] + \tilde{I}[x, s, \epsilon] \\ & MG[x, s, \epsilon] - MG[x \to 0, s, \epsilon] = \int_0^x dx' I[x', s, \epsilon] \\ & = \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \int_0^x dx' \Big(I[x', s, \epsilon] - \sum_n x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] \Big) \\ & = \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\text{integrable}}^{(k)}[x', s, \epsilon] \end{aligned}$

Often correctly reproduces $x \to 0$ behavior of $MG(x, s, \epsilon)$!

Integrand I[x] contains branch points or poles at $x = \{x_1, x_2, ..., \infty\}$ of form $(x - x_i)^{m+n\epsilon}$

Also possible to integrate from either $x_1, x_2, ..., \infty$ instead from integration boundary x = 0

bservation: Boundary always captured by integration from x = 0 or appropriate x_i

Not well understood yet why this is so and if will persist in future!

Alternative: use analytical/regularity constraints or asymptotic expansion in $x \rightarrow x_i$

$$\mathbf{DE:} \quad \partial_x \left(MG \right) \left[x, s, \epsilon \right] = C[s, \epsilon] \left(1 - \frac{x s_{12}}{s_{12} - s_{34}} \right)^{-1+\epsilon} \left(1 - \frac{x s_{12}}{s_{12} - s_{34} + s_{51}} \right)^{-1+\epsilon}$$

A naïve integration from lower boundary x = 0 misses a boundary term (collinear region)

Example of boundary calculation

Massive planar

pentabox

$$\mathbf{DE:} \quad \partial_x \left(MG \right) \left[x, s, \epsilon \right] = C[s, \epsilon] \left(1 - \frac{x s_{12}}{s_{12} - s_{34}} \right)^{-1+\epsilon} \left(1 - \frac{x s_{12}}{s_{12} - s_{34} + s_{51}} \right)^{-1+\epsilon}$$

A naïve integration from lower boundary x = 0 misses a boundary term (collinear region)
Try instead to integrate from poles x₁ = (s₁₂-s₃₄)/s₁₂ or x₂ = (s₁₂-s₃₄ + s₅₁)/s₁₂
Integrating from x₁ = (s₁₂-s₃₄)/s₁₂ (one-mass case) misses boundary term (collinear)
From x₂ = (s₁₂-s₃₄ + s₅₁)/s₁₂ (equal-mass case) we capture boundary term (hard):

$$MG[x,s,\epsilon] = C[s,\epsilon] \left(-\left(1 - \frac{x_2 s_{12}}{s_{12} - s_{34}}\right)^{-1+\epsilon} \left(1 - \frac{x s_{12}}{s_{12} - s_{34} + s_{51}}\right)^{\epsilon} \left(\frac{s_{12} - s_{34} + s_{51}}{s_{12}\epsilon}\right) + \int_{x_2}^{x} dx' I_{\text{integrable}}[x']\right)^{\epsilon} \left(\frac{s_{12} - s_{34} + s_{51}}{s_{12}\epsilon}\right)^{\epsilon} \left(\frac{s_{12} - s_{34} + s_{51}}{s_{12}\epsilon}\right) + \int_{x_2}^{x} dx' I_{\text{integrable}}[x']\right)^{\epsilon} \left(\frac{s_{12} - s_{34} + s_{51}}{s_{12}\epsilon}\right)^{\epsilon} \left(\frac{s_{12} - s_{12}}{s_{12}\epsilon}\right)^{\epsilon} \left(\frac{s_{12} - s_{12}}{s_$$

Massive planar pentabox

13

Resumming logs of (1 - x)

- The $(1-x)^{n\epsilon}$ behavior is captured by the DE itself!
- Corresponds to singularities in (1 x) in the DE
- Exponents *n* are the residues of these singularities
 - For coupled systems one has:

[J. Henn, A.V. Smirnov, V.A. Smirnov '13] (see V. Smirnov's talk)

$$\partial_x (MG)[x] = \sum_n (1-x)^{-1+n\epsilon} H_{-1}^{(n)} (MG)[x] + \sum_n (1-x)^{-1+n\epsilon} \tilde{I}_{-1}^{(n)} + \mathcal{O}((1-x)^0)$$

Solution (generally might contain powers of log(1 - x)):

$$(MG)[x \sim 1] = \sum_{n} c_n (1-x)^{n\epsilon}$$

Massive planar pentabox

3

Resumming logs of (1 - x)

- The $(1 x)^{n\epsilon}$ behavior is captured by the DE itself!
- Corresponds to singularities in (1 x) in the DE
- Exponents *n* are the residues of these singularities
 - For coupled systems one has:

[J. Henn, A.V. Smirnov, V.A. Smirnov '13] (see V. Smirnov's talk)

$$\partial_x (MG)[x] = \sum_n (1-x)^{-1+n\epsilon} H^{(n)}_{-1} (MG)[x] + \sum_n (1-x)^{-1+n\epsilon} \tilde{I}^{(n)}_{-1} + \mathcal{O}((1-x)^0)$$

Solution (generally might contain powers of log(1 - x)):

$$(MG)[x \sim 1] = \sum_{n} c_n (1-x)^{n\epsilon}$$

Exponents n are determined by the DE itself

The coefficients c_n found by matching logs of (1 - x) to solution of $x \neq 1$ case:

$$(MG)[x] = \sum_{n} c_n (1 + n\epsilon \log(1 - x)) + \frac{n^2 \epsilon^2}{2} \log(1 - x)^2 + \cdots)$$

Massless pentabox:
$$G[x=1] = \frac{\sum_{n} c_n (1-x)^{n\epsilon}}{M} \Big|_{(1-x)^{n\epsilon} \to 0, x \to 1}$$

Introduction
SDE approach to loop integrals
A massive planar pentabox
Partial results

Summary and Outlook

Results

Partial results for P1 (I)

 p_{12}^2

Pentabox PI, its x-parametrization:

$$p_1^2 = p_2^2 = p_3^2 = p_4^2 = p_{1234}^2 = 0,$$

= s_{12} , $p_{23}^2 = s_{23}$, $p_{34}^2 = s_{34}$, $p_{45}^2 = s_{45}$, $p_{51}^2 = s_{51}$

Still to be done:	PI	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	<i>ε</i> ⁻¹	ε^0
	<i>G</i> ₁₁₁₀₀₀₋₁₁₁₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	G ₁₁₁₀₀₀₀₁₁₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	G ₁₁₁₋₁₀₀₀₁₁₁₁	\checkmark	\checkmark	\checkmark	\checkmark	
	G ₁₁₁₀₀₁₋₁₁₁₁₁	\checkmark	\checkmark	\checkmark		
$\land \rightarrow \neg $	G ₁₁₁₀₀₁₀₁₁₁₁	\checkmark	\checkmark	\checkmark		
	<i>G</i> ₁₁₁₋₁₀₁₀₁₁₁₁	\checkmark	\checkmark			

Partial results for PI (II)

Results

15

 $G_{111001011111}^{(P1)}(x) =$

$$\begin{aligned} G_{111001011111}^{(P1)}(x,s,\epsilon) &= \frac{C_0(s,\epsilon)}{x^4(s_{12}(x-1)(x(-s_{23}+s_{45}+s_{51})-s_{45})+s_{34}(s_{45}(x-1)-s_{23}x)-s_{45}s_{51}(x-1))} \\ &\times \left\{ x^{-4\epsilon}C_1(x,s,\epsilon)+x^{-3\epsilon}C_2(x,s,\epsilon)+\frac{C_3(x,s)}{\epsilon^4}+ \frac{1}{\epsilon^3}\left(GP(0;x)C_4(x,s)+GP(1;x)C_5(x,s)+GP\left(s_{45}/s_{12};x\right)C_6(x,s)\cdots\right)+\cdots \right\} \end{aligned}$$

Numerical agreement in *Euclidean region* found with Secdec [Borowka, Heinrich et al '11-'15]:

$$x = 1/13, \ s_{12} = -2, \ s_{23} = -3, \ s_{34} = -5, \ s_{45} = -7, \ s_{51} = -11$$

Analytical:
$$G_{11100101111}^{(P1)} = \frac{1307.56}{\epsilon^4} + \frac{7834.53}{\epsilon^3} + \frac{22985.4}{\epsilon^2} + \frac{\cdots}{\epsilon} + \cdots + \mathcal{O}(\epsilon)$$

Secdec: $G_{11100101111}^{(P1)} = \frac{1307.56}{\epsilon^4} + \frac{7833.34}{\epsilon^3} + \frac{22972.4}{\epsilon^2} + \frac{59772.6}{\epsilon} + 186628 + \mathcal{O}(\epsilon)$

- SDE approach to loop integrals
 - A massive planar pentabox
 - Partial results
- Summary and Outlook

Summary and Outlook

16

Summary and Outlook

- In progress: two-loop pentaboxes with one massive external leg
- SDE method captures boundary terms by choosing the boundary at an appropriate branch point or pole
- Massless limit captured by resumming logs of (1 x)
- Can be done by algorithmic matching

Summary and Outlook

16

Summary and Outlook

- In progress: two-loop pentaboxes with one massive external leg
- SDE method captures boundary terms by choosing the boundary at an appropriate branch point or pole
- Massless limit captured by resumming logs of (1 x)
- Can be done by algorithmic matching

Thank you very much!

Backup slides

Comparison of DE methods

Traditional DE method:

17

Choose $\tilde{s} = \{f(p_i, p_j)\}$ and use chain rule to relate differentials of (independent) momenta and invariants:

$$p_i \cdot \frac{\partial}{\partial p_j} \mathbf{F}(\tilde{s}) = \sum_k p_i \cdot \frac{\partial \tilde{s}_k}{\partial p_j} \frac{\partial}{\partial \tilde{s}_k} \mathbf{F}(\tilde{s})$$

Solve above linear equations:

$$\frac{\partial}{\partial \tilde{s}_k} = g_k(\{p_i.\frac{\partial}{\partial p_j}\}\}$$

/ Differentiate w.r.t. invariant(s) \tilde{s}_k :

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s}, \epsilon) = g_k(\{p_i, \frac{\partial}{\partial p_j}\}) \vec{G}^{MI}(\tilde{s}, \epsilon)$$
$$\stackrel{IBP}{=} \overline{\overline{M}}_k(\tilde{s}, \epsilon) . \vec{G}^{MI}(\tilde{s}, \epsilon)$$

Make rotation $\vec{G}^{MI} \to \overline{\overline{A}}.\vec{G}^{MI}$ such that: $\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s},\epsilon) = \epsilon \overline{\overline{M}}_k(\tilde{s}).\vec{G}^{MI}(\tilde{s},\epsilon)$ [Henn '13]

- Solve perturbatively in ϵ to get GP's if $\tilde{s} = \{f(p_i, p_j)\}$ chosen properly
 - Solve DE of different \tilde{s}_k , to capture boundary condition

Simplified DE method:

Introduce external parameter x to capture off-shellness of external momenta:

$$G_{a_1 \cdots a_n}(s, \epsilon) = \int \left(\prod_i d^d k_i\right) \frac{1}{D_1^{2a_1}(k, p(x)) \cdots D_n^{2a_n}(k, p(x))} p_i(x) = p_i + (1 - x)q_i, \quad \sum_i q_i = 0, \quad s = \{p_i \cdot p_j\}|_{i,j}$$

Parametrization: pinched massive triangles should have legs (not fully constraining):

 $q_1(x) = xp', q_2(x) = p'' - xp', \ p'^2 = m_1, p''^2 = m_3$

Differentiate w.r.t. parameter x:

 $\frac{\partial}{\partial x}\vec{G}^{MI}(x,s,\epsilon) \stackrel{IBP}{=} \overline{\overline{M}}(x,s,\epsilon).\vec{G}^{MI}(x,s,\epsilon)$

Check if constant term (\$\epsilon = 0\$) of residues of homogeneous term for every DE is an integer:
 I) if yes, solve DE by "bottom-up" approach to express in GP's; 2) if no, change parametrization and check DE again

Boundary term almost always captured, if not: try $x \rightarrow 1/x$ or asymptotic expnansion

Bottom-up approach

Notation: upper index "(m)" in integrals $G_{\{a_1...a_n\}}^{(m)}$ denotes amount of positive indices, i.e. amount of denominators/propagators

$$G_{a_1\cdots a_n}^{(m)} = \int \left(\prod_i d^d k_i\right) \underbrace{\frac{1}{D_1^{2a_1}(k,p)\cdots D_n^{2a_n}(k,p)}}_{i}$$

m propagators, (positive indices) a_i

In practice individual DE's of MI are of the form:

$$\frac{\partial}{\partial x}G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) = \sum_{m'=m_0}^m \sum_{b_1,\cdots b_n} \operatorname{Rational}_{a_1\cdots a_n}^{b_1,\cdots b_n}(x,s,\epsilon)G^{(m')}_{b_1\cdots b_n}(x,s,\epsilon)$$

Bottom-up:

- Solve first for all MI with least amount of denominators m_0 (these are often already known to all orders in ϵ or often calculable with other methods)
- After solving all MI with m denominators ($m \ge m_0$), solve all MI with m + 1 denominators

Often:

$$G_{a_1\cdots a_n}^{(m_0)}(x,s,\epsilon) = \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots;x)\Big)$$

Assume for m' < m denominators:

19

$$G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) = H(x,s,\epsilon)G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \operatorname{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G^{(m')}_{b_1\cdots b_n}(x,s,\epsilon)$$

19

Assume for m' < m denominators:

$$G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) = H(x,s,\epsilon)G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \operatorname{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G^{(m')}_{b_1\cdots b_n}(x,s,\epsilon)$$

dependence on invariants s suppressed

$$\begin{aligned} \frac{\partial}{\partial x} G_{a_1 \cdots a_n}^{(m)}(x,\epsilon) &= H(x,\epsilon) G_{a_1 \cdots a_n}^{(m)}(x,\epsilon) + \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots;x) \Big) \\ &= \sum_{\text{poles } x^{(0)}} \frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x-x^{(0)})} G_{a_1 \cdots a_n}^{(m)}(x,\epsilon) + \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots;x) \Big) \longrightarrow \\ &\frac{\partial}{\partial x} (M(x,\epsilon) G_{a_1 \cdots a_n}^{(m)}(x,\epsilon)) &= M(x,\epsilon) \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots;x) \Big), \quad M(x,\epsilon) = \prod_{\text{poles } x^{(0)}} (x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)} \end{aligned}$$

9

Assume for m' < m denominators:

$$G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) = H(x,s,\epsilon)G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \operatorname{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G^{(m')}_{b_1\cdots b_n}(x,s,\epsilon)$$

dependence on invariants s suppressed

$$\frac{\partial}{\partial x}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) = H(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right)$$

$$= \sum_{\operatorname{poles}\ x^{(0)}}\frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x-x^{(0)})}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right) \longrightarrow$$

$$\frac{\partial}{\partial x}(M(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon)) = M(x,\epsilon)\sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right), \quad M(x,\epsilon) = \prod_{\operatorname{poles}\ x^{(0)}}(x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}$$

Formal solution:

$$\begin{split} M(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,s,\epsilon) &= (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{n,l}\prod_{\text{poles }x^{(0)}}\int_{0}^{x}dx'\Big(x'^{-n+l\epsilon}(x'-x^{(0)})^{-\epsilon c}{}_{x^{(0)}}\Big)\Big(\sum(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}(x')GP(\cdots;x')\Big) \\ &= (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{\tilde{n},l}\int_{0}^{x}dx'x'^{-\tilde{n}+l\epsilon}I_{\tilde{n},l}(\epsilon) + \sum_{k}\epsilon^{k}\prod_{\text{poles }x^{(0)}}\sum\int_{0}^{x}dx'\underbrace{(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')\text{ if }r_{x^{(0)}}\in\mathbb{Z}}GP(\cdots;x')\Big) \end{split}$$

19

Assume for m' < m denominators:

$$G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) = H(x,s,\epsilon)G^{(m)}_{a_1\cdots a_n}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \operatorname{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G^{(m')}_{b_1\cdots b_n}(x,s,\epsilon)$$

dependence on invariants ssupp

$$\frac{\partial}{\partial x}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) = H(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right)$$

$$= \sum_{\operatorname{poles}\ x^{(0)}}\frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x-x^{(0)})}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right) \longrightarrow$$

$$\frac{\partial}{\partial x}(M(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon)) = M(x,\epsilon)\sum_{n,l}x^{-n+l\epsilon}\left(\sum \operatorname{Rational}(x)GP(\cdots;x)\right), \quad M(x,\epsilon) = \prod_{\operatorname{poles}\ x^{(0)}}(x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}$$

Formal solution:

MI expressible in GP's:

$$\begin{split} \mathcal{A}(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,s,\epsilon) &= (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{n,l}\prod_{\text{poles }x^{(0)}}\int_{0}^{x}dx'\Big(x'^{-n+l\epsilon}(x'-x^{(0)})^{-\epsilon c}{}_{x^{(0)}}\Big)\Big(\sum(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}(x')GP(\cdots;x')\Big) \\ &= \underbrace{(M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0}}_{\text{boundary condition}} + \sum_{\tilde{n},l}\underbrace{\int_{0}^{x}dx'x'^{-\tilde{n}+l\epsilon}I_{\tilde{n},l}(\epsilon)}_{x^{-\tilde{n}+l\epsilon+1}\tilde{I}_{\tilde{n},l}(\epsilon)} + \sum_{k}\epsilon^{k}\prod_{\text{poles }x^{(0)}}\sum\underbrace{\int_{0}^{x}dx'\underbrace{(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')}GP(\cdots;x')}_{\operatorname{Rational}_{k}(x')}\underbrace{GP(\cdots;x')}_{x^{-\tilde{n}+l\epsilon+1}\tilde{I}_{\tilde{n},l}(\epsilon)} + \sum_{k}\epsilon^{k}\prod_{\text{poles }x^{(0)}}\sum\underbrace{\int_{0}^{x}dx'\underbrace{(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')}GP(\cdots;x')}_{\operatorname{Rational}_{k}(x')}\operatorname{Rational}_{k}(x')} \underbrace{GP(\cdots;x')}_{x^{-\tilde{n}+l\epsilon+1}\tilde{I}_{\tilde{n},l}(\epsilon)} + \sum_{k}\epsilon^{k}\prod_{poles }x^{(0)}}\sum\underbrace{\int_{0}^{x}dx'\underbrace{(x'-x^{(0)})^{-r}{}_{x^{(0)}}\operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')}GP(\cdots;x')}_{\operatorname{Rational}_{k}(x')}\operatorname{Rational}_{k}(x')} \underbrace{GP(\cdots;x')}_{x^{-\tilde{n}+l\epsilon+1}\tilde{I}_{\tilde{n},l}(\epsilon)} + \sum_{k}\epsilon^{k}\prod_{poles }x^{(0)}}\sum\underbrace{GP(\cdots;x)}_{x^{-\tilde{n}+l\epsilon}}\operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')}\operatorname{Rational}_{k}(x')}_{x^{-\tilde{n}+l\epsilon}}\operatorname{Rational}_{k}(x')}_{x^{-\tilde{n}+l\epsilon}} + \underbrace{GP(\cdots;x)}_{x^{-\tilde{n}+l\epsilon}}\operatorname{Rational}_{k}(x')}_{x^{-\tilde{n}+l\epsilon}} + \underbrace{GP(\cdots;x)}_{x^{-\tilde{n}+l\epsilon}} + \underbrace{GP(\cdots;x)}_{x^{-\tilde{n}+l\epsilon$$

 $G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) = \sum x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots;x)\Big)$

Fine print for coupled DE's: if the non-diagonal piece of $\epsilon = 0$ term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of matrices $r_{r^{(0)}}$ are integers, then above "GP-argument" is still valid

Uniform weight solution of DE

20

In general matrix in DE is dependent on ϵ :

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s},\epsilon) = \overline{\overline{M}}_k(\tilde{s},\epsilon) . \vec{G}^{MI}(\tilde{s},\epsilon)$$

Conjecture: possible to make a rotation $\vec{G}^{MI} \rightarrow \overline{\overline{A}}.\vec{G}^{MI}$ such that:

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s},\epsilon) = \epsilon \overline{\overline{M}}_k(\tilde{s}) \cdot \vec{G}^{MI}(\tilde{s},\epsilon)$$

[Kotikov'10, Henn '13]

Explicitly shown to be true for many examples [Henn '13, Henn, Smirnov et al '13-'14] If set of invariants $\tilde{s} = \{f(p_i, p_j)\}$ chosen correctly: $\overline{M}_k(\tilde{s}) = \sum_{\text{poles } \tilde{s}_k^{(0)}} \frac{\overline{M}_k^{\tilde{s}_k^{(0)}}}{(\tilde{s}_k - \tilde{s}_k^{(0)})}$ Solution is uniform in weight of GP's: $\vec{G}^{MI}(\tilde{s}, \epsilon) = Pe^{\epsilon \int_{C[0, \tilde{s}]} \overline{M}_k(\tilde{s}'_k)} \vec{G}^{MI}(0, \epsilon) = (1 + \epsilon \int_0^{\tilde{s}_k} \overline{M}_k(\tilde{s}'_k) + \cdots) \underbrace{\vec{G}^{MI}(0, \epsilon)}_{\vec{G}_0^{MI} + \epsilon \vec{G}_1^{MI} + \cdots}$

$$= \underbrace{\vec{G}_{0}^{MI}}_{\text{weight i}} + \epsilon \underbrace{(\underbrace{\vec{G}_{1}^{MI}}_{\text{weight i+1}} + \sum_{\text{poles } \tilde{s}_{k}^{(0)}} \underbrace{(\int_{0}^{\tilde{s}_{k}} \frac{d\tilde{s}_{k}'}{(\tilde{s}_{k}' - \tilde{s}_{k}^{(0)})} \underbrace{\overline{M}}_{k}^{\tilde{s}_{k}^{(0)}} \cdot \underbrace{\vec{G}_{0}^{MI}}_{\text{weight i}}) + \cdots}_{\text{weight i+1}}$$

Example of tradition DE method: one-loop triangle (1/2)

21

Consider again one-loop triangles with 2 massive legs and massless propagators:

$$G_{a_1 a_2 a_3}(\tilde{s}) = \int \frac{d^d k}{i\pi^{d/2}} \frac{1}{k^{2a_1}(k+p_1)^{2a_2}(k+p_1+p_2)^{2a_3}}, \quad p_1^2 = m_1, p_2^2 = m_2, (p_1+p_2)^2 = m_3 = 0$$

 $G_{111} =$

General function:

$$p_i \cdot \frac{\partial}{\partial p_j} \mathbf{F}(m_1, m_2, m_3) = \sum_{k=1}^3 p_i \cdot \frac{\partial \tilde{s}_k}{\partial p_j} \frac{\partial}{\partial \tilde{s}_k} \mathbf{F}(m_1, m_2, m_3), \quad i, j \in \{1, 2\}$$
$$\tilde{s}_1 = p_1^2 = m_1, \tilde{s}_2 = p_2^2 = m_2, \tilde{s}_3 = (p_1 + p_2)^2 = m_3$$

 Four linear equations, of which three independent because of invariance under Lorentz transformation [Remiddi & Gehrmann '00], in three unknowns: {

$$\{\frac{\partial}{\partial m_1}, \frac{\partial}{\partial m_2}, \frac{\partial}{\partial m_3}\}$$

• Solve linear equations:
$$\frac{\partial}{\partial m_k} = g_k(p_1.\frac{\partial}{\partial p_1}, p_2.\frac{\partial}{\partial p_2}, p_2.\frac{\partial}{\partial p_1}), \quad k = 1, 2, 3$$

$$\frac{\partial}{\partial m_1}G_{111} = \frac{1-2\epsilon}{\epsilon(m_1-m_2)^2} (G_{011} - (1+\epsilon(1-\frac{m_2}{m_1}))G_{110}), \quad \frac{\partial}{\partial m_2}G_{111} = \frac{\partial}{\partial m_1}G_{111} \ (m_1 \leftrightarrow m_2, G_{011} \leftrightarrow G_{110})$$

Example of tradition DE method: one-loop triangle (2/2)

$$\frac{\partial}{\partial m_1}G_{111} = \frac{1}{\epsilon^2(m_1 - m_2)^2}((-m_2)^{-\epsilon} + (-m_1)^{-\epsilon}(1 + \epsilon) - \epsilon m_2(-m_1)^{-1-\epsilon}) =: F[m_1, m_2], \quad \frac{\partial}{\partial m_2}G_{111} = F[m_2, m_1]$$

Solve by usual subtraction procedure:

$$F_{\text{sing}}[m_1, m_2] = \frac{-1}{\epsilon m_2} (-m_1)^{-1-\epsilon}$$

$$G_{111}(m_1, m_2) = G_{111}(0, m_2) + \int_0^{m_1} F_{\text{sing}}[m'_1, m_2] + \int_0^{m_1} (F[m'_1, m_2] - F_{\text{sing}}[m'_1, m_2])$$

$$= G_{111}(0, m_2) - \frac{(-m_1)^{-\epsilon}}{\epsilon^2 m_2} + \int_0^{m_1} \left(\frac{(1 - (-m_2)^{-\epsilon})GP(; -m'_1)}{\epsilon^2 (m_2 - m'_1)^2} - \frac{(m_2 - m'_1)GP(; -m'_1) + m_2GP(0; -m'_1)}{\epsilon m_2 (m_2 - m'_1)^2} + \mathcal{O}(\epsilon^0) \right)$$

$$= G_{111}(0, m_2) - \frac{(-m_1)^{-\epsilon}}{\epsilon^2 m_2} + \left(\frac{m_1(1 - (-m_2)^{-\epsilon})}{\epsilon^2 m_2 (m_1 - m_2)} + \frac{m_1GP(0; -m_1)}{\epsilon m_2 (m_2 - m_1)} \right) + \mathcal{O}(\epsilon^0)$$

Boundary condition follows by plugging in above solution in $\frac{\partial}{\partial m_2}G_{111} = F[m_2, m_1]$

$$\frac{\partial}{\partial m_2}G_{111}(0,m_2) = \frac{(1+\epsilon)}{\epsilon^2}(-m_2)^{-2-\epsilon} \to G_{111}(0,m_2) = \frac{-(-m_2)^{-1-\epsilon}}{\epsilon^2} + \underbrace{G_{111}(0,0)}_{\text{scaleless}=0} = \frac{-(-m_2)^{-1-\epsilon}}{\epsilon^2}$$

Agrees with exact solution: $G_{111} = \frac{c_{\Gamma}(\epsilon)}{\epsilon^2} \frac{(-m_1)^{-\epsilon} - (-m_2)^{-\epsilon}}{m_1 - m_2} = \frac{c_{\Gamma}(\epsilon)}{m_1 - m_2} \left(-\frac{1}{\epsilon} \log(\frac{-m_1}{-m_2}) + \mathcal{O}(\epsilon^0) \right)$

Open questions

23

- Is there a way to pre-empt the choice of x-parametrization without having to calculate the DE?
- Why are the boundary conditions naturally taken into account by the DE?
- How do the DE in the x-parametrization method relate exactly to those in the traditional DE method?