Evaluating Feynman integrals by uniformly transcendental differential equations

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics
of Moscow State University

June 19, 2015
Based on collaboration with Johannes Henn, Bernhard Miltlberger and Alexander Smirnov
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
- Evaluating non-planar on-shell three-loop four-point massless integrals
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
- Evaluating non-planar on-shell three-loop four-point massless integrals
- Evaluating planar three-loop vertex integrals at threshold
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
- Evaluating non-planar on-shell three-loop four-point massless integrals
- Evaluating planar three-loop vertex integrals at threshold
- GPL(1)
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
- Evaluating non-planar on-shell three-loop four-point massless integrals
- Evaluating planar three-loop vertex integrals at threshold
- GPL(1)
- Conclusion
Based on collaboration with Johannes Henn, Bernhard Mistlberger and Alexander Smirnov

- Introduction. The method of differential equations
- Evaluating non-planar on-shell three-loop four-point massless integrals
- Evaluating planar three-loop vertex integrals at threshold
- GPL(1)
- Conclusion

More on the method of differential equations in other talks
[L. Tancredi, O. Gituliar, B. Mistlberger, R. Schabinger, C. Papadopoulos, A. von Manteuffel, C. Wever]
Evaluating Feynman integrals by uniformly transcendental differential equations

Introduction. The method of differential equations

[A.V. Kotikov’91, E. Remiddi’97, T. Gehrmann & E. Remiddi’00, J. Henn’13]
[A.V. Kotikov’91, E. Remiddi’97, T. Gehrmann & E. Remiddi’00, J. Henn’13]

Gehrmann & Remiddi: a method to evaluate master integrals. It is assumed that the problem of reduction to master integrals is solved.
[A.V. Kotikov’91, E. Remiddi’97, T. Gehrmann & E. Remiddi’00, J. Henn’13]

Gehrmann & Remiddi: a method to evaluate master integrals. It is assumed that the problem of reduction to master integrals is solved.

Henn: use uniform transcendental (UT) bases!
Evaluating Feynman integrals by uniformly transcendental differential equations

Introduction. The method of differential equations

[A.V. Kotikov’91, E. Remiddi’97, T. Gehrmann & E. Remiddi’00, J. Henn’13]

Gehrmann & Remiddi: a method to evaluate master integrals. It is assumed that the problem of reduction to master integrals is solved.

Henn: use uniform transcendental (UT) bases!

Take some derivatives of given master integrals in masses or/and kinematic invariants
Take some derivatives of given master integrals in masses or/and kinematic invariants (or, in an auxiliary parameter [C. Papadopoulos])
Take some derivatives of given master integrals in masses or/and kinematic invariants (or, in an auxiliary parameter [C. Papadopoulos])

Express them in terms of Feynman integrals of the given family with shifted indices
Take some derivatives of given master integrals in masses or/and kinematic invariants (or, in an auxiliary parameter [C. Papadopoulos])

Express them in terms of Feynman integrals of the given family with shifted indices

Apply an IBP reduction to express these integrals in terms of master integrals to obtain a system of differential equations
Take some derivatives of given master integrals in masses or/and kinematic invariants (or, in an auxiliary parameter [C. Papadopoulos])

Express them in terms of Feynman integrals of the given family with shifted indices

Apply an IBP reduction to express these integrals in terms of master integrals to obtain a system of differential equations

Solve DE
Let $f = (f_1, \ldots, f_N)$ be primary master integrals (MI) for a given family of dimensionally regularized (with $D = 4 - 2\epsilon$) Feynman integrals.
Let \(f = (f_1, \ldots, f_N) \) be primary master integrals (MI) for a given family of dimensionally regularized (with \(D = 4 - 2\epsilon \)) Feynman integrals.

Let \(x = (x_1, \ldots, x_n) \) be kinematical variables and/or masses, or some new variables introduced to ‘get rid of square roots’.
Let $f = (f_1, \ldots, f_N)$ be primary master integrals (MI) for a given family of dimensionally regularized (with $D = 4 - 2\epsilon$) Feynman integrals.

Let $x = (x_1, \ldots, x_n)$ be kinematical variables and/or masses, or some new variables introduced to ‘get rid of square roots’.

DE:

$$\partial_i f(\epsilon, x) = A_i(\epsilon, x)f(\epsilon, x),$$

where $\partial_i = \frac{\partial}{\partial x_i}$, and each A_i is an $N \times N$ matrix.
Henn (2013): turn to a new basis where DE take the form

\[\partial_i f(\epsilon, x) = \epsilon A_i(x) f(\epsilon, x). \]
Henn (2013): turn to a new basis where DE take the form

$$\partial_i f(\epsilon, x) = \epsilon A_i(x) f(\epsilon, x).$$

In the differential form,

$$d f(\epsilon, x) = \epsilon (d \tilde{A}(x)) f(x, \epsilon),$$

where

$$\tilde{A} = \sum_k \tilde{A}_{\alpha_k} \log(\alpha_k).$$
Henn (2013): turn to a new basis where DE take the form

$$\partial_i f(\epsilon, x) = \epsilon A_i(x)f(\epsilon, x).$$

In the differential form,

$$df(\epsilon, x) = \epsilon (d\tilde{A}(x)) f(x, \epsilon),$$

where

$$\tilde{A} = \sum_k \tilde{A}_{\alpha_k} \log(\alpha_k).$$

and \tilde{A}_{α_k} are constant matrices. The arguments of the logarithms α_i (letters) are functions of x. Elements of such basis turn out to be uniformly transcendental (UT).
Henn (2013): turn to a new basis where DE take the form

$$\partial_i f(\epsilon, x) = \epsilon A_i(x) f(\epsilon, x).$$

In the differential form,

$$d f(\epsilon, x) = \epsilon (d \tilde{A}(x)) f(x, \epsilon),$$

where

$$\tilde{A} = \sum_k \tilde{A}_{\alpha_k} \log(\alpha_k).$$

and \tilde{A}_{α_k} are constant matrices. The arguments of the logarithms α_i (letters) are functions of x. Elements of such basis turn out to be uniformly transcendental (UT).

Let us call it epsilon form.
The case of two scales, i.e. with one variable in the DE, i.e. $n = 1$.
The case of two scales, i.e. with one variable in the DE, i.e. $n = 1$.

One tries to achieve the following form of DE:

$$f'(\epsilon, x) = \epsilon \sum_k \frac{a_k}{x - x^{(k)}} f(\epsilon, x).$$

where $x^{(k)}$ is the set of singular points of the DE and $N \times N$ matrices a_k are independent of x and ϵ.
The case of two scales, i.e. with one variable in the DE, i.e. \(n = 1 \).

One tries to achieve the following form of DE:

\[
 f'(\epsilon, x) = \epsilon \sum_k \frac{a_k}{x - x^{(k)}} f(\epsilon, x).
\]

where \(x^{(k)} \) is the set of singular points of the DE and \(N \times N \) matrices \(a_k \) are independent of \(x \) and \(\epsilon \).

For example, if \(x_k = 0, -1, 1 \) then results for elements of such a basis are expressed in terms of HPL.
How to turn to a UT basis?
How to turn to a UT basis?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
How to turn to a UT basis?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly
- Use Feynman parametrization
How to turn to a UT basis?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly.
- Use Feynman parametrization.
- Replace propagators by delta functions and analyze whether the resulting expression is UT.
How to turn to a UT basis?

- In simple situations where integrals can be expressed in terms of gamma functions, just adjust indices properly.
- Use Feynman parametrization.
- Replace propagators by delta functions and analyze whether the resulting expression is UT.
- An approach using Magnus and Dyson series expansion
A part of the procedure is algorithmically described in [T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs’14]
A part of the procedure is algorithmically described in [T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs’14]

Constructing UT elements of the basis at the level of integrand [Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka’14]
A part of the procedure is algorithmically described in [T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs’14]

Constructing UT elements of the basis at the level of integrand [Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka’14]

In the case of one variables was algorithmically described [R.N. Lee’14]
Evaluating Feynman integrals by uniformly transcendental differential equations

Evaluating non-planar on-shell three-loop four-point massless integrals

(a) \hspace{2cm} (b) \hspace{2cm} (c)

(d) \hspace{2cm} (e) \hspace{2cm} (f)

(g) \hspace{2cm} (h) \hspace{2cm} (i)
The kinematics: $p_i^2 = 0$, $s = (p_1 + p_2)^2$, $t = (p_1 + p_3)^2$, $u = (p_2 + p_3)^2 = -s - t$.
The kinematics: \(p_i^2 = 0, \ s = (p_1 + p_2)^2, \ t = (p_1 + p_3)^2, \ u = (p_2 + p_3)^2 = -s - t. \)

A and E [J. Henn, A.&V. Smirnov’13]
The kinematics: $p_i^2 = 0$, $s = (p_1 + p_2)^2$, $t = (p_1 + p_3)^2$, $u = (p_2 + p_3)^2 = -s - t$.

A and E [J. Henn, A.&V. Smirnov’13]
B,C,D [J. Henn, B. Mistlberger and V. Smirnov’15]
The kinematics: \(p_i^2 = 0, s = (p_1 + p_2)^2, t = (p_1 + p_3)^2, \\ u = (p_2 + p_3)^2 = -s - t. \\

A and E [J. Henn, A.\&V. Smirnov’13] \\
B,C,D [J. Henn, B. Mistlberger and V. Smirnov’15] \\
The kinematics: $p_i^2 = 0$, $s = (p_1 + p_2)^2$, $t = (p_1 + p_3)^2$, $u = (p_2 + p_3)^2 = -s - t$.

A and E [J. Henn, A.& V. Smirnov’13]

B,C,D [J. Henn, B. Mistlberger and V. Smirnov’15]

$$F^D_{a_1,\ldots,a_{15}}(s, t; D) = \frac{1}{(i\pi^{D/2})^3} \int \int \int \frac{d^D k_1 d^D k_2 d^D k_3}{(-k_1^2)^{a_1}(-(p_2 - k_1 + k_2)^2)^{a_2}(-k_2^2)^{a_3}} \times \frac{[-(k_1 - k_3)^2]^{-a_{11}}[-(p_1 + k_3)^2]^{-a_{12}}[-(p_1 + k_2)^2]^{-a_{13}}}{[-(p_1 + p_2 + k_2)^2]^{a_4}[-k_3^2]^{a_5}[-(p_1 + p_2 + p_3 + k_2 - k_3)^2]^{a_6}} \times \frac{[-(p_3 + k_1)^2]^{-a_{14}}[-(p_3 + k_2)^2]^{-a_{15}}}{(-(p_1 + k_1)^2)^{a_7}(-(k_1 - k_2)^2)^{a_8}[-(k_2 - k_3)^2]^{a_9}[-(k_3 - p_3)^2]^{a_{10}}}.$$
Partial results:
master integrals for D apart from the top sector [R.N. Lee’14]
Partial results:
master integrals for D apart from the top sector [R.N. Lee’14]
K_4 as a part of C [J. Henn, A.&V. Smirnov’13]
Partial results: master integrals for D apart from the top sector \([\text{R.N. Lee'14}]\) \(K_4\) as a part of \(C\) \([\text{J. Henn, A.&V. Smirnov'13}]\)

Results expressed in terms of HPL
\(H_{a_1,a_2,\ldots,a_n}(x), a_i = 1, 0, -1\),
\([\text{E. Remiddi and J.A.M. Vermaseren'00}]\)
\(B, C, D \)

IBP reduction by FIRE and by a private code by Bernhard Mistlberger.
B, C, D

IBP reduction by FIRE and by a private code by Bernhard Mistlberger.

In all the cases, initial DE are transformed into

$$\partial_x f(x, \epsilon) = \epsilon \left[\frac{a}{x} + \frac{b}{1 + x} \right] f(x, \epsilon).$$

where a and b are constant matrices.
Boundary conditions.
Boundary conditions.

Three singular points, at $x = 0$, $x = -1$, and $x = \infty$, corresponding to the limits $s \to 0$, $u \to 0$, and $t \to 0$, respectively.
Boundary conditions.

Three singular points, at $x = 0$, $x = -1$, and $x = \infty$, corresponding to the limits $s \to 0$, $u \to 0$, and $t \to 0$, respectively.

For planar diagrams A and E, the condition of the absence of singularities at $u = 0$ served as a very powerful boundary condition. As a result, only simple information about integrals expressed in terms of gamma functions fixed completely the solution of the DE.
Boundary conditions.

Three singular points, at $x = 0$, $x = -1$, and $x = \infty$, corresponding to the limits $s \to 0$, $u \to 0$, and $t \to 0$, respectively.

For planar diagrams A and E, the condition of the absence of singularities at $u = 0$ served as a very powerful boundary condition. As a result, only simple information about integrals expressed in terms of gamma functions fixed completely the solution of the DE.

There is no this condition in the non-planar cases because non-planar diagrams have singularities in all the three channels.
Studying limits, $s \to 0$, $t \to 0$, $u \to 0$.
Studying limits, \(s \to 0, \ t \to 0, \ u \to 0 \).

Typical contributions to the asymptotic expansion in the limit \(x = t/x \to 0 \):
hard-hard-hard contribution,
collinear-collinear-collinear contribution,
ultrasoft-collinear-collinear contribution.
Studying limits, \(s \to 0, t \to 0, u \to 0 \).

Typical contributions to the asymptotic expansion in the limit
\(x = t/x \to 0 \):
hard-hard-hard contribution,
collinear-collinear-collinear contribution,
ultrasoft-collinear-collinear contribution.

The code \texttt{asy.m}
[A. Pak and A. Smirnov’10, B. Jantzen, A.S. and V.S.’12]
(which is now included into \textsc{FIESTA} [A.S.’09-15])
→ expression of contributions of regions
Three last elements of the basis

\[-\epsilon^6 s (s + t) (2sF_{1,1,0,1,1,1,1,1,1,0,0,0,0,0} - sF_{1,1,1,1,1,1,1,1,1,1,0,0,0,0,-1})
\quad - F_{1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0} + F_{1,1,1,1,1,1,1,1,1,1,1,0,0,-1,0,-1})) ,
\]

\[\epsilon^6 st(3F_{1,1,0,0,1,1,1,1,1,1,0,0,0,0,0} - 2F_{1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,-1})
\quad - F_{1,1,1,1,1,1,1,1,1,1,1,0,0,-1,0,-1})) ,
\]

\[\epsilon^6 s \left(-\frac{3}{2} s^2 F_{1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0} + \frac{3}{2} s^2 F_{1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,-1} \right)
\quad - \frac{9}{4} sF_{1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,-1} + \frac{5}{4} sF_{1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,-1} \right)
\quad - 2sF_{1,1,1,1,1,1,1,1,1,1,1,0,0,-1,0,-1}) + \frac{3}{2} sF_{1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,-2} \right)
\quad - 5F_{1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,-1} + 4F_{1,1,1,0,1,1,1,1,1,1,1,0,0,-1,0,-1} \right)
\quad + 3F_{1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,-2} - 2F_{1,1,1,1,1,1,1,1,1,1,1,0,0,-1,0,-2}) \right) .\]
Our analytical result for element 28 is

\[-(1/3) - (\text{I ep } \Pi/2 + (10 \text{ ep}^2 \Pi^2)/9 + \\
23/24 \text{ I ep}^3 \Pi^3 - (271 \text{ ep}^4 \Pi^4)/4320 - (\\
10201 \text{ ep}^5 \Pi^5)/2880 - (23819 \text{ ep}^6 \Pi^6)/20160 + \\
1/2 \text{ ep } H\{-1\}, x\] - 7/24 \text{ ep}^3 \Pi^2 H\{-1\}, x\] - \\
35/12 \text{ I ep}^4 \Pi^3 H\{-1\}, x\] - 3809/960 \text{ ep}^5 \Pi^4 H\{-1\}, x\] - \\
1157/72 \text{ I ep}^6 \Pi^5 H\{-1\}, x\] + 1/2 \text{ ep } H\{0\}, x\] + \\
1/2 \text{ I ep}^2 \Pi H\{0\}, x\] - 61/24 \text{ ep}^3 \Pi^2 H\{0\}, x\] + \\
27/8 \text{ I ep}^4 \Pi^3 H\{0\}, x\] - 103/576 \text{ ep}^5 \Pi^4 H\{0\}, x\] + (\\
58537 \text{ I ep}^6 \Pi^5 H\{0\}, x\)]/2880 + \\
9/2 \text{ I ep}^3 \Pi H\{-1, -1\}, x\] - \\
35/12 \text{ ep}^4 \Pi^2 H\{-1, -1\}, x\] - \\
683/24 \text{ I ep}^5 \Pi^3 H\{-1, -1\}, x\] + \\
3361/240 \text{ ep}^6 \Pi^4 H\{-1, -1\}, x\] - 1/2 \text{ ep}^2 H\{-1, 0\}, x\] - \\
5/2 \text{ I ep}^3 \Pi H\{-1, 0\}, x\] + 77/24 \text{ ep}^4 \Pi^2 H\{-1, 0\}, x\] + \\
395/24 \text{ I ep}^5 \Pi^3 H\{-1, 0\}, x\] + (\\
739 \text{ ep}^6 \Pi^4 H\{-1, 0\}, x\)]/2880 - 1/2 \text{ ep}^2 H\{0, -1\}, x\] - \\
97/24 \text{ ep}^4 \Pi^2 H\{0, -1\}, x\] + \\
77/4 \text{ I ep}^5 \Pi^3 H\{0, -1\}, x\] + (1/2880) \\
18691 \text{ ep}^6 \Pi^4 H\{0, -1\}, x\] - 5/2 \text{ I ep}^3 \Pi H\{0, 0\}, x\] + \\
79/12 \text{ ep}^4 \Pi^2 H\{0, 0\}, x\] - \\
445/24 \text{ I ep}^5 \Pi^3 H\{0, 0\}, x\] + \\
73/240 \text{ ep}^6 \Pi^4 H\{0, 0\}, x\] - 9/2 \text{ ep}^3 H\{-1, -1, -1\}, x\] +...
Evaluating planar three-loop vertex integrals at threshold.

[J. Henn, A. Smirnov and V. Smirnov ’15]
Evaluating planar three-loop vertex integrals at threshold.
[J. Henn, A. Smirnov and V. Smirnov’15]
evaluating NRQCD/QCD matching coefficients)
Evaluating Feynman integrals by uniformly transcendental differential equations

Evaluating planar three-loop vertex integrals at threshold

\[
F_{a_1, \ldots, a_{12}} = \int \int \int \frac{d^D k_1 \, d^D k_2 \, d^D k_3}{[m^2 - (k_1 + p_1)^2]^{a_1} [m^2 - (k_2 + p_1)^2]^{a_2}} \times \frac{1}{[m^2 - (k_3 + p_1)^2]^{a_3} [m^2 - (k_3 + p_2)^2]^{a_4} [m^2 - (k_2 + p_2)^2]^{a_5}} \times \frac{1}{[m^2 - (k_1 + p_2)^2]^{a_6} [-(k_1^2)]^{a_7} [-(k_1 - k_2)^2]^{a_8} [-(k_2 - k_3)^2]^{a_9}} \times \frac{1}{[-(k_1 - k_3)^2]^{a_{10}} [-k_2^{a_{11}}] [-k_3^{a_{12}}]}
\]

at \(p_1^2 = m^2, p_2^2 = m^2, q^2 = (p_1 - p_2)^2 = 4m^2. \)
\[F_{a_1, \ldots, a_{12}} = \int \int \int \frac{d^D k_1 \, d^D k_2 \, d^D k_3}{[m^2 - (k_1 + p_1)^2]^{a_1} \, [m^2 - (k_2 + p_1)^2]^{a_2}} \ \times \frac{1}{[m^2 - (k_3 + p_1)^2]^{a_3} \, [m^2 - (k_3 + p_2)^2]^{a_4} \, [m^2 - (k_2 + p_2)^2]^{a_5}} \ \times \frac{1}{[m^2 - (k_1 + p_2)^2]^{a_6} \, [-k_1^2]^{a_7} \, [-(k_1 - k_2)^2]^{a_8} \, [-(k_2 - k_3)^2]^{a_9}} \ \times \frac{1}{[-(k_1 - k_3)^2]^{a_{10}} \, [-k_2^2]^{-a_{11}} \, [-k_3^2]^{-a_{12}}} \]

at \(p_1^2 = m^2, \ p_2^2 = m^2, \ q^2 = (p_1 - p_2)^2 = 4m^2. \)

Each index can be positive but the total number of positive indices cannot be more than 9. This family of integrals can be represented as the union of eight subfamilies.
Evaluating Feynman integrals by uniformly transcendental differential equations

Evaluating planar three-loop vertex integrals at threshold

(1) (2) (3) (4)

(5) (6) (7) (8)
51 master integrals

\[F_{0,0,0,1,1,1,0,0,0,0,0,0,0}, \ F_{0,0,0,0,1,1,0,0,0,1,0,1}, \ F_{0,0,0,0,1,1,0,0,0,1,1,0}, \ F_{0,0,1,0,0,0,0,0,1,0,1,1,0}, \]
\[F_{0,0,1,0,0,1,0,1,1,0,0,0}, \ F_{0,0,1,0,0,1,0,1,2,0,0,0}, \ F_{0,0,1,0,1,1,0,0,0,1,0,0}, \ F_{0,0,0,0,0,1,0,1,0,1,1,1}, \]
\[F_{0,0,1,0,0,1,0,1,0,1,1,1,0}, \ F_{0,0,1,0,0,1,0,1,0,2,0,0}, \ F_{0,0,1,0,0,1,0,2,1,0,1,0}, \ F_{0,0,1,0,0,1,1,1,0,0,1,0}, \]
\[F_{0,0,1,0,1,1,0,0,1,1,0,0}, \ F_{0,0,1,0,1,1,0,0,1,1,2,0,0}, \ F_{0,0,1,0,1,1,0,0,1,1,2,0,0}, \ F_{0,0,1,0,1,2,0,1,0,1,1,0}, \]
\[F_{0,0,1,0,1,2,0,0,1,1,1,0}, \ F_{0,0,1,1,0,1,0,1,1,2,0,0}, \ F_{0,0,1,1,0,1,1,1,1,0,0,0}, \ F_{0,1,1,0,0,1,0,1,0,1,0,1}, \]
\[F_{0,1,1,0,0,1,0,1,2,0,1,0,1}, \ F_{0,1,1,0,1,1,0,0,1,1,1,0,0}, \ F_{0,1,1,0,1,1,0,0,1,1,0,0,0}, \ F_{0,1,1,0,1,1,0,0,1,1,0,0,0}, \]
\[F_{0,0,1,0,1,1,0,1,0,1,1,1,1}, \ F_{0,0,2,0,1,1,0,1,0,1,1,1}, \ F_{0,0,1,1,1,1,0,1,0,1,1,0}, \ F_{0,0,1,1,1,1,0,1,0,1,2,0}, \]
\[F_{0,1,1,0,1,1,1,0,0,1,0,1}, \ F_{0,1,1,0,1,1,1,1,0,1,0,1,0}, \ F_{0,1,1,0,1,1,0,2,0,1,0,1}, \ F_{0,1,1,0,1,1,1,0,2,0,0,0}, \]
\[F_{1,1,1,0,0,0,0,1,0,1,1,1}, \ F_{0,1,1,0,1,1,1,1,0,0,1}, \ F_{0,1,1,0,1,1,1,1,1,0,1} \]
Evaluating Feynman integrals by uniformly transcendental differential equations

— Evaluating planar three-loop vertex integrals at threshold
Evaluating Feynman integrals by uniformly transcendental differential equations

Evaluating planar three-loop vertex integrals at threshold

(16) (17) (18a) (19) (20)

(21) (22) (23a) (24b) (25) (26)
Evaluating Feynman integrals by uniformly transcendental differential equations

—Evaluating planar three-loop vertex integrals at threshold
Evaluating Feynman integrals by uniformly transcendental differential equations

Evaluating planar three-loop vertex integrals at threshold

(42) (43a) (44b) (45c) (46) (47a) (48) (49) (50) (51)
Our goal are integrals at $s = q^2 \equiv (p_2 - p_2)^2 = 4m^2$.
Our goal are integrals at \(s = q^2 \equiv (p_2 - p_2)^2 = 4m^2 \).

Turn to the corresponding family of integrals at general \(q^2 \) and introduce

\[
\frac{s}{m^2} = -\frac{(1 - x)^2}{x}
\]
Our goal are integrals at \(s = q^2 \equiv (p_2 - p_2)^2 = 4m^2 \).

Turn to the corresponding family of integrals at general \(q^2 \) and introduce

\[
\frac{s}{m^2} = -\frac{(1 - x)^2}{x}
\]

The values \(x = 0 \) and \(x = -1 \) correspond to \(s = 0 \) and \(s = 4m^2 \).
Our goal are integrals at $s = q^2 \equiv (p_2 - p_2)^2 = 4m^2$.

Turn to the corresponding family of integrals at general q^2 and introduce

$$\frac{s}{m^2} = -\frac{(1 - x)^2}{x}$$

The values $x = 0$ and $x = -1$ correspond to $s = 0$ and $s = 4m^2$.

DE

$$f'(\epsilon, x) = \epsilon \tilde{A}'(x) f(x, \epsilon),$$

where $\tilde{A} = \sum_k \tilde{A}_{\alpha_k} \log(\alpha_k)$ and the letters α_k are $x, 1 + x, 1 - x, 1 + x + x^2$.
90 elements of this basis \(f(x) \) are

\[
\{ F_{0,0,0,3,3,0,0,0,0,0,0,0}, \quad \varepsilon \frac{x^2 - 1}{x} F_{0,0,2,1,3,3,0,0,0,0,0,0}, \quad \cdots \\
\varepsilon^6 \frac{(1 - x^2)^2}{x^2} F_{1,0,1,1,1,1,1,1,0,0,0,0}, \quad (1 - 2\varepsilon)\varepsilon^4 F_{1,2,1,0,0,0,0,1,1,1,0,0,1} \}
\]
90 elements of this basis $f(x)$ are

$$\{ F_{0,0,0,3,3,0,0,0,0,0,0,0} , \quad \varepsilon \frac{x^2 - 1}{x} F_{0,0,2,1,3,3,0,0,0,0,0,0,0,0,0} , \ldots \}$$

$$\varepsilon^6 \left(1 - x^2 \right)^2 \frac{F_{1,0,1,1,1,1,1,1,1}}{x^2} , \quad (1 - 2\varepsilon)\varepsilon^4 F_{1,2,1,0,0,0,1,1,1,0,0,1}$$

A solution in an epsilon-expansion with coefficients written in terms of Goncharov (multiple) polylogarithms (GPL)

$$G(a_1, \ldots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \ldots, a_n; t)$$

with indices a_i taken from the seven-letters alphabet

$$\{0, r_1, r_3, -1, r_4, r_2, 1\}$$

with

$$r_{1,2} = \frac{1}{2} \left(1 \pm \sqrt{3} \, i \right) , \quad r_{3,4} = \frac{1}{2} \left(-1 \pm \sqrt{3} \, i \right) .$$
A typical expression for analytical results for the elements of the basis

\[\text{ep}^{-4*(-24*G\{\{\{0\}, 1\}\}G\{0, -1\}, 1\} + \\
24*G\{0, -1\}, 1\}G\{0, -1\}, x\} - 23*G\{0, -1\}, 1\}G\{0, 0\}, x\} - \\
12*G\{\{\{0\}, 1\}\}G\{0, 1\}, 1\} + 12*G\{0, -1\}, 1\}G\{0, 1\}, 1\} - \\
(23*G\{0, 0\}, x\}G\{0, 1\}, 1\})/2 + 12*G\{0, -1\}, 1\}G\{0, 1\}, 1\} + \\
6*G\{0, 1\}, 1\}G\{0, 1\}, x\} + 12*G\{0, -1\}, 1\}G\{1, 0\}, x\} + \\
6*G\{0, 1\}, 1\}G\{1, 0\}, x\} - 9*G\{0, -1\}, 1\}G\{r1, 0\}, x\} - \\
9*G\{0, -1\}, 1\}G\{r2, 0\}, x\})/2 - 9*G\{0, 1\}, 1\}G\{r2, 0\}, x\} - \\
12*G\{\{\{0\}, 1\}\}G\{0, -1\}, 1\} + 12*G\{0, -1\}, 1\}G\{0, 0\}, 1\} + \\
24*G\{\{\{0\}, 1\}\}G\{0, 0\}, 1\} - 48*G\{0, 0\}, 0\}G\{0, 0, 1\}, 1\} + \\
18*G\{\{\{0\}, 1\}\}G\{0, 0\}, 1\} + 24*G\{\{\{0\}, 1\}\}G\{0, 0, 1\}, 1\} - \\
(57*G\{\{\{0\}, 1\}\}G\{0, 0\}, 1\})/2 + 24*G\{\{\{1\}\}G\{0, 0\}, 1\}\} + \\
(21*G\{\{\{r1\}\}G\{0, 0\}, 1\})/2 - (21*G\{\{\{r2\}\}G\{0, 0\}, 1\})/2 - \\
6*G\{0, 0\}, x\}G\{0, 1\}, 1\} - 24*G\{\{\{1\}\}G\{0, 0\}, 1\}\} + \\
36*G\{\{\{\{1\}\}G\{0, 0\}, 0\}, x\} - 24*G\{\{\{\{1\}\}G\{0, 0\}, 0\}, x\} + \\
24*G\{\{\{0\}, 0\}, 0\}, x\} + 2*G\{\{\{0\}, 0\}, 0\}, x\} + 12*G\{\{\{0\}, 0\}, 0\}, x\} - \\
23*G\{\{\{0\}, 0\}, 1\}, 1\})/2 + \\
12*G\{\{\{0\}, 1\}, 0\}, x\} + (11*G\{0, 1\}, x\})/2 + \\
6*G\{0, 0\}, 1\})/2 - 24*G\{\{0, 0\}, 0\}, x\} + 12*G\{\{0, 0\}, 0\}, x\} + \\
15*G\{\{\{0\}, 0\}, 0\}, x\} + 6*G\{\{\{0\}, 0\}, 0\}, x\} + 12*G\{\{\{0\}, 0\}, 0\}, x\} - \\
9*G\{\{\{r1\}, 0\}, 1\})/2 + (3*G\{\{\{r1\}, 1\}, 1\}, 0\})/2 - \\
9*G\{\{\{r2\}, 0\}, 1\})/2 + (3*G\{\{\{r2\}, 1\}, 0\})/2 + \\
(3*G\{0, x\})*Zeta[3])/2 - (3*G\{\{\{r1\}\}, x\})*Zeta[3])/2 - \\
(3*G\{\{\{r2\}\}, x\})*Zeta[3])/2 - \\
(3*(16*G\{\{\{0\}, 0\}, 1\})/2 + 8*G\{0, 1\}, 1\}G\{0, 1\}, 1\} + \ldots
Threshold expansion

\[F(a_1, \ldots, a_{12}; q^2, m^2) \sim \sum_{n=n_0}^{\infty} \sum_{j=0}^{3} (4m^2 - q^2)^{n-j\epsilon} F_{n,j}(a_1, \ldots, a_{12}; q^2). \]
Threshold expansion

\[F(a_1, \ldots, a_{12}; q^2, m^2) \sim \sum_{n=n_0}^{\infty} \sum_{j=0}^{3} (4m^2 - q^2)^{n-j}\epsilon F_{n,j}(a_1, \ldots, a_{12}; q^2). \]

Our goal are one-scale integrals \(F_{0,0}(a_1, \ldots, a_{12}; m^2) \) defined with \(q^2 \) set to \(4m^2 \).
Threshold expansion

\[F(a_1, \ldots, a_{12}; q^2, m^2) \sim \sum_{n=n_0}^{\infty} \sum_{j=0}^{3} (4m^2 - q^2)^{n-j\epsilon} F_{n,j}(a_1, \ldots, a_{12}; q^2). \]

Our goal are one-scale integrals \(F_{0,0}(a_1, \ldots, a_{12}; m^2) \) defined with \(q^2 \) set to \(4m^2 \).

We cannot just set \(q^2 = 4m^2 \), i.e. \(x = -1 \) in our basis because some integrals enter with the coefficients \(1/(x + 1) \) and \(1/(x + 1)^2 \).
Threshold expansion

\[F(a_1, \ldots, a_{12}; q^2, m^2) \sim \sum_{n=n_0}^{\infty} \sum_{j=0}^{3} (4m^2 - q^2)^{-j\varepsilon} F_{n,j}(a_1, \ldots, a_{12}; q^2). \]

Our goal are one-scale integrals \(F_{0,0}(a_1, \ldots, a_{12}; m^2) \) defined with \(q^2 \) set to \(4m^2 \).

We cannot just set \(q^2 = 4m^2 \), i.e. \(x = -1 \) in our basis because some integrals enter with the coefficients \(1/(x + 1) \) and \(1/(x + 1)^2 \).

Expand ‘naively’ in \(x + 1 \) the corresponding integrals. Introduce one more (13th) index for the order of this derivative in \(s \), i.e. deal with the family

\[F'(a_1, \ldots, a_{12}, a_{13}) = \left(\frac{\partial}{\partial s} \right)^{-a_{13}} F(a_1, \ldots, a_{12}) \bigg|_{s=4m^2}. \]
Using IBP relations for integrals at general q and expanding all the terms naively in q^2 at $q^2 = 4m^2 \rightarrow 15$ IBP relations.
Using IBP relations for integrals at general q and expanding all the terms naively in q^2 at $q^2 = 4m^2$ → 15 IBP relations.

A naive differentiation in s of all the terms of the naive expansion [P.A. Baikov and V.A. Smirnov’2000] → one more relation.
Using IBP relations for integrals at general q and expanding all the terms naively in q^2 at $q^2 = 4m^2 \rightarrow 15$ IBP relations.

A naive differentiation in s of all the terms of the naive expansion [P.A. Baikov and V.A. Smirnov’2000] → one more relation.

Then $F'(a_1, \ldots, a_{12}, a_{13})$ are reduced to master integrals (with FIRE).
Using IBP relations for integrals at general q and expanding all the terms naively in q^2 at $q^2 = 4m^2 \rightarrow 15$ IBP relations.

A naive differentiation in s of all the terms of the naive expansion [P.A. Baikov and V.A. Smirnov'2000] \(\rightarrow\) one more relation.

Then $F'(a_1, \ldots, a_{12}, a_{13})$ are reduced to master integrals (with FIRE).

They are all with $a_{13} = 0$, i.e directly correspond to the 51 master threshold integrals.
Matching at threshold
Matching at threshold

\[x = y - 1, \quad y \to 0: \]

\[f'(\epsilon, y) = \epsilon \frac{\tilde{A}'(y)}{y} f(\epsilon, y), \]

where \(\tilde{A}'(y) = A_0 + yA_1 + y^2A_2 + \ldots \).
Matching at threshold

\(x = y - 1, \ y \to 0: \)

\[f'(\epsilon, y) = \epsilon \frac{\tilde{A}'(y)}{y} f(\epsilon, y), \]

where \(\tilde{A}'(y) = A_0 + yA_1 + y^2A_2 + \ldots. \)

In the language of differential equations, the naive part of the expansion near \(y = 0 \) corresponds to zero eigenvalues of the matrix \(A_0 \) while eigenvalues proportional to \(\epsilon \) correspond to other contributions.
It is technically not so easy to obtain expansions near $y = 0$ of the elements of the basis in higher orders in y.
It is technically not so easy to obtain expansions near $y = 0$ of the elements of the basis in higher orders in y.

A trick from the theory of differential equations (presented, e.g., in [Wasov’s book]).
It is technically not so easy to obtain expansions near $y = 0$ of the elements of the basis in higher orders in y.

A trick from the theory of differential equations (presented, e.g., in [Wasov’s book]).

Construct a polynomial $P = 1 + \sum_{r=1} P_r y^r$ such that the DE for the function g defined by $f = Pg$ takes the form $yg'(y) = A_0 g(y)$ (with A_0 is independent of y).
It is technically not so easy to obtain expansions near $y = 0$ of the elements of the basis in higher orders in y.

A trick from the theory of differential equations (presented, e.g., in [Wasov’s book]).

Construct a polynomial $P = 1 + \sum_{r=1} P_r y^r$ such that the DE for the function g defined by $f = P g$ takes the form $y g'(y) = A_0 g(y)$ (with A_0 is independent of y).

Then the solution of this equation is just $g = y^{A_0} g_0$ with a boundary value g_0.
It is technically not so easy to obtain expansions near \(y = 0 \) of the elements of the basis in higher orders in \(y \).

A trick from the theory of differential equations (presented, e.g., in [Wasov’s book]).

Construct a polynomial \(P = 1 + \sum_{r=1} P_r y^r \) such that the DE for the function \(g \) defined by \(f = Pg \) takes the form \(yg'(y) = A_0 g(y) \) (with \(A_0 \) is independent of \(y \)).

Then the solution of this equation is just \(g = y^{A_0} g_0 \) with a boundary value \(g_0 \).

We implemented this algorithm and constructed \(P_r \) up to \(r = 5 \).
Equating the part of our analytic results for the basis without \(\log(x + 1) \) and the naive part of the threshold expansion expressed in terms of the 51 threshold \(M_l \).
Equating the part of our analytic results for the basis without
log(x + 1) and the naive part of the threshold expansion
expressed in terms of the 51 threshold Ml.

Solving these equations \(\rightarrow \) coefficients of the epsilon
expansion of the Ml up to some order written in terms of GPL
\(G(a_1, \ldots, a_n; 1) \) with \(a_1 \neq 1 \) and \(a_i \) taken from the alphabet
\(\{0, r_1, r_3, -1, r_4, r_2, 1\} \).
Equating the part of our analytic results for the basis without \(\log(x + 1) \) and the naive part of the threshold expansion expressed in terms of the 51 threshold \(\text{Ml} \).

Solving these equations \(\rightarrow \) coefficients of the epsilon expansion of the \(\text{Ml} \) up to some order written in terms of GPL \(G(a_1, \ldots, a_n; 1) \) with \(a_1 \neq 1 \) and \(a_i \) taken from the alphabet \(\{0, r_1, r_3, -1, r_4, r_2, 1\} \).

Examples of our results
[J. Henn, A. Smirnov and V. Smirnov’15]
\[F_{0,0,1,0,1,1,0,1,0,1,1,1} = -\frac{27}{2} \log(2) G_R(0, 0, r_2, -1) - \frac{181\zeta(5)}{32} - \frac{21}{2} \log^2(2) \zeta(3) \]
\[+ \frac{115\pi^2 \zeta(3)}{48} - 12 \text{Li}_5 \left(\frac{1}{2} \right) - 12 \log(2) \text{Li}_4 \left(\frac{1}{2} \right) - \frac{2 \log^5(2)}{5} + \frac{1}{6} \pi^2 \log^3(2) \]
\[- \frac{81}{8} G_R(0, 0, r_4, 1) \log(2) + \frac{277}{960} \pi^4 \log(2) , \]
\[F_{0,0,1,1,1,1,0,1,0,1,1,0} = -\frac{27}{4} \log(2) G_R(0, 0, r_2, -1) - \frac{341\zeta(5)}{64} - \frac{21}{4} \log^2(2) \zeta(3) \]
\[+ \frac{211\pi^2 \zeta(3)}{96} - 6 \text{Li}_5 \left(\frac{1}{2} \right) - 6 \log(2) \text{Li}_4 \left(\frac{1}{2} \right) - \frac{\log^5(2)}{5} \]
\[+ \frac{1}{12} \pi^2 \log^3(2) - \frac{81}{16} G_R(0, 0, r_4, 1) \log(2) + \frac{277\pi^4 \log(2)}{1920} , \]
\[F_{0,0,1,1,1,1,0,1,0,1,2,0} = -\frac{1}{24\epsilon^3} + \frac{1}{3\epsilon^2} - \frac{25\pi^2}{96\epsilon} - \frac{13}{6\epsilon} - \frac{97\zeta(3)}{24} \]
\[- \pi^2 \log(2) + \frac{7\pi^2}{4} + \frac{40}{3} , \ldots \]
\[G(a_1, \ldots, a_n; 1) = G_R(a_1, \ldots, a_n) + i \ G_I(a_1, \ldots, a_n) \]
$G(a_1, \ldots, a_n; 1) = G_R(a_1, \ldots, a_n) + i \, G_I(a_1, \ldots, a_n)$

$G(a_1, \ldots, a_n; 1)$ satisfy various relations.
\begin{equation}
G(a_1, \ldots, a_n; 1) = G_R(a_1, \ldots, a_n) + i G_I(a_1, \ldots, a_n)
\end{equation}

\(G(a_1, \ldots, a_n; 1)\) satisfy various relations.

A linear basis in this set of constants up to weight 3 [D. Broadhurst’98] in terms of known transcendental numbers.
\[G(a_1, \ldots, a_n; 1) = G_R(a_1, \ldots, a_n) + i \, G_I(a_1, \ldots, a_n) \]

\[G(a_1, \ldots, a_n; 1) \] satisfy various relations.

A linear basis in this set of constants up to weight 3
[D. Broadhurst’98] in terms of known transcendental numbers.

Constants present in results for Feynman integrals up to
weight 5 were discussed in
[Fleischer and M. Kalmykov’99, Davydychev M. Kalmykov’00,
M. Kalmykov and B. Kniehl’10].
\[
G(a_1, \ldots, a_n; 1) = G_R(a_1, \ldots, a_n) + i \, G_I(a_1, \ldots, a_n)
\]

\(G(a_1, \ldots, a_n; 1)\) satisfy various relations.

A linear basis in this set of constants up to weight 3
[D. Broadhurst’98] in terms of known transcendental numbers.

Constants present in results for Feynman integrals up to
weight 5 were discussed in
[Fleischer and M. Kalmykov’99, Davydychev M. Kalmykov’00,
M. Kalmykov and B. Kniehl’10].

For example,
\[
G_I(r_2) = -\frac{\pi}{3}, \quad G_R(-1) = \log(2),
\]
\[
G_R(0, 0, 1) = -\zeta(3), \quad G_R(0, 0, 0, 1) = -\frac{\pi^4}{90},
\]
\[
G_R(0, 0, 0, 0, 1) = -\zeta(5),
\]
\[
G_R(0, 0, 1, 1, -1) = -2 \text{Li}_5 \left(\frac{1}{2}\right) - 2 \text{Li}_4 \left(\frac{1}{2}\right) \log(2) - \frac{\pi^2 \zeta(3)}{96}
\]
\[
+ \frac{151 \zeta(5)}{64} - \frac{\log^5(2)}{15} + \frac{1}{18} \pi^2 \log^3(2) - \frac{1}{96} \pi^4 \log(2).
\]
Shuffle relations

\[G(a_1, \ldots, a_{n_1}; x) \, G(b_1, \ldots, b_{n_2}; x) = \sum_{c=a \cup b} G(c_1, \ldots, c_{n_1+n_2}; x), \]
Shuffle relations

\[G(a_1, \ldots, a_{n_1}; x) \, G(b_1, \ldots, b_{n_2}; x) = \sum_{c=a \oplus b} G(c_1, \ldots, c_{n_1+n_2}; x), \]

Zhao’s conjecture [J. Zhao’07]: all independent (polynomial) relations among GPL at nth roots of unity are shuffle, stuffle, regularization, distributions relations and seeded relations, and lifted relations thereof.
In our case, $n = 6$, we used the first four of the above type of relations and the complex conjugation relations

$$G(a_1^*, \ldots, a_n^*; 1) = G(a_1, \ldots, a_n; 1)^*$$

with $r_1^* = r_2$, $r_3^* = r_4$.
In our case, \(n = 6 \), we used the first four of the above type of relations and the complex conjugation relations

\[
G(a_1^*, \ldots, a_n^*; 1) = G(a_1, \ldots, a_n; 1)^*
\]

with \(r_1^* = r_2, r_3^* = r_4 \).

The total number of these five sets of relations grows fast when the weight is increased. At weight 6, we have 654452 equations for the real parts and 654937 equations for the imaginary parts of \(G(a_1, \ldots, a_n; 1) \).
We solved these relations up to weight 5 and hope to do this for weight 6.
We solved these relations up to weight 5 and hope to do this for weight 6.

It turns out that the resulting constants, independent in the sense of these relations are still linear dependent, i.e. one can find additional relations for genuine constants of a given weight $G(a_1, \ldots, a_n; 1)$, i.e. linearly express them in terms of a smaller set of such constants and products of constants of lower weights.
We solved these relations up to weight 5 and hope to do this for weight 6.

It turns out that the resulting constants, independent in the sense of these relations are still linear dependent, i.e. one can find additional relations for genuine constants of a given weight $G(a_1, \ldots, a_n; 1)$, i.e. linearly express them in terms of a smaller set of such constants and products of constants of lower weights.

We did this with experimental mathematics using the PSLQ algorithm [H.R.P. Ferguson, D.H. Bailey, and S. Arno] and ginac [C. Bauer, A. Frink and R. Kreckel] to evaluate GPLs with a big accuracy.
Our basis for the real parts of $G(a_1, \ldots, a_4; 1)$ consists of 5 constants of weight 4

$$\{\text{GR}[0, 0, r_2, -1], \text{GR}[0, 0, r_4, 1], \text{GR}[r_2, 1, 1, -1],$$
$$\text{GR}[r_2, 1, 1, r_3], \text{GR}[r_2, 1, r_2, -1]\}$$

and 25 products of constants of lower weights

$$\{\text{GR}[-1]^4, \text{GI}[r_2]^2 \text{GR}[-1]^2, \text{GI}[r_2]^4, \text{GR}[-1]^3 \text{GR}[r_4],$$
$$\text{GI}[r_2]^2 \text{GR}[-1] \text{GR}[r_4], \text{GR}[-1]^2 \text{GR}[r_4]^2, \text{GI}[r_2]^2 \text{GR}[r_4]^2,$$
$$\text{GR}[-1] \text{GR}[r_4]^3, \text{GR}[r_4]^4, \text{GI}[r_2] \text{GI}[0, r_2] \text{GR}[-1],$$
$$\text{GI}[r_2]^2 \text{GR}[0, r_2] \text{GR}[r_4], \text{GI}[0, r_2]^2, \text{GR}[-1]^2 \text{GR}[r_2, -1],$$
$$\text{GI}[r_2]^2 \text{GR}[r_2, -1], \text{GR}[-1] \text{GR}[r_4] \text{GR}[r_2, -1], \text{GR}[r_4]^2 \text{GR}[r_2, -1],$$
$$\text{GR}[r_2, -1]^2, \text{GR}[-1] \text{GR}[0, 0, 1], \text{GR}[r_4] \text{GR}[0, 0, 1],$$
$$\text{GI}[r_2] \text{GI}[0, 1, r_4], \text{GI}[r_2] \text{GI}[0, r_2, -1], \text{GR}[-1] \text{GR}[r_2, 1, -1],$$
$$\text{GR}[r_4] \text{GR}[r_2, 1, -1], \text{GR}[-1] \text{GR}[r_2, 1, r_3], \text{GR}[r_4] \text{GR}[r_2, 1, r_3]\}$$
Our basis for the imaginary parts of $G(a_1, \ldots, a_4; 1)$ consists of 5 constants of weight 4

\{GI[0, 0, 0, r2], GI[0, 1, 1, r4], GI[0, 1, r2, -1], GI[0, 1, r2, r3],
GI[0, r2, 1, -1]\}

and 20 products of constants of lower weights

\{GI[r2] GR[-1]^3, GI[r2]^3 GR[-1], GI[r2] GR[-1]^2 GR[r4],
GI[r2]^3 GR[r4], GI[r2] GR[-1] GR[r4]^2, GI[r2] GR[r4]^3,
GI[0, r2] GR[-1]^2, GI[r2]^2 GI[0, r2], GI[0, r2] GR[-1] GR[r4],
GI[0, r2] GR[r4]^2, GI[r2] GR[-1] GR[r2, -1],
GI[r2] GR[4] GR[r2, -1], GI[0, r2] GR[r2, -1], GI[r2] GR[0, 0, 1],
GI[0, 1, r4] GR[-1], GI[0, 1, r4] GR[r4], GI[0, r2, -1] GR[-1],
GI[0, r2, -1] GR[r4], GI[r2] GR[r2, 1, -1], GI[r2] GR[r2, 1, r3]\}
Our basis for the real parts of $G(a_1, \ldots, a_5; 1)$ consists of 13 constants of weight 5

\{GR[0, 0, 0, 1, 1], GR[0, 0, 1, 1, 1], GR[0, 0, 1, 1, r4],
GR[0, 0, 1, r2, -1], GR[0, 0, 1, r2, r3], GR[0, 0, 1, r2, r4],
GR[0, 0, r2, 1, -1], GR[r2, 1, 1, -1, r2], GR[r2, 1, 1, 1, -1],
GR[r2, 1, 1, r3], GR[r2, 1, 1, r2, -1], GR[r2, 1, 1, r2, r3],
GR[r2, 1, 1, r4, -1]\}

and 63 products of constants of lower weights

\{GR[-1]^5, GI[r2]^2 GR[-1]^3, GI[r2]^4 GR[-1], GR[-1]^4 GR[r4],
GI[r2]^2 GR[-1]^2 GR[r4], GI[r2]^4 GR[r4], GR[-1]^3 GR[r4]^2,
GR[-1] GR[r4]^4, GR[r4]^5, GI[r2] GI[0, r2] GR[-1]^2,
GI[r2]^3 GI[0, r2], GI[r2] GI[0, r2] GR[-1] GR[r4],
GI[r2] GI[0, r2] GR[r4]^2, GI[0, r2]^2 GR[-1], GI[0, r2]^2 GR[r4],
GR[-1]^3 GR[r2, -1], GI[r2]^2 GR[-1] GR[r2, -1],
GR[-1] GR[r4]^2 GR[r2, -1], GI[r4]^3 GR[r2, -1],
GI[r2] GI[0, r2] GR[r2, -1], GR[-1] GR[r2, -1]^2,
GR[r4] GR[r2, -1]^2, GR[-1]^2 GR[0, 0, 1], GI[r2]^2 GR[0, 0, 1],
GR[-1] GR[r4] GR[0, 0, 1], GR[r4]^2 GR[0, 0, 1],
GR[r2, -1] GR[0, 0, 1], GI[r2] GI[0, 1, r4] GR[-1],
GI[r2] GI[0, 1, r4] GR[r4], GI[0, r2] GI[0, 1, r4],
GI[r2] GI[0, r2, -1] GR[-1], GI[r2] GI[0, r2, -1] GR[r4],
GI[0, r2] GI[0, r2, -1], GR[-1]^2 GR[r2, 1, -1],
GI[r2]^2 GR[r2, 1, -1], GR[-1] GR[r4] GR[r2, 1, -1],
GR[r4]^2 GR[r2, 1, -1], GR[r2, 1, -1] GR[r2, 1, -1],
GR[-1]^2 GR[r2, 1, r3], GI[r2]^2 GR[r2, 1, r3],
GR[-1] GR[r4] GR[r2, 1, r3], GR[r4]^2 GR[r2, 1, r3],
GR[r2, -1] GR[r2, 1, r3], GI[r2] GI[0, 0, 0, r2],
GR[-1] GR[0, 0, r2, -1], GR[r4] GR[0, 0, r2, -1],
GR[-1] GR[0, 0, r4, 1], GR[r4] GR[0, 0, r4, 1],
GI[r2] GI[0, 1, 1, r4], GI[r2] GI[0, 1, r2, -1],
GI[r2] GI[0, 1, r2, r3], GI[r2] GI[0, r2, 1, -1],
GR[-1] GR[r2, 1, 1, -1], GR[r4] GR[r2, 1, 1, -1],
GR[-1] GR[r2, 1, 1, r3], GR[r4] GR[r2, 1, 1, r3],
GR[-1] GR[r2, 1, r2, -1], GR[r4] GR[r2, 1, r2, -1]\}
Our basis for the imaginary parts of $G(a_1, \ldots, a_5; 1)$ consists of 11 constants of weight 5

\{GI[0, 0, 0, 1, r2], GI[0, 0, 0, 1, r4], GI[0, 0, 0, r2, -1],
GI[0, 1, 1, -1, r2], GI[0, 1, 1, -1, r4], GI[0, 1, 1, r4],
GI[0, 1, r2, r3], GI[0, 1, r4, -1], GI[0, 1, r4, r1],
GI[0, r2, r3, r2], GI[0, r2, 1, 1, -1]\}

and 57 products of constants of lower weights

GI[r2]^{-3} GR[-1]^{-2}, GI[r2]^{-2} GR[-1]^{-2} GR[r4],
GI[r2]^{-2} GR[-1]^{-2} GR[r4], GI[0, r2] GR[-1]^{-2} GR[r4],
GI[r2]^{-2} GR[0, r2] GR[r4], GI[0, r2] GR[-1]^{-2} GR[r4],
GI[0, r2] GR[r4]^{-3}, GI[0, r2] GR[r4]^{-2}, GI[r2] GR[-1]^{-2} GR[r2, -1],
GI[r2]^{-3} GR[r2, -1], GI[0, r2] GR[-1]^{-1} GR[r4] GR[r2, -1],
GI[r2] GR[r4]^{-2} GR[r2, -1], GI[0, r2] GR[-1]^{-1} GR[r2, -1],
GI[0, r2] GR[r4] GR[r2, -1], GI[0, r2] GR[r2, -1]^{-2},
GI[r2] GR[-1]^{-1} GR[0, 0, 1], GI[r2] GR[r4] GR[0, 0, 1],
GI[0, r2] GR[0, 0, 1], GI[0, 1, r4] GR[-1]^{-2}, GI[r2]^{-2} GI[0, 1, r4],
GI[0, 1, r4] GR[-1]^{-1} GR[r4], GI[0, 1, r4] GR[r4]^{-2},
GI[0, 1, r4] GR[r2, -1], GI[0, r2, -1] GR[-1]^{-2},
GI[r2]^{-2} GI[0, r2, -1], GI[0, r2, -1] GR[-1]^{-1} GR[r4],
GI[0, r2, -1]^{-1} GR[r4]^{-2}, GI[0, r2, -1]^{-1} GR[r2, -1],
GI[r2] GR[-1]^{-1} GR[r2, 1, -1], GI[r2] GR[r4] GR[r2, 1, -1],
GI[0, r2] GR[r2, 1, -1], GI[r2] GR[-1]^{-1} GR[r2, 1, r3],
GI[r2] GR[r4] GR[r2, 1, r3], GI[0, r2] GR[r2, 1, r3],
GI[0, 0, 0, r2] GR[-1], GI[0, 0, 0, r2] GR[r4],
GI[r2] GR[0, 0, r2, -1], GI[r2] GR[0, 0, r4, 1],
GI[0, 1, 1, r4] GR[-1], GI[0, 1, 1, r4] GR[r4],
GI[0, 1, r2, -1] GR[-1], GI[0, 1, r2, -1] GR[r4],
GI[0, 1, r2, 3] GR[-1], GI[0, 1, r2, 3] GR[r4],
GI[0, r2, 1, -1] GR[-1], GI[0, r2, 1, -1] GR[r4],
GI[r2] GR[r2, 1, -1], GI[r2] GR[r2, 1, r3],
GI[0, r2, 1, r3], GI[0, r2, 1, r3]
\}
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.
■ A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.

■ A more explicit algorithmic description is needed.
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.

A more explicit algorithmic description is needed.

A first essential step in this direction by Lee in the case of one variable.
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.

A more explicit algorithmic description is needed.

A first essential step in this direction by Lee in the case of one variable.

Similar algorithms in the case of two and more variables?
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.

A more explicit algorithmic description is needed.

A first essential step in this direction by Lee in the case of one variable.

Similar algorithms in the case of two and more variables?

A computer implementation of this and future algorithms is needed.
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.

A more explicit algorithmic description is needed.

A first essential step in this direction by Lee in the case of one variable.

Similar algorithms in the case of two and more variables?

A computer implementation of this and future algorithms is needed.

In some cases, the epsilon form is impossible. Elliptic functions appear. A linear dependence on ϵ instead of the rhs proportional to ϵ?
A lot of successful applications of the new strategy of the method of DE. A lot of pending projects.
A more explicit algorithmic description is needed.
A first essential step in this direction by Lee in the case of one variable.
Similar algorithms in the case of two and more variables?
A computer implementation of this and future algorithms is needed.
In some cases, the epsilon form is impossible. Elliptic functions appear. A linear dependence on ϵ instead of the rhs proportional to ϵ?

to be continued
Evaluating Feynman integrals by uniformly transcendental differential equations

Conclusion

BACKUP SLIDES
Lee [R.N. Lee’14]: transition to UT basis in three steps (in the case of one variable).
Lee [R.N. Lee’14]: transition to UT basis in three steps (in the case of one variable).

- Reduction to a Fuchsian form where the singularities at all the points $x^{(k)}$ (including $x = \infty$) are simple poles.
Lee [R.N. Lee’14]: transition to UT basis in three steps (in the case of one variable).

- Reduction to a Fuchsian form where the singularities at all the points $x^{(k)}$ (including $x = \infty$) are simple poles.
- Normalizing eigenvalues of the matrices which are coefficients the Fuchsian singularities when one tries to make them proportional to ϵ.

Lee [R.N. Lee’14]: transition to UT basis in three steps (in the case of one variable).

- Reduction to a Fuchsian form where the singularities at all the points $x^{(k)}$ (including $x = \infty$) are simple poles.
- Normalizing eigenvalues of the matrices which are coefficients the Fuchsian singularities when one tries to make them proportional to ϵ.
- Providing a linear dependence on ϵ.
At each of the three steps, one is looking for a proper linear transformation of the current basis. The first two steps are based on the so-called balance transformation

$$\mathcal{B}(\mathbb{P}, x_1, x_2|x) = \mathbb{P} + c \frac{x - x_2}{x - x_1} \mathbb{P},$$

where \(c \) is a constant, \(\mathbb{P} \), \(\mathbb{P} \) are the two complementary projectors, i.e. \(\mathbb{P}^2 = \mathbb{P} \) and \(\mathbb{P} = \mathbb{I} - \mathbb{P} \).
At each of the three steps, one is looking for a proper linear transformation of the current basis. The first two steps are based on the so-called balance transformation

\[B(\mathbb{P}, x_1, x_2|x) = \mathbb{P} + c \frac{x - x_2}{x - x_1} \mathbb{P}, \]

where \(c \) is a constant, \(\mathbb{P}, \overline{\mathbb{P}} \) are the two complementary projectors, i.e. \(\mathbb{P}^2 = \mathbb{P} \) and \(\overline{\mathbb{P}} = I - \mathbb{P} \).

The idea of using a balance transformation is that with its help one can take care of one singular point \(x_1 \) (by providing a Fuchsian singularity or by normalizing eigenvalues corresponding to a given singular point) and not to spoil these properties at a second singular point, \(x_2 \).