Singularity structure of maximally supersymmetric scattering amplitudes

Jaroslav Trnka
California Institute of Technology

Nima Arkani-Hamed
Jacob Bourjaily
Freddy Cachazo
Andrew Hodges

Zvi Bern
Enrico Herrmann
Sean Litsey
James Stankowicz

Lance Dixon
Matt von Hippel
Andrew McLeod

1212.5605, 1312.2007, 1410.0354, 1412.8478
1412.8584, in progress
in progress
Scattering Inequalities

Jaroslav Trnka
California Institute of Technology

Nima Arkani-Hamed
Jacob Bourjaily
Freddy Cachazo
Andrew Hodges

Zvi Bern
Enrico Herrmann
Sean Litsey
James Stankowicz

Lance Dixon
Matt von Hippel
Andrew McLeod

1212.5605, 1312.2007, 1410.0354, 1412.8478
1412.8584, in progress
in progress
Plan of the talk

- Integrand of scattering amplitudes
- Planar N=4 SYM: Amplituhedron
- Non-planar extension
- Positivity of ratio function
- N=8 SUGRA and poles at infinity
Scattering Amplitudes

- Basic objects in Quantum Field Theory
- Predictions for colliders: cross-sections
- My motivation: new ideas in QFT
 - Find hidden properties of amplitudes
 - Exploit them in new methods of calculation
 - Generalize to other cases
Integrand

- Finite well-defined rational function before integration

\[I(\ell_j, k_i, s_i) \quad \text{sum of Feynman diagrams} \]

\[\Omega = d^4\ell_1 \ldots d^4\ell_L I(\ell_j, k_i, s_i) \quad A = \int_{\ell_j \in \mathbb{R}} \Omega \]

- Qualitative information about the final amplitudes
 - Collinear limits: IR divergencies
 - Poles at infinity: UV structure
 - Types of singularities: transcendental properties
Integrand

- Fixed by principles of locality and unitarity
- Re-express the integrand in the basis of integrals
 \[I = \sum_j c_j I_j \]
- Fix coefficients using cuts
 \[\ell^2 = (\ell + Q)^2 = 0 \]
- Maximal cuts, leading singularities:
 (Bern, Dixon, Kosower)
Planar limit

- The integrand defined as a sum of diagrams
 - No global loop momenta
 - Each diagram: its own labels

- Planar limit: dual variables

\[
\begin{align*}
k_1 &= (x_1 - x_2) & k_2 &= (x_2 - x_3) \\
\ell_1 &= (x_3 - y_1) & \ell_2 &= (y_2 - x_3)
\end{align*}
\]

Global labels
Integrand: **single** function
Conditions on the amplitude

Standard methods

- Planar diagrams
- Locality + Planarity
- Match physical cuts/singularities

Alternative

- Same set of conditions
- Packaged in a different way

\[
\text{Cut}(I) = \begin{array}{c}
1 \\
4 \\
3 \\
2
\end{array}
\]

Unitarity

Construction not known in general

Complete set known
Toy model: N=4 SYM

- “Simplest Quantum Field Theory”
- Toy model for QCD
 - Tree-level amplitudes identical
 - Loop amplitudes simpler (results up to 7-loops)
- Planar: conformal + dual conformal, convergent series
- Past: new methods for amplitudes originated here
Volume of polyhedron

(Hodges 2009)

- New kinematical variables — momentum twistors
 \[Z \in \mathbb{C}^3 \]
- Tree-level process: \(gg \rightarrow 5g \)
- Comparison of two calculations of recursion relations
The Amplituhedron

(Arkani-Hamed, JT 2013)

* Generalization of polyhedra to Grassmannian

\[\mathcal{Y} = C \cdot Z \]

Amplituhedron Positive matrices: \(\begin{vmatrix} * & * \\ * & * \end{vmatrix} > 0 \)
Minors are positive

* Integrand in planar N=4 SYM: volume of this space

- Geometry labeled by three labels
- Derivation: locality and unitarity
- Check against reference data

\(n \) number of particles
\(k \) helicity index
\(\ell \) number of loops
Inequalities

- **Volume:** logarithmic form \(\Omega \sim \frac{dx}{x} \) near \(x = 0 \)

- **Amplituhedron variables** \(z_i \)

\[
(p_i, \epsilon_j, \ell_k) \rightarrow (x_i, \tilde{\eta}_j, y_k) \rightarrow (Z_i, \eta_j, Z_{AB}^{(k)}) \rightarrow z_i
\]

- **Inequalities** \(P_j(z_i) \geq 0 \)
Legal and illegal boundaries

- Cuts of the amplitude: localize z_i

- Inequalities hold $P_j(z_i) \geq 0$; $\ell_k \in \mathbb{C} \iff z_i > 0$
 - Point inside the Amplituhedron space
 - Physical cut or singularity of the amplitude

- One or more inequalities violated $P_j(z_i) < 0$
 - Point outside the Amplituhedron space
 - Unphysical cut or singularity of the amplitude
Example 1: One-loop amplitude

- Consider 4pt one-loop amplitude
- Inequalities: \(z_1, z_2, z_3, z_4 \geq 0 \)
- Boundaries of the space: \(z_1, z_2, z_3, z_4 = (0, \infty) \)
- Differential form
 \[
 \Omega = \frac{dz_1}{z_1} \frac{dz_2}{z_2} \frac{dz_3}{z_3} \frac{dz_4}{z_4}
 \]
Example 1: One-loop amplitude

- Cuts of the amplitude

\[\begin{array}{c}
\top & \rightarrow & 2 \\
\down & \leftarrow & 3 \\
1 & \rightarrow & 4 \\
\end{array} \]
Example 1: One-loop amplitude

- Cuts of the amplitude

\[z_1 = 0 \]
Example 1: One-loop amplitude

- Cuts of the amplitude

\[z_1 = 0 \]
\[z_2 = 0 \]
Example 1: One-loop amplitude

- Cuts of the amplitude

\[z_1 = 0 \]
\[z_2 = 0 \]
\[z_3 = 0 \]
Example 1: One-loop amplitude

Cuts of the amplitude

\[z_4 = 0 \]

\[z_1 = 0 \]
\[z_2 = 0 \]
\[z_3 = 0 \]
Example 1: One-loop amplitude

- Cuts of the amplitude

\[z_4 = 0 \]

\[z_1 = 0 \]
\[z_2 = 0 \]
\[z_3 = 0 \]

\[z_4 = \infty \]

\[\ell \rightarrow \infty \]

\[z_4 \in \mathbb{C} \]

“no-triangle”
Example 2: Two-loop amplitude

- Consider 4pt two-loop amplitude

- Inequalities: \(z_1, z_2, z_3, z_4 \geq 0 \)
 \(z_5, z_6, z_7, z_8 \geq 0 \)

\[
(z_1 - z_5)(z_6 - z_2) + (z_3 - z_7)(z_8 - z_4) \geq 0
\]
Example 2: Two-loop amplitude

- Consider 4pt two-loop amplitude

- Inequalities:
 \[z_1, z_2, z_3, z_4 \geq 0 \]
 \[z_5, z_6, z_7, z_8 \geq 0 \]
 \[(z_1 - z_5)(z_6 - z_2) + (z_3 - z_7)(z_8 - z_4) \geq 0 \]

- Check: one-loop cut
 \[z_1 = 0 \]
 \[z_2 = 0 \]
 \[z_3 = 0 \]
 \[z_4 = 0 \]
 \[-z_5 z_6 - z_7 z_8 \geq 0 \]

Ω vanishes on this cut
Example 3: Unitarity cut

- **Standard formulation**

 \[P_j(z_i) \geq 0 \quad i = 1, \ldots, m \]

 \[z_1 = z_2 = 0 \]

 \[P_j^{(1)}(z_i) \geq 0 \quad i = 3, \ldots, k \]

 \[P_j^{(2)}(z_i) \geq 0 \quad i = k + 1, \ldots, m \]

 where \(k \) is a free parameter

- **Set of inequalities split into two sets**

 \[\text{Cut } M_{n,\ell} = \sum_{\ell_1 + \ell_2 = \ell - 1} M_{n_1,\ell_1} M_{n_2,\ell_2} \]
Physics vs geometry

Standard methods

- Planar diagrams
- Locality + Planarity
- Match physical cuts/singularities

\[\text{Unitarity} \]

\[\text{Cut}(I) = \]

Construction not known in general

Amplituhedron

- Inequalities
 \[P_j(z_i) \geq 0 \]
- Logarithmic form
 \[\Omega \sim \frac{dx}{x} \]

Complete set known
Non-planar amplitudes

* No global variables: standard k_i, ℓ_k

* No single form, sum of diagrams

\[\Omega = \sum_{\sigma, j} C_j \cdot \Omega_j(k_i, \ell_k) \]

C_j color factor

* Each has its own variables
Constraints

- Inspired by the planar sector we conjecture:
 - Logarithmic singularities $\Omega \sim \frac{dx}{x}$
 - No poles at $\ell \to \infty$

- Stronger condition: each diagram individually
 \[
 I_j(k_i, \ell_k) = \frac{N_j(k_i, \ell_k)}{P_1^2 P_2^2 \ldots P_m^2}
 \]

- Find the basis and expand the amplitude
Evidence 1: Two-loop amplitude

Expansion of the 4pt two-loop amplitude

Two basis integrals

\[N_1 = (k_1 + k_2)^2 \]

\[N_2 = (k_1 + k_2)^2 \]

Double Poles

Poles at infinity
Evidence 1: Two-loop amplitude

Expansion of the 4pt two-loop amplitude

(Bern, Rozowsky, Yan 1997)

Two basis integrals

\[N_1 = (k_1 + k_2)^2 \]

\[N_2 = (k_1 + k_2)^2 \]

Double Poles

NO

YES

Poles at infinity

NO

YES
Evidence 1: Two-loop amplitude

\[
I = \frac{\frac{d^4 \ell_1 d^4 \ell_2 (p_1 + p_2)^2}{\ell_1^2 (\ell_1 - k_2)^2 (\ell_1 - k_1 - k_2)^2 \ell_2^2 (\ell_2 - k_3)^2 (\ell_1 + \ell_2)^2 (\ell_1 + \ell_2 + k_4)^2}}}{\ell_1^2 (\ell_1 - k_2)^2 (\ell_1 - k_1 - k_2)^2 \ell_2^2 (\ell_2 - k_3)^2 (\ell_1 + \ell_2)^2 (\ell_1 + \ell_2 + k_4)^2}
\]

Perform cuts

\[
\ell_2^2 = (\ell_2 - k_3)^2 = (\ell_1 + \ell_2)^2 = (\ell_1 + \ell_2 + k_4)^2 = 0
\]

Localize \(\ell_2 \) completely
Evidence 1: Two-loop amplitude

\[
\text{Cut}_1 dI = \frac{d^4 \ell_1}{\ell_1^2 (\ell_1 - k_2)^2 (\ell_1 - k_1 - k_2)^2 [(\ell_1 + k_3)^2 (\ell_1 + k_4)^2 - \ell_1^2 (\ell_1 + k_3 + k_4)^2]}
\]

Localize \(\ell_1 = \alpha k_2 \) by cutting \(\ell_1^2 = (\ell_1 - k_2)^2 = 0 \) and the Jacobian
Evidence 1: Two-loop amplitude

\[\text{Cut}_{1,2} \, dI = \frac{d\alpha}{(\alpha + 1)\alpha^2 tu} \]

- Double pole for \(\alpha = 0 \)
- There is also pole at infinity
- We want to find a numerator which cancels all that
Evidence 1: Two-loop amplitude

\[
\text{Cut}_{1,2} \, dI = \frac{d\alpha}{(\alpha + 1)\alpha^2 tu}
\]

New numerator

\[
N = (\ell_1 + k_3)^2 + (\ell_1 + k_4)^2
\]

Double pole for \(\alpha = 0 \)

Cancels double pole

\(N \rightarrow \alpha s \)
Evidence 1: Two-loop amplitude

- **New expansion of the 4pt two-loop amplitude**

 (Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)

 Two basis integrals

\[
N_1 = (k_1 + k_2)^2 \\
N_2 = (\ell_1 + k_3)^2 + (\ell_1 + k_4)^2
\]

Double Poles NO NO
Poles at infinity NO NO

Expand amplitude in the basis: YES
Evidence 2: Three-loop amplitude

Basis for three-loop four point amplitude

(Bern, Carrasco, Dixon, Johansson, Kosower 2007)

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Double pole</th>
<th>Pole at infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BCJ</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Evidence 2: Three-loop amplitude

- Basis for three-loop four point amplitude

Old numerator

\[N = (\ell_5 + k_4)^2 (k_1 + k_2)^2 \]
Evidence 2: Three-loop amplitude

- Basis for three-loop four point amplitude

\[
N = (\ell_5 + k_4)^2(k_1 + k_2)^2
\]

Old numerator

\[
N = (\ell_5 + k_4)^2[(\ell_5 + k_3)^2 + (\ell_5 + k_4)^2]
\]

New numerator
Evidence 2: Three-loop amplitude

Basis for three-loop four point amplitude

(Bern, Herrmann, Litsey, Stankowicz, JT 2014)

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Double pole</th>
<th>Pole at infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BCJ</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>New</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Expansion of the amplitude: YES
Towards scattering inequalities

- **Standard approach:**
 Non-zero RHS
 \[\text{Cut}(I) = \ldots \]
 * Unitarity cut
 * Maximal cut
 * Leading singularity

- **Proposal:** Illegal cuts \[\text{Cut}(I) = 0 \] fix uniquely result!
 (up to an overall constant)
 * Underlying inequalities
 * Existence of geometric construction
 * Good variables missing
Explicit check

- Two-loop amplitude

\[M_2 = \sum_{\sigma} a_1 \]

Illegal 5-cut

Fixes relative coefficient

\[a_1 = a_2 \]

Also three-loop construction

\[k = 1 \]
Ratio function

- Integrand: positive value for "positive kinematics"
 (Arkani-Hamed, Hodges, Trnka 2014)
- Conjecture: it is true for final amplitudes
- Ratio function: IR finite quantity
 \[R_n = A_n^{(k)} / A_n^{(0)} \]
 \[R_6 = \frac{1}{2} \left\{ [(1) - (2) + (3)] H_1 + [(2) - (3) + (4)] H_2 + [(3) - (4) + (5)] H_3 \right\} \]
 where
 \[H_1 = \frac{1}{2} [\log u \log v + \text{Li}_2(1-u) + \text{Li}_2(1-v) + \text{Li}_2(1-w) - 2\zeta_2] \]
- Exhaustive numerical check, up to 4-loops
 (Dixon, von Hippel, McLeod, Trnka, in progress)
Maximal $N=8$ supergravity

- UV properties unknown: Is it finite?
- Checked up to 4-loops, problem starts at 7-loops

 (Bern, Carrasco, Dixon, Johansson, Roiban)

- If finite: hidden in the structure of the integrand

 - Natural candidate: poles at infinity — present at 3-loops
 - More detailed study of these poles needed

- Evidence for $N<8$ theories: enhanced cancelations

next talks
Thank you for your attention