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Plan of the talk

✤ Integrand of scattering amplitudes

✤ Planar N=4 SYM: Amplituhedron

✤ Non-planar extension

✤ Positivity of ratio function 

✤ N=8 SUGRA and poles at infinity
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Scattering Amplitudes

✤ Basic objects in Quantum Field Theory

✤ Predictions for colliders: cross-sections

✤ My motivation: new ideas in QFT
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Find hidden properties of amplitudes
Exploit them in new methods of calculation 
Generalize to other cases



Integrand

✤ Finite well-defined rational function before integration

✤ Qualitative information about the final amplitudes

sum of Feynman diagrams

⌦ = d4`1 . . . d
4`L I(`j , ki, si)

I(`j , ki, si)

A =

Z

`j2R
⌦
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Collinear limits: IR divergencies
Poles at infinity: UV structure
Types of singularities: transcendental properties



Integrand

✤ Fixed by principles of locality and unitarity

✤ Re-express the integrand in the basis of integrals

✤ Fix coefficients using cuts

✤ Maximal cuts, leading singularities:

I =
X

j

cj Ij

`2 = (`+Q)2 = 0
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(Bern, Dixon, Kosower)



Planar limit

✤ The integrand defined as a sum of diagrams

✤ Planar limit: dual variables

No global loop momenta
Each diagram: its own labels
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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extra propagator by multiplying the integrand by
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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x1
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x2

x3
x3

x4
x4

y1

y1

y2
y2

k1 = (x1 � x2) k2 = (x2 � x3)

`1 = (x3 � y1) `2 = (y2 � x3)
etc

Global labels
Integrand: single function
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Conditions on the amplitude

Standard methods Alternative
Planar diagrams

Match physical cuts/singularities

Construction not known in general Complete set known

?
Locality + Planarity

Unitarity

Same set of conditions
Packaged in a different way

Cut(I) =

6/26



Toy model: N=4 SYM

✤ “Simplest Quantum Field Theory”

✤ Toy model for QCD

✤ Planar: conformal + dual conformal, convergent series

✤ Past: new methods for amplitudes originated here

Tree-level amplitudes identical

Loop amplitudes simpler (results up to 7-loops)
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Volume of polyhedron

✤ New kinematical variables — momentum twistors 

✤ Tree-level process: 

✤ Comparison of two calculations of recursion relations

Z 2 C3

(Hodges 2009)

gg ! 5g

THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES 7

that recover the complete hyperbolic structure. A case-by-case analysis shows that this ex-
ample admits an index structure, thus the index IT exists. This example appears in [HRS,
Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. On the topological invariance of the index. Physics predicts that when defined,
the 3D index IT depends only on the underlying 3-manifold M . Recall that [HRS] prove
that every hyperbolic 3-manifold M that satisfies

(2.9) H1(M,Z/2) → H1(M, ∂M,Z/2) is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle struc-
ture, and conversely if M has an ideal triangulation with a strict angle structure, then M is
irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

M "→ {IT | T ∈ SM}

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set of ideal
triangulations of M that support an index structure. The latter is a nonempty (generally
infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use
the subset SEP

M of ideal triangulations T of M which are a refinement of the Epstein-Penner
cell-decomposition of M . Again, [HRS] implies that SEP

M is nonempty assuming (2.9). But
really, we would prefer a single 3D index for a cusped manifold M , rather than a finite
collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related
by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D
index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and T̃ with N and N+1 tetrahedra related by a 2−3
move shown in Figure 1.

Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and N + 1 tetrahedra for

T̃ .

Proposition 2.13. If T̃ admits a strict angle structure structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.

(Picture by Stavros Garoufalidis) 8/26



✤ Generalization of polyhedra to Grassmannian

✤ Integrand in planar N=4 SYM: volume of this space

The Amplituhedron

Y = C · Z

Amplituhedron Positive matrices:
Minors are positive

����
⇤ ⇤
⇤ ⇤

���� > 0

9/26

(Arkani-Hamed, JT 2013)

Geometry labeled by three labels
Derivation: locality and unitarity
Check against reference data

n number of particles
helicity indexk

` number of loops



Inequalities

✤ Volume: logarithmic form

✤ Amplituhedron variables

✤ Inequalities Pj(zi) � 0

zi

(pi, ✏j , `k) ! (xi, ⌘̃j , yk) ! (Zi, ⌘j , Z
(k)
AB) ! zi

P1 > 0

P2 > 0

P3 > 0
P4 > 0

P5 > 0

10/26

⌦ ⇠ dx

x

near x = 0



Legal and illegal boundaries

✤ Cuts of the amplitude: localize 

✤ Inequalities hold

✤ One or more inequalities violated 

zi

Pj(zi) � 0

Point inside the Amplituhedron space
Physical cut or singularity of the amplitude

Pj(zi) < 0

Point outside the Amplituhedron space
Unphysical cut or singularity of the amplitude

11/26

zi > 0`k 2 C $



Example 1: One-loop amplitude

✤ Consider 4pt one-loop amplitude

✤ Inequalities: 

✤ Boundaries of the space: 

✤ Differential form 

z1, z2, z3, z4 � 0

⌦ =
dz1
z1

dz2
z2

dz3
z3

dz4
z4

z1, z2, z3, z4 = (0,1)

1

2 3

4
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0

z2 = 0
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0

z2 = 0
z3 = 0
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0

z2 = 0
z3 = 0

1

2 3

4

z4 = 0
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0

z2 = 0
z3 = 0

1

2 3

4

z4 = 0

1

2 3

4

` = 0

z4 = 1

1

2 3

4

`!1

z4 2 C
“no-triangle”
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✤ Consider 4pt two-loop amplitude

✤ Inequalities: 

Example 2: Two-loop amplitude

z1, z2, z3, z4 � 0
1

2 3

4

z5, z6, z7, z8 � 0

(z1 � z5)(z6 � z2) + (z3 � z7)(z8 � z4) � 0

1

2 3

4

13/26



✤ Consider 4pt two-loop amplitude

✤ Inequalities: 

✤ Check: one-loop cut

Example 2: Two-loop amplitude

z1, z2, z3, z4 � 0
1

2 3

4

z5, z6, z7, z8 � 0

(z1 � z5)(z6 � z2) + (z3 � z7)(z8 � z4) � 0

1

2 3

4

z1 = 0
z2 = 0
z3 = 0
z4 = 0

�z5z6 � z7z8 � 0

⌦ vanishes on this cut
13/26



Example 3: Unitarity cut

✤ Standard formulation

✤ Set of inequalities split into two sets

Pj(zi) � 0
P (1)
j (zi) � 0

P (2)
j (zi) � 0 i = k + 1, . . . ,m

i = 3, . . . , k

i = 1, . . . ,m

z1 = z2 = 0

where k is a free parameter

CutMn,` =
X

`1+`2=`�1

Mn1,`1Mn2,`2

14/26



Physics vs geometry

Standard methods
Planar diagrams

Match physical cuts/singularities

Construction not known in general

Locality + Planarity

Unitarity

Amplituhedron

Inequalities

Pj(zi) � 0

Logarithmic form

⌦ ⇠ dx

x

Complete set known

Cut(I) =

15/26



Non-planar amplitudes 

✤ No global variables: standard 

✤ No single form, sum of diagrams 

✤ Each has its own variables

3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that

1 (i) 4

32

5

6

(h)

2

41

3

5

7 6

1 4(g)

2 3

5

(f)1

2 3

4

5

(e) 41

2 3

5

32

41

(a)

32

1 4 4(b)

32

1

2

4(c)1

3

(l)1

2 3

4(k)

2

1

3

4(j)1

2 3

4

FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.
We also construct another version of the three-loop

four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
An important feature of the supergravity solution dis-

played in table I is that each contribution to eq. (6) has
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N = 4 sYM amplitude. This is worthy of further study,
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of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.
To impose the duality (3) on the amplitude, we step

through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:
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where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
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lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).
Imposing the duality on the ansatz, at this point, com-

pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
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three-loop four-point gauge-theory amplitude, we obtain
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ñi satisfy the duality by a generalized gauge transforma-
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✤ Expansion of the 4pt two-loop amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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the fact that the amplitudes are ultimately logarithmic,
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this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
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infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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✤ Expansion of the 4pt two-loop amplitude
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are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes
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almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
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the planar limit (which may or may not be clearly defined
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combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
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representation of (5) which makes this fact manifest
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The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

dI =
d4`1 d4`2 (p1 + p2)2

`21(`1 � k2)2(`1 � k1 � k2)2`22(`2 � k3)2(`1 + `2)2(`1 + `2 + k4)2

Perform cuts `22 = (`2 � k3)
2 = (`1 + `2)

2 = (`1 + `2 + k4)
2 = 0

Localize       completely`2

19/26



Evidence 1: Two-loop amplitude
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And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
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free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes
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a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

Localize
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and the Jacobian
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Evidence 1: Two-loop amplitude
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I

4
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), via:
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is one of the quad-cuts of the box.
Similarly, the triangle can also be written in dlog-form,
I
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), via:
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
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h1 2ih2 3i and K
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⌘
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; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

I(P )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (7)

and

I(NP )

1,2,3,4 (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change
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✤ There is also pole at infinity
✤ We want to find a numerator which cancels all that
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Evidence 1: Two-loop amplitude
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
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Similarly, the triangle can also be written in dlog-form,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
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4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,
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the integration measures I(P )
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� correspond to,

I(P )
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)2 ⇥ (7)

and
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1,2,3,4 (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2
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3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by
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1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change
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✤ New expansion of the 4pt two-loop amplitude

Evidence 1: Two-loop amplitude
2

I
2

(`) ⌘ d

4

`

`

2(`+ p

2

+ p

3

)2
; I

3

(`) ⌘ d

4

` (p
1

+ p

2

)2

`

2(`+ p

2

)2(`� p

1

)2
;

I
4

(`) ⌘ d

4

` (p
1

+ p

2

)2(p
2

+ p

3

)2

`

2(`+ p

2

)2(`+ p

2

+ p

3

)2(`� p

1

)2
. (2)

While the bubble integration measure is not logarithmic,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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{1,2,3,4},N are
the color-factors constructed out of structure constants
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abc’s according to the diagrams above for N =4, and are
both equal to (p
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)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
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While the bubble integration measure is not logarithmic,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

Double Poles

Poles at infinity

NO

NO

Two basis
integrals

N2 = (`1 + k3)
2 + (`1 + k4)

2N1 = (k1 + k2)
2

NO

NO

Expand amplitude in the basis: YES
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Numerator
Double 

pole
Pole at
infinity

Original

BCJ

YES YES

YES YES
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Old numerator

N = (`5 + k4)
2(k1 + k2)

2
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that

1 (i) 4

32

5

6

(h)

2

41

3

5

7 6

1 4(g)

2 3

5

(f)1

2 3

4

5

(e) 41

2 3

5

3

(d)

2

41

(a)

32

1 4 4(b)

32

1

2

4(c)1

3

(l)1

2 3

4(k)

2

1

3

4(j)1

2 3

4

FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Old numerator

New numerator

N = (`5 + k4)
2[(`5 + k3)

2 + (`5 + k4)
2]

N = (`5 + k4)
2(k1 + k2)

2
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Numerator
Double 

pole
Pole at
infinity

Original

BCJ

YES YES

YES YES

New NO NO

Expansion of the amplitude:
YES
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✤ Standard approach:

✤ Proposal:    Illegal cuts                       fix uniquely result!

Towards scattering inequalities

Unitarity cut
Maximal cut
Leading singularity

Non-zero RHS 

(up to an overall constant)

Cut(I) = . . .

Cut(I) = 0
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Underlying inequalities
Existence of geometric construction
Good variables missing



Explicit check

✤ Two-loop amplitude
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I
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is one of the quad-cuts of the box.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with
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for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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� , is not itself logarithmic. We will show
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a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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Illegal 5-cut Fixes relative coefficient
a1 = a2

k = 1
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Also three-loop construction



Ratio function

✤ Integrand: positive value for “positive kinematics”

✤ Conjecture: it is true for final amplitudes

✤ Ratio function: IR finite quantity

✤ Exhaustive numerical check, up to 4-loops
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R6 =
1

2

(
[(1)� (2) + (3)]H1 + [(2)� (3) + (4)]H2 + [(3)� (4) + (5)]H3

)
Rn = A(k)

n /A(0)
n

H1 =

1

2

[log u log v + Li2(1� u) + Li2(1� v) + Li2(1� w)� 2⇣2]

where

(Arkani-Hamed, Hodges, Trnka 2014)

(Dixon, von Hippel, McLeod, Trnka, in progress)



Maximal N=8 supergravity

✤ UV properties unknown: Is it finite?

✤ Checked up to 4-loops, problem starts at 7-loops

✤ If finite: hidden in the structure of the integrand

 

✤ Evidence for N<8 theories: enhanced cancelations
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next talks

Natural candidate: poles at infinity — present at 3-loops
More detailed study of these poles needed

(Bern, Carrasco, Dixon, Johansson, Roiban)



Thank you for your attention


