An EFT Description of Forward Scattering and FactorizationViolation

## Iain Stewart MIT

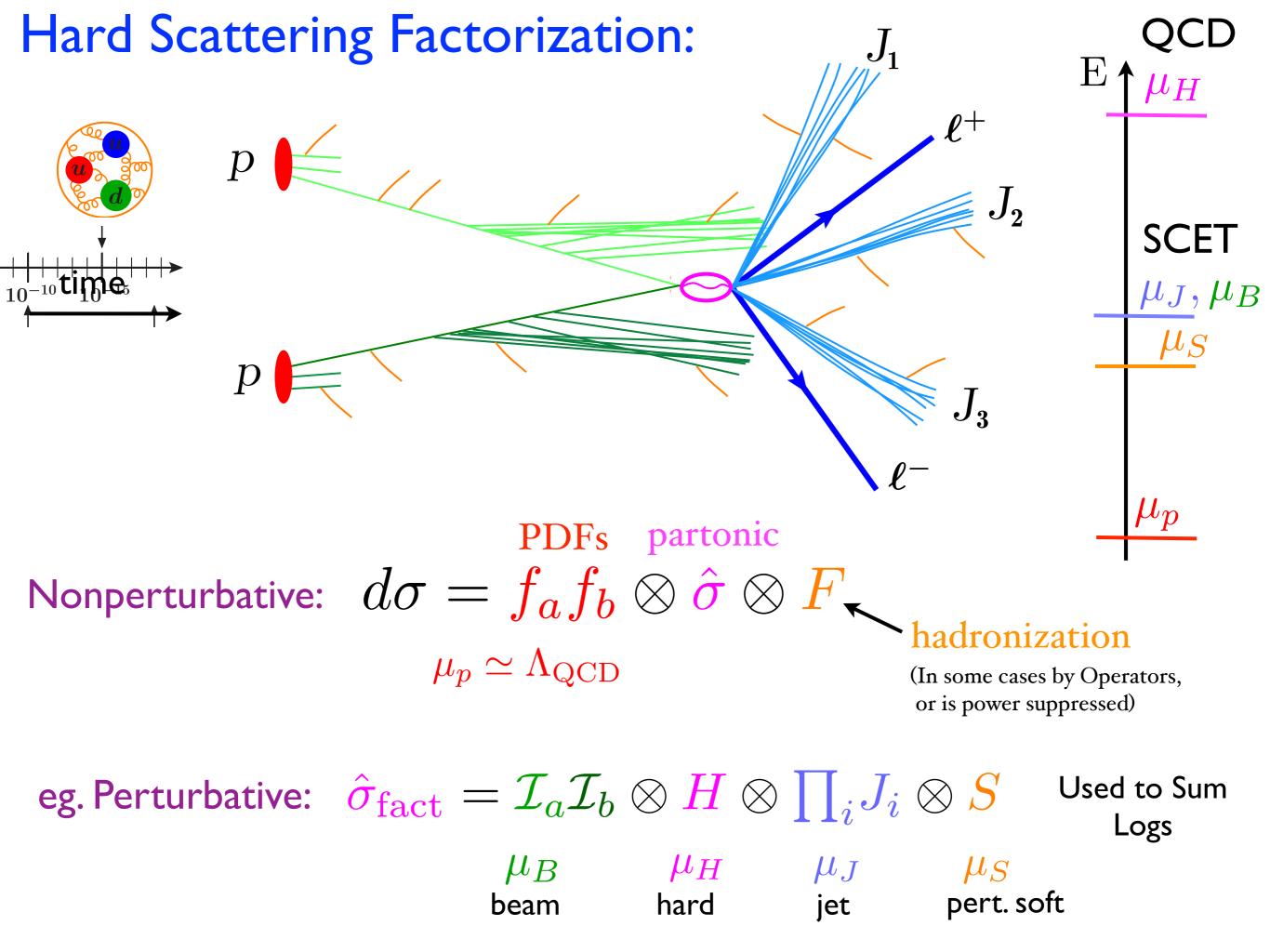
#### work with Ira Rothstein (to appear soon)

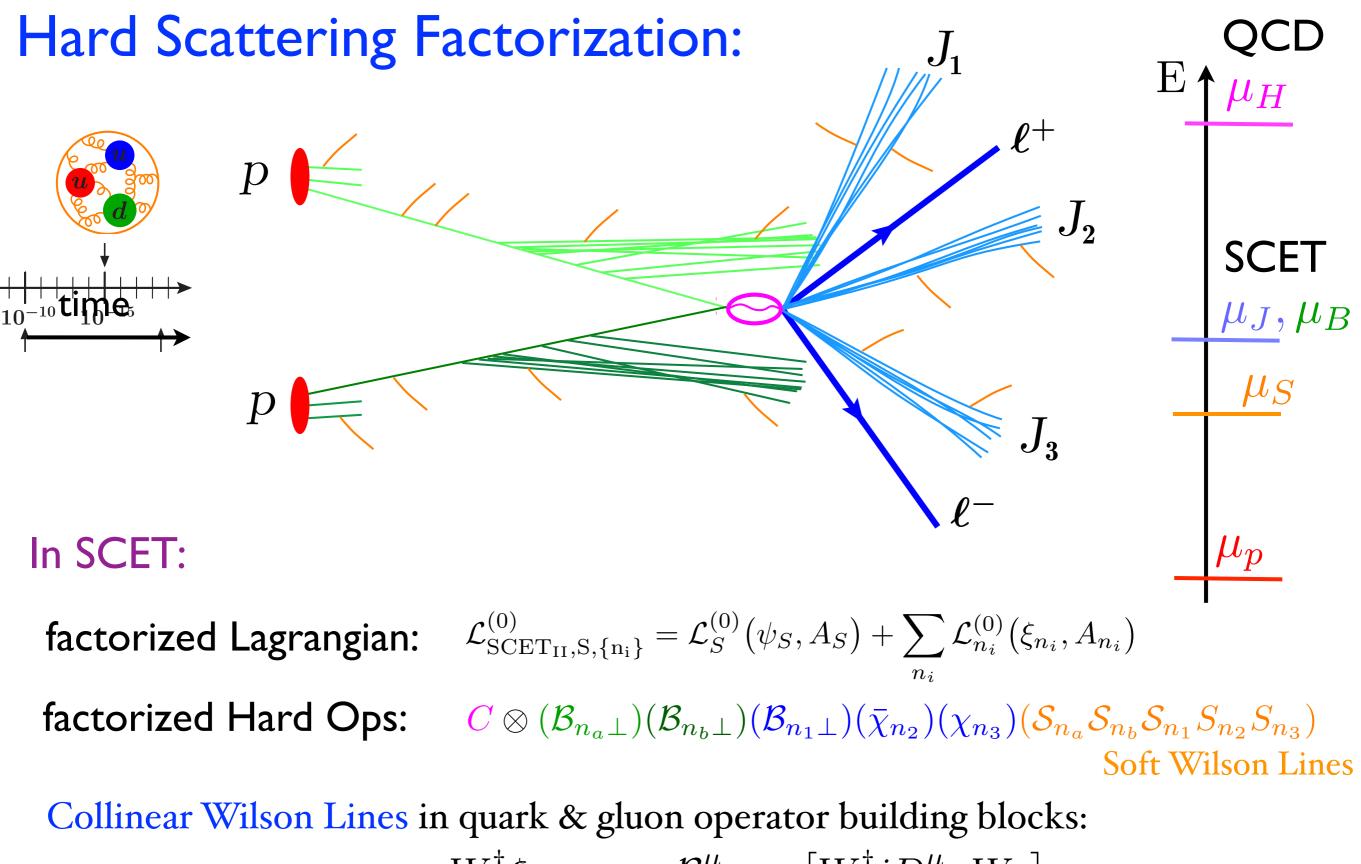
Radcor - Loopfest 2015, UCLA Los Angeles, CA, June 2015

# Outline

 Introduction: Forward Scattering and Factorization (Violation), why EFT?

- Glauber Interaction Lagrangian in Soft-Collinear Effective Theory
  - Operators, interactions between 2 or 3 rapidity sectors
  - Rapidity Regulator
  - Subtractions
- One-Loop Graphs, Eikonal Scattering, Reggeization for Octet Ops.
- Forward Scattering and BFKL
  - Rapidity RG equations for Collinear and Soft functions: BFKL
- Glaubers in Hard Scattering, one and two loop examples
- Summary

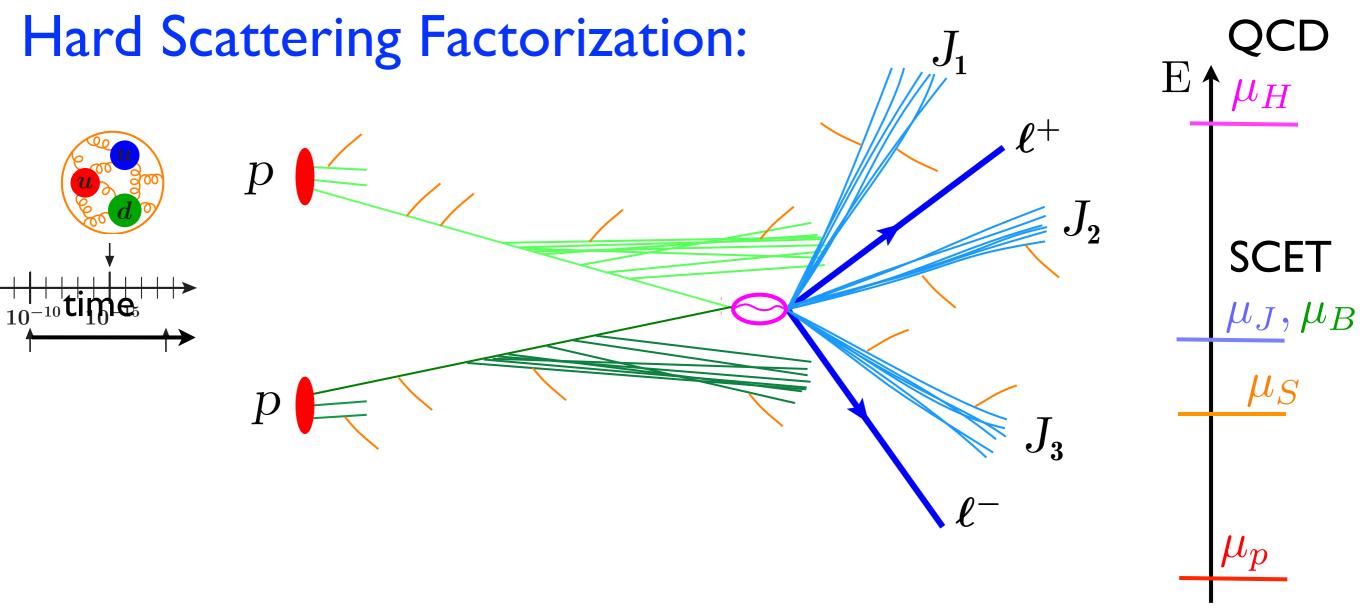




$$\chi_n = W_n^{\dagger} \xi_n \qquad g \mathcal{B}_{n\perp}^{\mu} = \left[ W_n^{\dagger} i D_{n\perp}^{\mu} W_n \right]$$



factorized matrix elements defining jet, soft, ... functions



Factorization will be broken if:

- it is not possible to identify a finite basis of leading power operators (examples studied by Collins & Qiu, Aybat & Rogers, ...)
- there are non-factorizable leading power Lagrangian interactions between soft & collinear sectors

Compatible with violation of Collinear factorization (Catani, de Florian, Rodrigo), Regge factorization (Del Duca, Glover, Falcioni, Magnea, Vernazza, Duhr, White), Cross-section factorization (Collins, Soper, Sterman=CSS,...), ...

# Relevant Modes

 $\lambda \ll 1$  large Q

Infrared Structure of Amplitudes (CSS, ...) Method of Regions (Beneke & Smirnov)

| mode                                                                          | fields                                | $p^{\mu}$ momentum scalin                                                     | g physical objects                                                                                              | type                  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| $n_a$ -collinear                                                              | $\xi_{n_a}, A^{\mu}_{n_a}$            | $(n_a \cdot p, \bar{n}_a \cdot p, p_{\perp a}) \sim Q(\lambda^2, 1, \lambda)$ | ) collinear initial state jet $a$                                                                               | onshell               |  |  |  |
| $n_b$ -collinear                                                              | $\xi_{n_b}, A^{\mu}_{n_b}$            | $(n_b \cdot p, \bar{n}_b \cdot p, p_{\perp b}) \sim Q(\lambda^2, 1, \lambda)$ |                                                                                                                 | onshell               |  |  |  |
| $n_j$ -collinear                                                              | $\xi_{n_i}, A^{\mu}_{n_i}$            | $(n_j \cdot p, \bar{n}_j \cdot p, p_{\perp j}) \sim Q(\lambda^2, 1, \lambda)$ | ) collinear final state jet in $\hat{n}_j$                                                                      | onshell               |  |  |  |
| $\operatorname{soft}$                                                         | $\psi_{ m S},A^{\mu}_{ m S}$          | $p^{\mu} \sim Q(\lambda, \lambda, \lambda)$                                   | ) soft virtual/real radiation                                                                                   | onshell               |  |  |  |
| ultrasoft                                                                     | $\psi_{ m us},A_{ m us}^{	ilde{\mu}}$ | $p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$                             |                                                                                                                 | onshell               |  |  |  |
| Glauber                                                                       | —                                     | $p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), \ a+b > 2$                    | 2 <u>forward scattering potential</u>                                                                           | offshell              |  |  |  |
| hard                                                                          | —                                     | $p^2\gtrsim Q^2$                                                              | n  hard seattering n $n$                                                                                        | offsnell              |  |  |  |
|                                                                               |                                       |                                                                               |                                                                                                                 | $\uparrow q$          |  |  |  |
| Glauber's (Coulomb gluons) Gla                                                |                                       |                                                                               | lauper's dominate m                                                                                             | $\bar{n}$             |  |  |  |
| may break factorization: Forward Scattering:                                  |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
| Thay DI Cak Tactorization. TOI ward Stattering.                               |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
| =,>                                                                           |                                       |                                                                               | $\bar{n}$ $\bar{n}$ $\bar{n}$ $\bar{n}$                                                                         | $\overline{n}$        |  |  |  |
| n                                                                             | n spê                                 | ctator-spectator                                                              |                                                                                                                 |                       |  |  |  |
| $\bar{n}$                                                                     |                                       | Sproof for Drell-Yan)                                                         | fwd. scattering <u>n</u>                                                                                        | ► <u>-</u> <u>n</u> _ |  |  |  |
|                                                                               |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
|                                                                               |                                       |                                                                               | $\mathcal{P}_{\mathcal{P}} = \mathcal{P}_{\mathcal{P}} = \mathcal{P}_{\mathcal{P}} = \mathcal{P}_{\mathcal{P}}$ | n n                   |  |  |  |
| 1                                                                             |                                       |                                                                               | $\frac{n}{n} = \frac{n}{n} = \frac{n}{n}$                                                                       | 11                    |  |  |  |
| • $\frac{1}{k_{\perp}^2}$ F                                                   | otential                              |                                                                               | twd.scattering                                                                                                  | $\overline{D}^{S}$    |  |  |  |
| $k_{\perp}^2$ P                                                               |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
|                                                                               |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
| • instantaneous in $x^+$ , $x^-$ (t and z) (small-x logs, reggeization, BFKL, |                                       |                                                                               |                                                                                                                 |                       |  |  |  |
|                                                                               | iuanous.                              | (i a , a (i a a a))                                                           |                                                                                                                 | , ,                   |  |  |  |

BK/BJMWLK, ...)

Plan: Add Glaubers to SCET

 $\mathcal{L}_{\text{SCET}_{\text{II}}}^{(0)} = \mathcal{L}_{\text{SCET}_{\text{II}},\text{S},\{n_i\}}^{(0)} + \mathcal{L}_{G}^{(0)}(\psi_S, A_S, \xi_{n_i}, A_{n_i})$ 

# Goals & Possible Advantages for EFT approach

- Hard Scattering and Forward Scattering in single framework
- Operator based: Can exploit symmetries, Gauge invariant
- MS style renormalization for rapidity divergences (counterterms, renormalization group equations, ...)
- Distinct Infrared Modes in Feyn. Graphs + Power Counting



derive when eikonal approximation is relevant

- Factorization violating interactions also obey factorization theorems
- Valid to all orders in  $\alpha_s$  & clear path using this formalism to study subleading power amplitudes (subleading ops & Lagrangians)
- Potential method to derive factorization results for less inclusive collider processes, predict things about UE, etc.

## **Construction:**

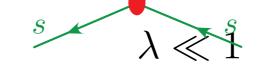
#### $\lambda \ll 1 \qquad \text{large } Q$

| mode                  | fields                                 | $p^{\mu}$ momentum scaling                                                    | physical objects                 | type     |
|-----------------------|----------------------------------------|-------------------------------------------------------------------------------|----------------------------------|----------|
| <i>n</i> -collinear   | $\xi_n, A_n^{\mu}$                     | $(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$       | <i>n</i> -collinear "jet"        | onshell  |
| $\bar{n}$ -collinear  | $\xi_{ar{n}},A^{\mu}_{ar{n}}$          | $(\bar{n} \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$ | $\bar{n}$ -collinear "jet"       | onshell  |
| $\operatorname{soft}$ | $\psi_{ m S},A^{\mu}_{ m S}$           | $p^{\mu} \sim Q(\lambda, \lambda, \lambda)$                                   | soft virtual/real radiation      | onshell  |
| ultrasoft             | $\psi_{ m us}, A^{	ilde{\mu}}_{ m us}$ | $p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$                             | ultrasoft virtual/real radiation | onshell  |
| Glauber               | _                                      | $p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), \ a+b > 2$                    | forward scattering potential     | offshell |
|                       |                                        | (here $\{a, b\} = \{2, 2\}, \{2, 1\}, \{1, 2\}$ )                             |                                  |          |
| hard                  | —                                      | $p^2\gtrsim Q^2$                                                              | hard scattering                  | offshell |

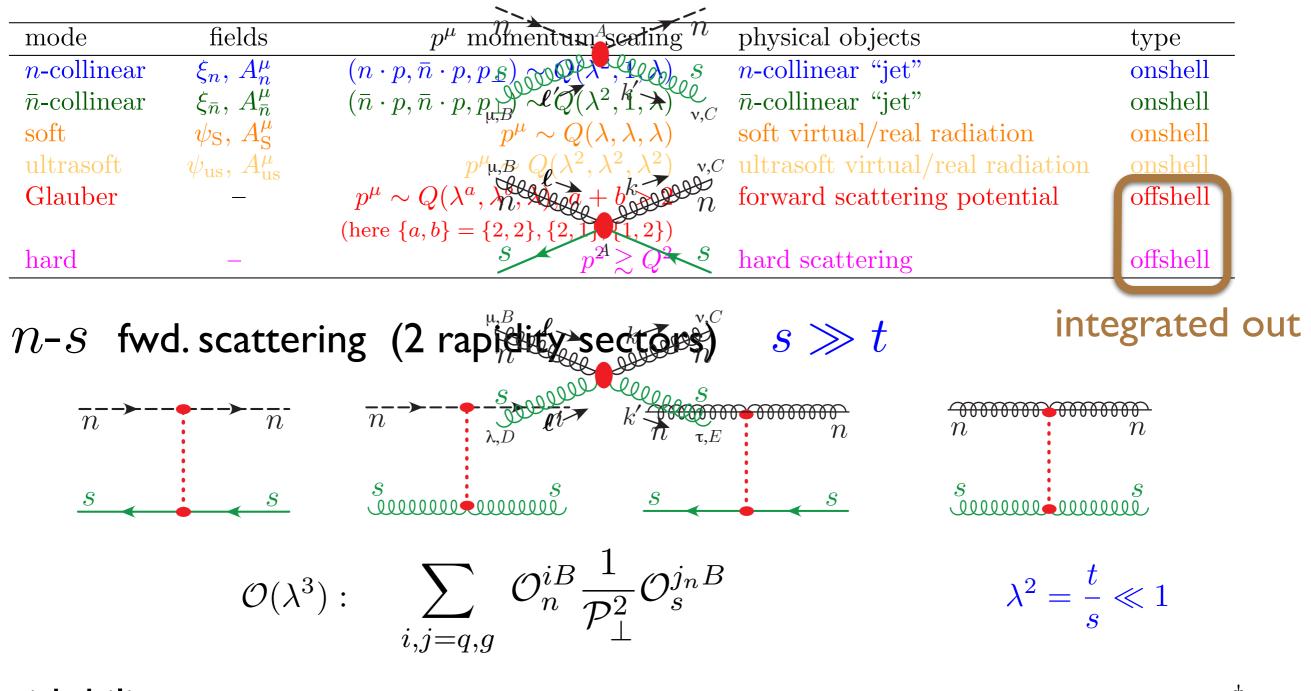
Power Counting formula for graph (any loop order, any power):  $\sim \lambda^{\delta}$ 

(gauge invariant)

#### Construction:



large Q



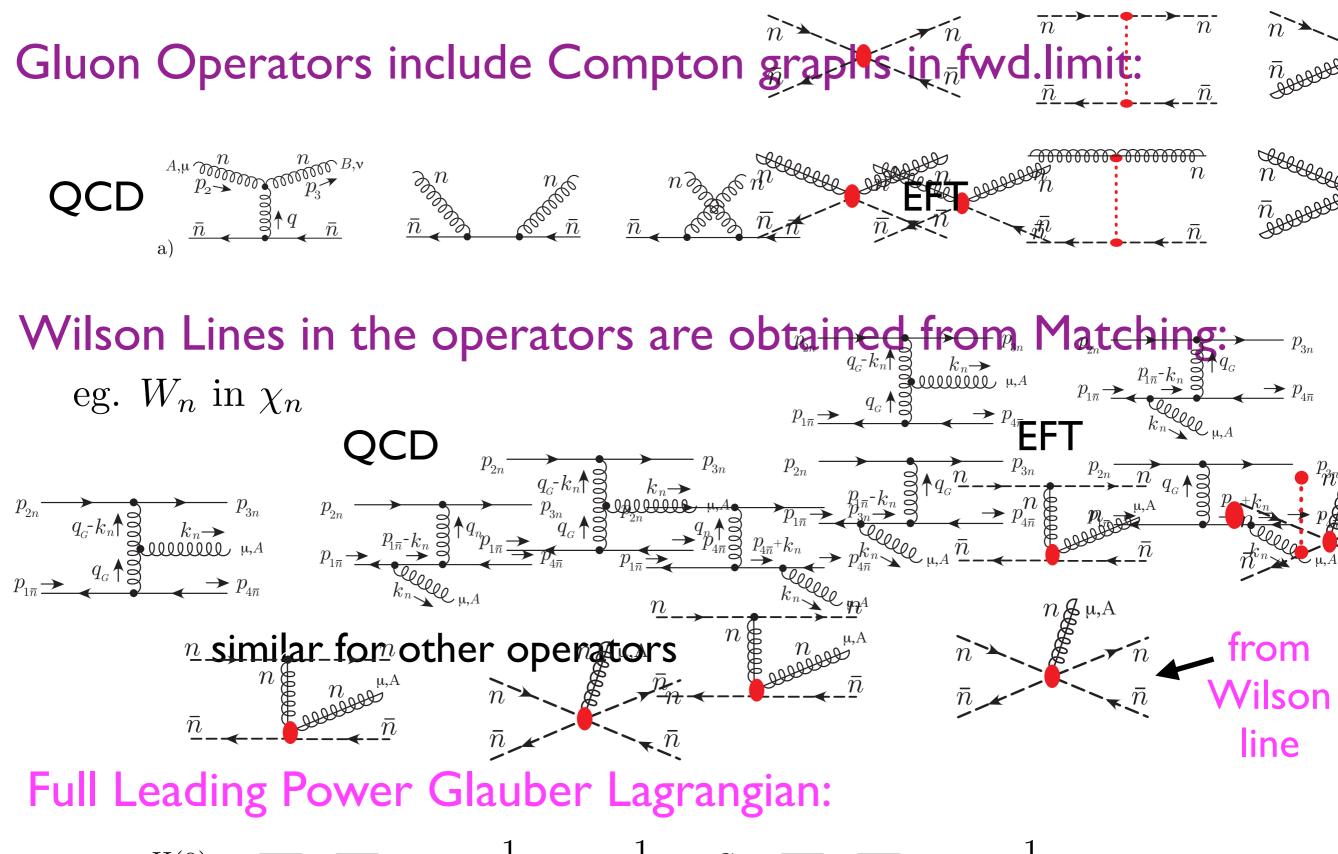
# with bilinear octet operators $\mathcal{O}(\lambda^{2}): \quad \mathcal{O}_{n}^{qB} = \overline{\chi}_{n} T^{B} \frac{\overline{n}}{2} \chi_{n}, \qquad \qquad \mathcal{O}(\lambda^{3}): \quad \mathcal{O}_{s}^{q_{n}B} = 8\pi\alpha_{s} \left(\overline{\psi}_{S}^{n} T^{B} \frac{\overline{n}}{2} \psi_{S}^{n}\right), \\ \mathcal{O}_{n}^{gB} = \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^{C} \frac{\overline{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu} \qquad \qquad \mathcal{O}_{s}^{g_{n}B} = 8\pi\alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{nC} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{nD\mu}\right)$

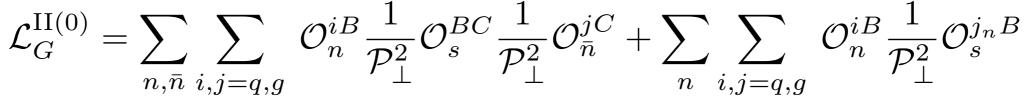
diadoer operators, which have a 1/7 | between them denoted by the dashed

## Construction:

 $\lambda \ll 1$  large Q scattering process, so we take  $\perp$  -polarization for the external gluon





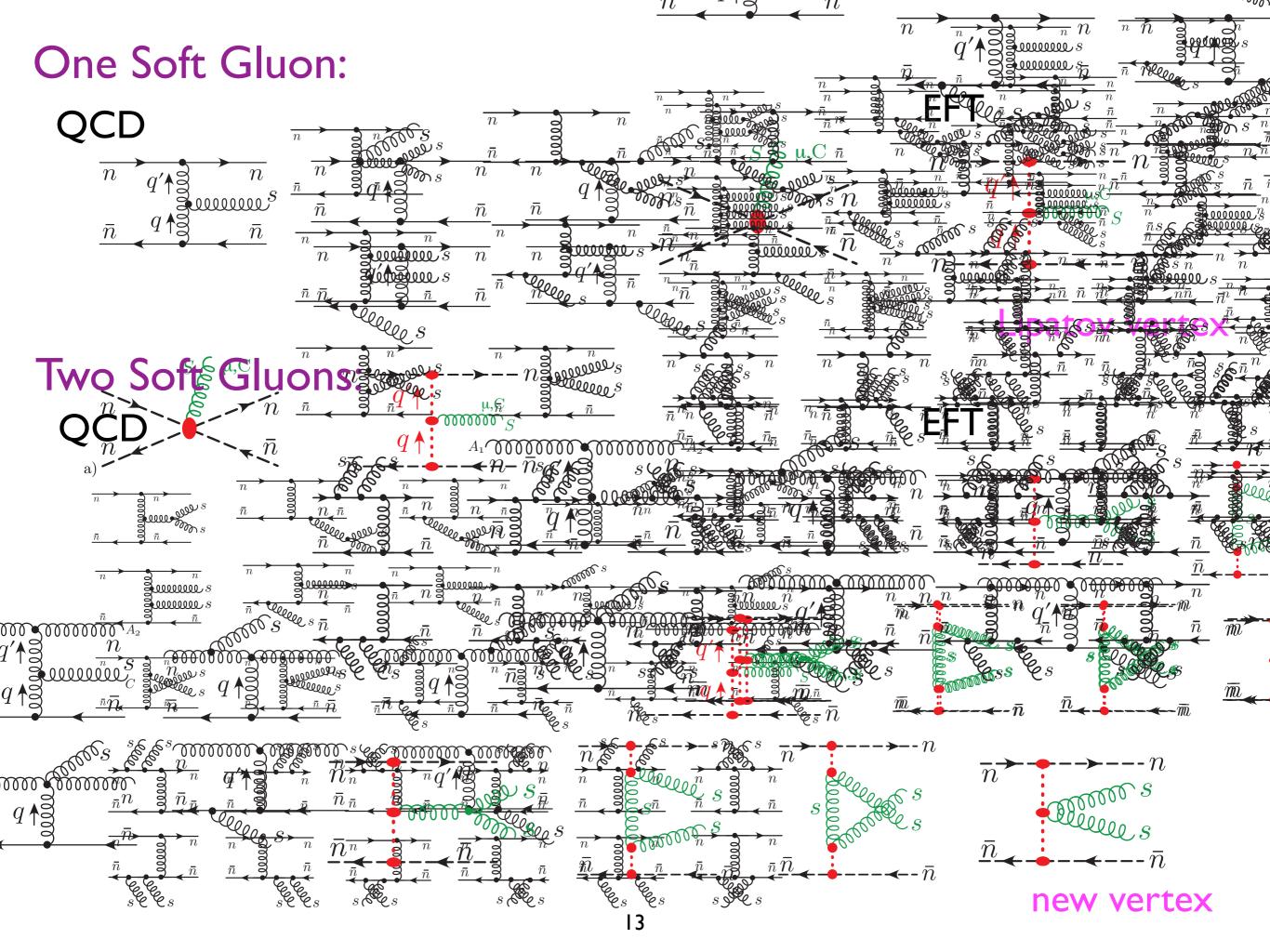


**Soft** 
$$\mathcal{O}_s^{BC}$$
 **Operator**  $\mathcal{O}_s^{BC} = 8\pi\alpha_s \sum_i C_i O_i^{BC}$ 

basis of  $\mathcal{O}(\lambda^2)$  operators allowed by symmetries:

$$O_{1} = \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{n} \mathcal{P}_{\perp \mu}, \qquad O_{2} = \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{n} \mathcal{P}_{\perp \mu}, \\O_{3} = \mathcal{P}_{\perp} \cdot (g \widetilde{\mathcal{B}}_{S \perp}^{n}) (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) + (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) (g \widetilde{\mathcal{B}}_{S \perp}^{n}) \cdot \mathcal{P}_{\perp}, \qquad O_{4} = \mathcal{P}_{\perp} \cdot (g \widetilde{\mathcal{B}}_{S \perp}^{n}) (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) + (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) (g \widetilde{\mathcal{B}}_{S \perp}^{n}) \cdot \mathcal{P}_{\perp}, \\O_{5} = \mathcal{P}_{\mu}^{\perp} (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) + (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) \mathcal{P}_{\mu}^{\perp}, \qquad O_{6} = \mathcal{P}_{\mu}^{\perp} (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) + (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) (\mathcal{S}_{n}^{T} \mathcal{S}_{n}) \mathcal{P}_{\mu}^{\perp}, \\O_{7} = (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) \mathcal{S}_{n}^{T} \mathcal{S}_{n} (g \widetilde{\mathcal{B}}_{S \perp \mu}^{n}), \qquad O_{8} = (g \widetilde{\mathcal{B}}_{S \perp}^{n\mu}) \mathcal{S}_{n}^{T} \mathcal{S}_{n} (g \widetilde{\mathcal{B}}_{S \perp \mu}^{n}), \\O_{9} = \mathcal{S}_{n}^{T} n_{\mu} \bar{n}_{\nu} (ig \widetilde{\mathcal{G}}_{s}^{\mu\nu}) \mathcal{S}_{n}, \qquad O_{10} = \mathcal{S}_{n}^{T} n_{\mu} \bar{n}_{\nu} (ig \widetilde{\mathcal{G}}_{s}^{\mu\nu}) \mathcal{S}_{n}, \\\mathbf{O}_{10} = \mathcal{O}_{n}^{T} n_{\mu} \bar{n}_{\nu} (ig \widetilde{\mathcal{O}}_{s}^{\mu\nu}) \mathcal{O}_{n}, \\\mathbf{O}_{10} = \mathcal{O}_{n$$

Matching with up to 2 soft gluons fixes all coefficients



Find:

$$C_2 = C_4 = C_5 = C_6 = C_8 = C_{10} = 0$$

$$C_1 = -C_3 = -C_7 = +1, \qquad C_9 = -\frac{1}{2}$$

$$\begin{split} \mathcal{O}_{s}^{BC} &= 8\pi\alpha_{s} \bigg\{ \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} \mathcal{P}_{\perp\mu} - \mathcal{P}_{\mu}^{\perp} g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} - \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu} \mathcal{P}_{\mu}^{\perp} - g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S\perp\mu}^{\bar{n}} \\ &- \frac{n_{\mu} \bar{n}_{\nu}}{2} \mathcal{S}_{n}^{T} i g \widetilde{\mathcal{G}}_{s}^{\mu\nu} \mathcal{S}_{\bar{n}} \bigg\}^{BC} \,. \end{split}$$

Form is unique to all loops since there are no hard  $\alpha_s$  corrections to this matching (more later)

# One Loop EFT graphs

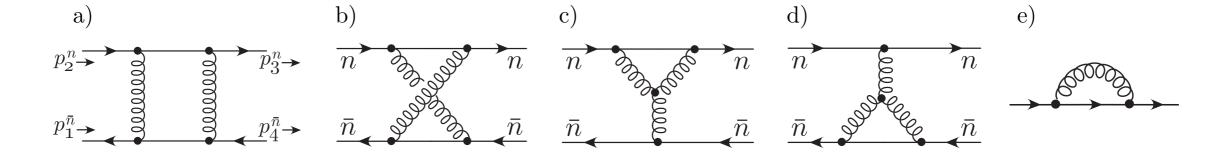
- QCD topologies appear more than once (soft, collinear, ...)
- Each dominated by <u>one</u> invariant mass scale & <u>one</u> rapidity
- Require invariant mass regulator (dim.reg.)
  - Requires rapidity regulator for Glauber potential  $|2k^z|^{-\eta}\nu^{\eta}$  and for Wilson lines

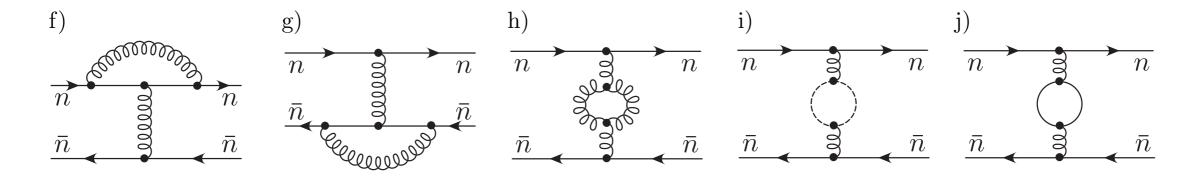
$$S_{n} = \sum_{\text{perms}} \exp\left\{\frac{-g}{n \cdot \mathcal{P}} \left[\frac{w|2\mathcal{P}^{z}|^{-\eta/2}}{\nu^{-\eta/2}}n \cdot A_{s}\right]\right\} \qquad \text{(use Chieu et.al., works like \overline{MS})}$$
$$W_{n} = \sum_{\text{perms}} \exp\left\{\frac{-g}{\bar{n} \cdot \mathcal{P}}\right] \frac{w^{2}|\bar{n} \cdot \mathcal{P}|^{-\eta}}{\nu^{-\eta}} \bar{n} \cdot A_{n}\right]\right\} \qquad \qquad \frac{1}{\eta} \qquad \ln(\nu)$$

- Zero-bin subtractions, avoid double counting IR regions
  - I-loop graphs:  $S = \tilde{S} S^{(G)}$  (construction ala  $C_n = \tilde{C}_n - C_n^{(S)} - C_n^{(G)} + C_n^{(GS)}$  Manohar & IS)

## eq. One Loop $q\bar{q}$ scattering

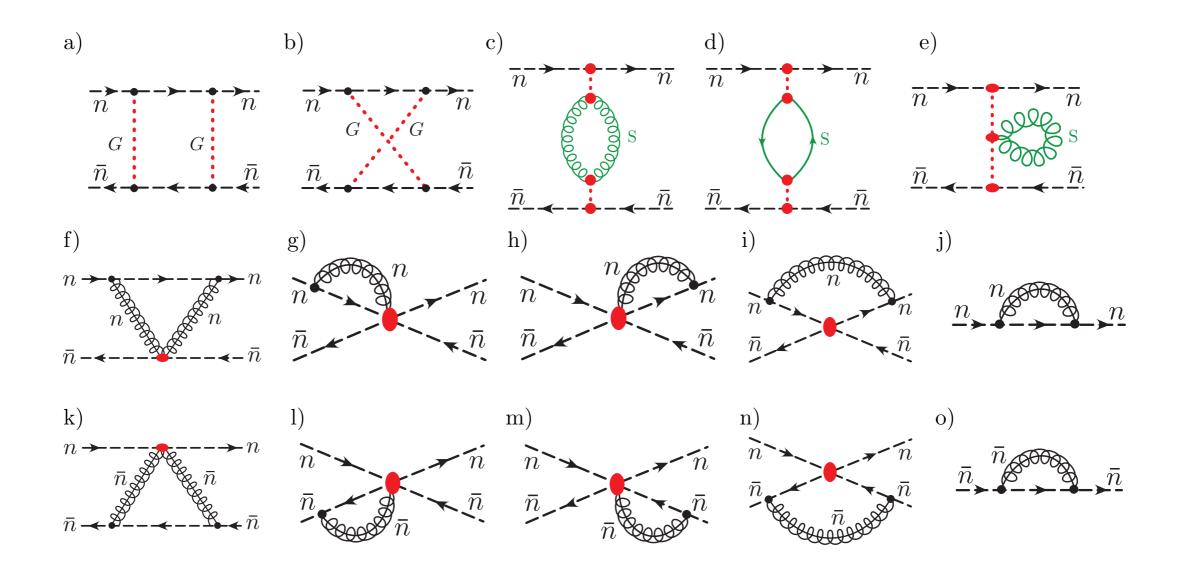
QCD graphs with leading power contributions,  $s \gg t$ 

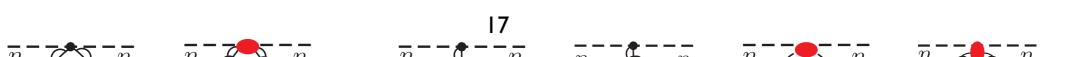


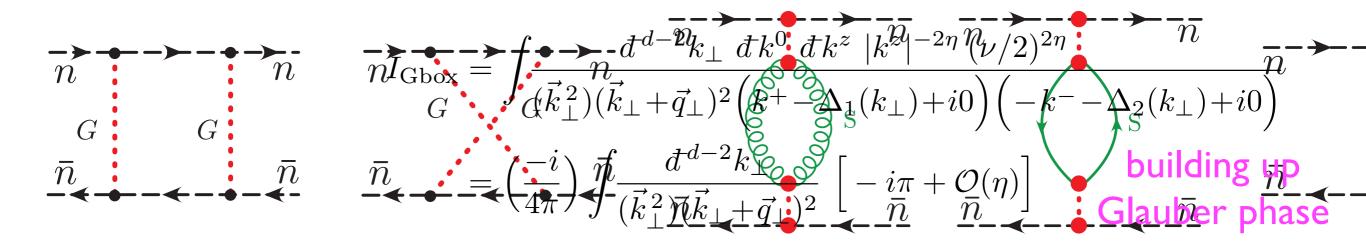


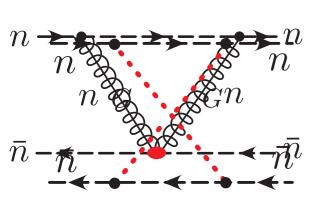
## eq. One Loop $q\overline{q}$ scattering

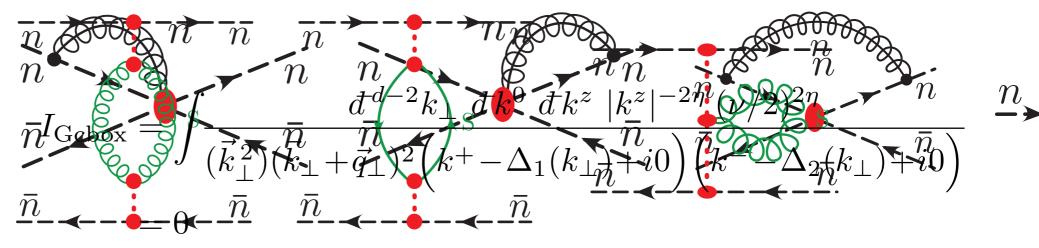
Leading Power EFT graphs (Glauber, Soft, & Collinear Loops)

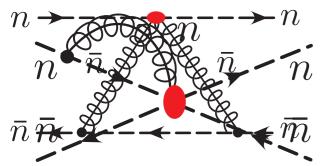


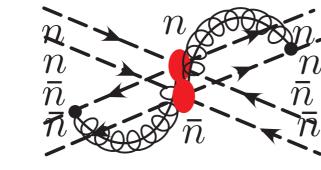


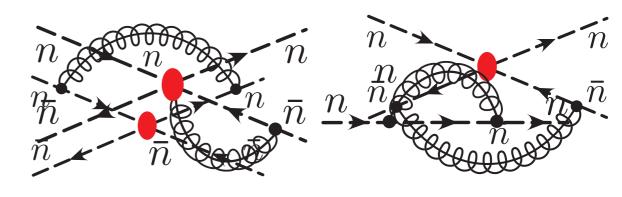








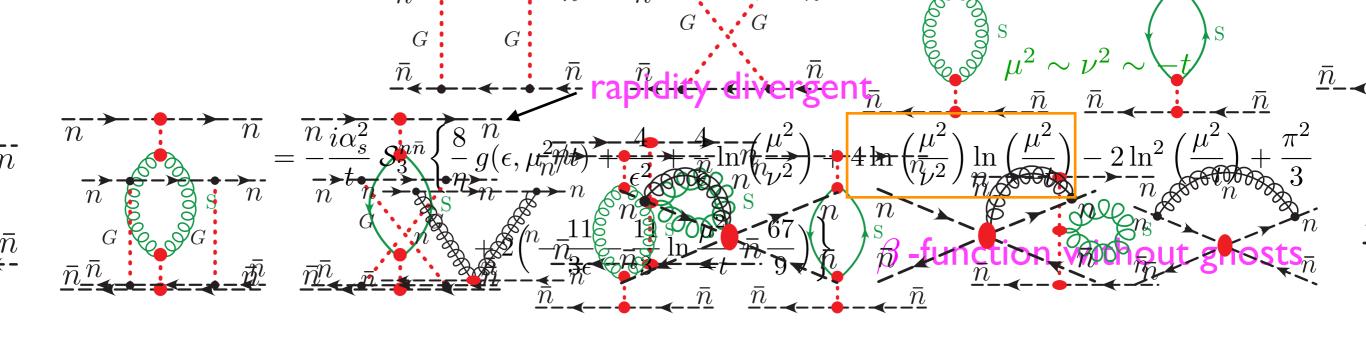


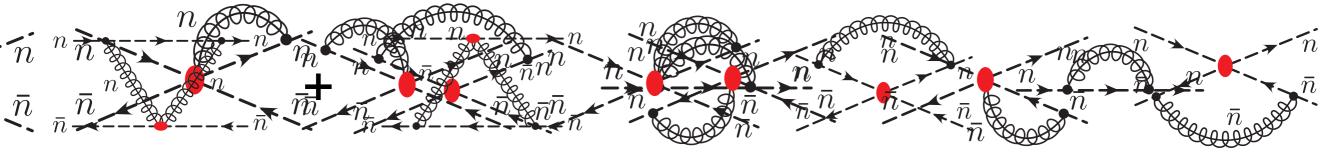


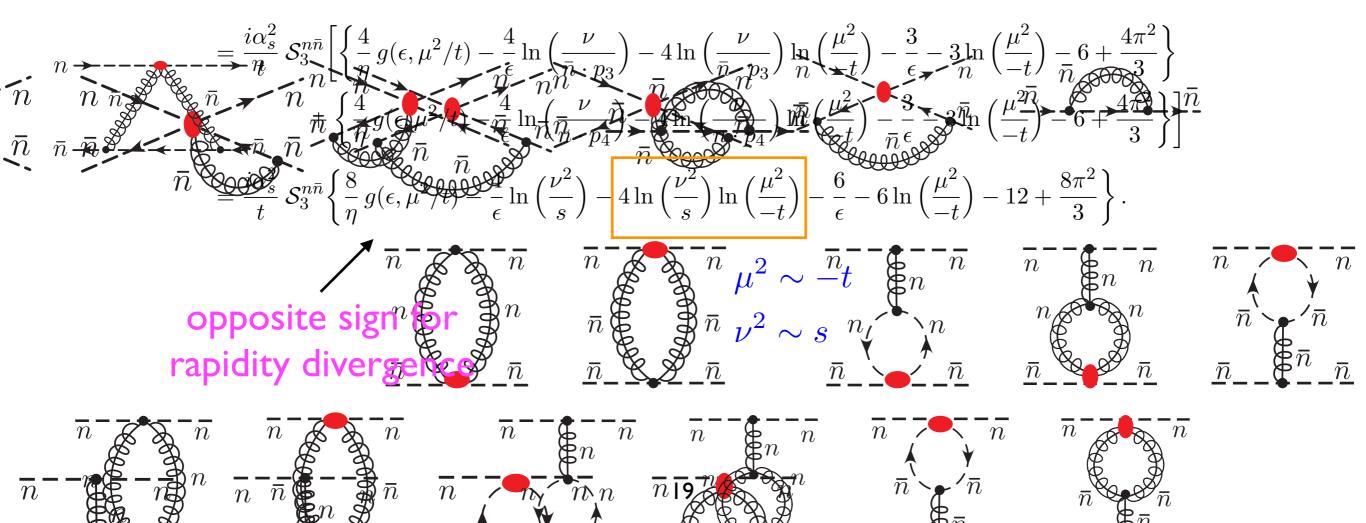




 $\bar{n}$ 







## One Loop Results & Matching

$$S_{1}^{n\bar{n}} = \left[\bar{u}_{n}T^{A}T^{B}\frac{\vec{n}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}T^{B}T^{A}\frac{\vec{n}}{2}v_{\bar{n}}\right], \qquad S_{2}^{n\bar{n}} = C_{F}\left[\bar{u}_{n}T^{A}\frac{\vec{n}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}T^{A}\frac{\vec{n}}{2}v_{\bar{n}}\right], \qquad S_{3}^{n\bar{n}} = C_{A}\left[\bar{u}_{n}T^{A}\frac{\vec{n}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}T^{A}\frac{\vec{n}}{2}v_{\bar{n}}\right], \qquad S_{4}^{n\bar{n}} = T_{F}n_{f}\left[\bar{u}_{n}T^{A}\frac{\vec{n}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}T^{A}\frac{\vec{n}}{2}v_{\bar{n}}\right]$$

m = gluon mass IR regulator

Glauber Loops =  $\frac{i\alpha_s^2}{t} S_1^{n\bar{n}} \left[ 8i\pi \ln\left(\frac{-t}{m^2}\right) \right]$ 

$$\begin{aligned} \text{Soft Loops} &= \frac{i\alpha_s^2}{t} \, \mathcal{S}_3^{n\bar{n}} \bigg\{ -\frac{8}{\eta} h(\epsilon, \mu^2/m^2) - \frac{8}{\eta} \, g(\epsilon, \mu^2/t) - 4\ln\left(\frac{\mu^2}{\nu^2}\right) \ln\left(\frac{m^2}{-t}\right) \\ &\quad -2\ln^2\left(\frac{\mu^2}{m^2}\right) + 2\ln^2\left(\frac{\mu^2}{-t}\right) - \frac{2\pi^2}{3} + \frac{22}{3}\ln\frac{\mu^2}{-t} + \frac{134}{9} \bigg\} &\longleftarrow \text{no } 1/\epsilon \text{ poles} \\ &\quad + \frac{i\alpha_s^2}{t} \, \mathcal{S}_4^{n\bar{n}} \bigg[ -\frac{8}{3}\ln\left(\frac{\mu^2}{-t}\right) - \frac{40}{9} \bigg]. \end{aligned}$$

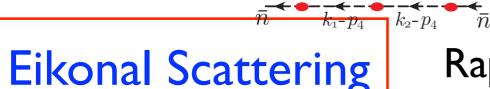
$$\begin{aligned} \text{Collinear Loops} &= \frac{i\alpha_s^2}{t} \, \mathcal{S}_3^{n\bar{n}} \bigg\{ \frac{8}{\eta} h\left(\epsilon, \frac{\mu^2}{m^2}\right) + \frac{8}{\eta} \, g\left(\epsilon, \frac{\mu^2}{-t}\right) + 4\ln\left(\frac{\nu^2}{s}\right) \ln\left(\frac{-t}{m^2}\right) + 2\ln^2\left(\frac{m^2}{-t}\right) + 4 + \frac{4\pi^2}{3} \bigg\} \\ &\quad + \frac{i\alpha_s^2}{t} \, \mathcal{S}_2^{n\bar{n}} \bigg[ -4\ln^2\left(\frac{m^2}{-t}\right) - 12\ln\left(\frac{m^2}{-t}\right) - 14 \bigg] \end{aligned}$$

$$\begin{aligned} \text{Total SCET} &= \frac{i\alpha_s^2}{t} \, \mathcal{S}_1^{n\bar{n}} \left[ 8i\pi \ln\left(\frac{-t}{m^2}\right) \right] + \frac{i\alpha_s^2}{t} \, \mathcal{S}_2^{n\bar{n}} \left[ -4\ln^2\left(\frac{m^2}{-t}\right) - 12\ln\left(\frac{m^2}{-t}\right) - 14 \right] \\ &+ \frac{i\alpha_s^2}{t} \, \mathcal{S}_3^{n\bar{n}} \left\{ -4\ln\left(\frac{s}{-t}\right)\ln\left(\frac{-t}{m^2}\right) + \frac{22}{3}\ln\frac{\mu^2}{-t} + \frac{170}{9} + \frac{2\pi^2}{3} \right\} \quad \text{rapidity divergences} \\ &+ \frac{i\alpha_s^2}{t} \, \mathcal{S}_4^{n\bar{n}} \left[ -\frac{8}{3}\ln\left(\frac{\mu^2}{-t}\right) - \frac{40}{9} \right] \quad \text{cancel} \end{aligned}$$

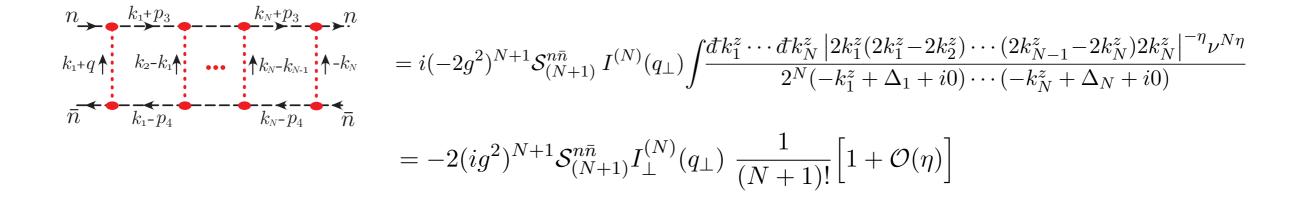
#### Total SCET = Total QCD $(s \gg t)$

#### IR divergences are all reproduced

<u>no hard matching here</u> (no loops with momenta  $\sim s$  )

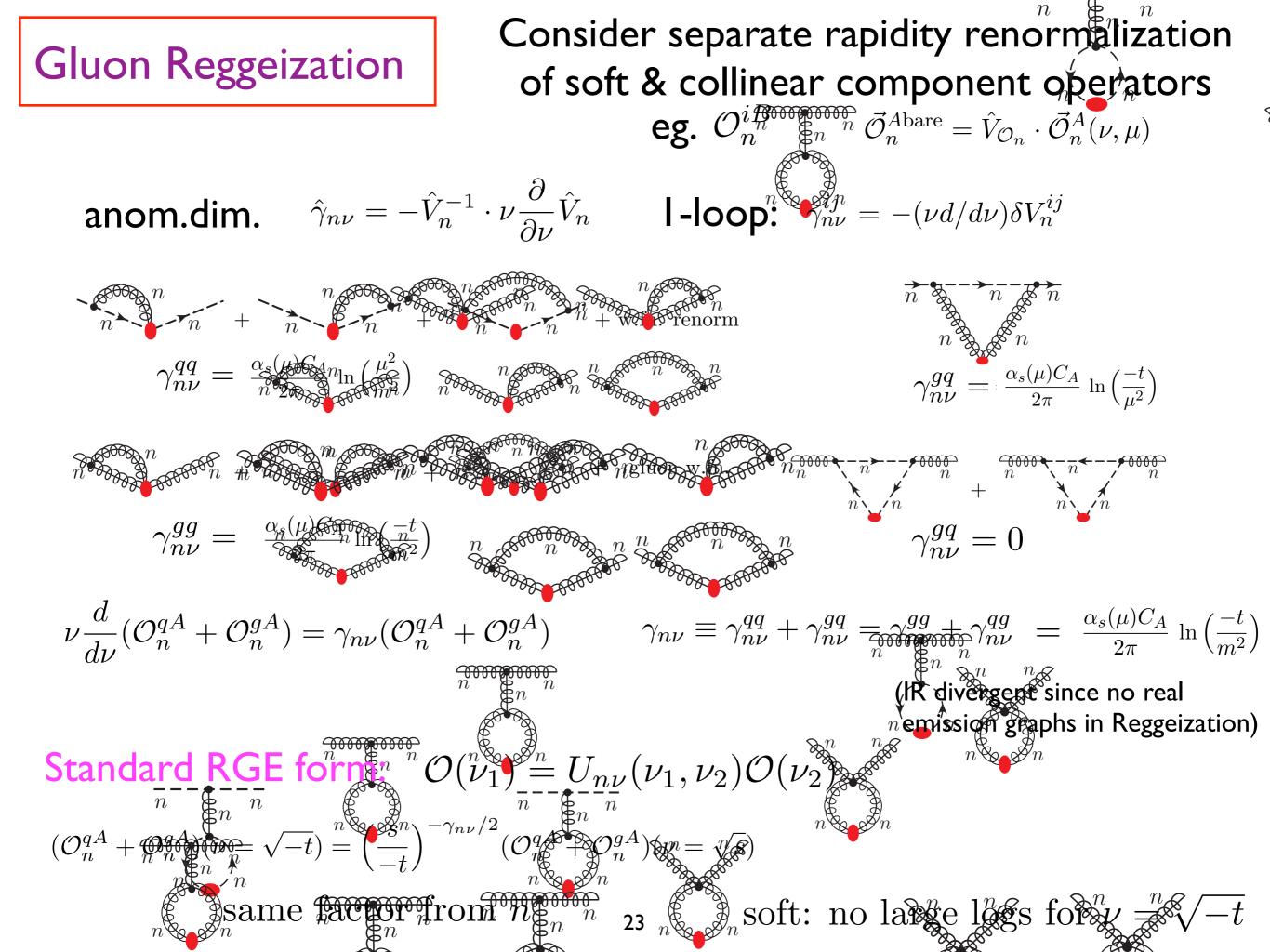


#### Rapidity regulator consistent with eikonal phase



Sum of<br/>Glauber $G(q_{\perp}) = (2\pi)^2 \delta^2(q_{\perp}) + \frac{i4\pi C_F \alpha_s(\mu)}{(-t)} \frac{\Gamma(1 - iC_F \alpha_s(\mu))}{\Gamma(1 + iC_F \alpha_s(\mu))} \left(\frac{-t}{m^2 e^{2\gamma_E}}\right)^{iC_F \alpha_s(\mu)}$ Boxesclassic eikonal scattering result

 $\tilde{G}(b_{\perp}) = e^{i\phi(b_{\perp})}$ 



## Forward Scattering & BFKL

Expand time evolution, do soft-collinear factorization term by term:

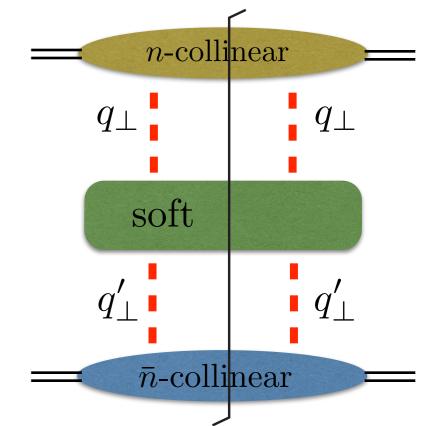
$$T \exp i \int d^4x \, \mathcal{L}_G^{\mathrm{II}(0)}(x) = \left[ 1 + i \int d^4y_1 \, \mathcal{L}_G^{\mathrm{II}(0)}(y_1) + \frac{i^2}{2!} \int d^4y_1 \, d^4y_2 \, \mathcal{L}_G^{\mathrm{II}(0)}(y_1) \mathcal{L}_G^{\mathrm{II}(0)}(y_2) + \dots \right]$$
$$\sim 1 + T \sum_{k=1}^{\infty} \sum_{k'=1}^{\infty} \left[ \mathcal{O}_n^{jA_i}(q_{i\perp}) \right]^k \left[ \mathcal{O}_{\bar{n}}^{j'B_{i'}}(q_{i'\perp}) \right]^{k'} \otimes O_{s(k,k')}^{A_1 \cdot A_k, B_1 \cdots B_{k'}}(q_{\perp 1}, \dots, q_{\perp k'})$$
$$\equiv 1 + \sum_{k=1}^{\infty} \sum_{k'=1}^{\infty} U_{(k,k')}$$

As a traditional approximation, consider forward scattering with just the first term (linearization which leads to BFKL equation):

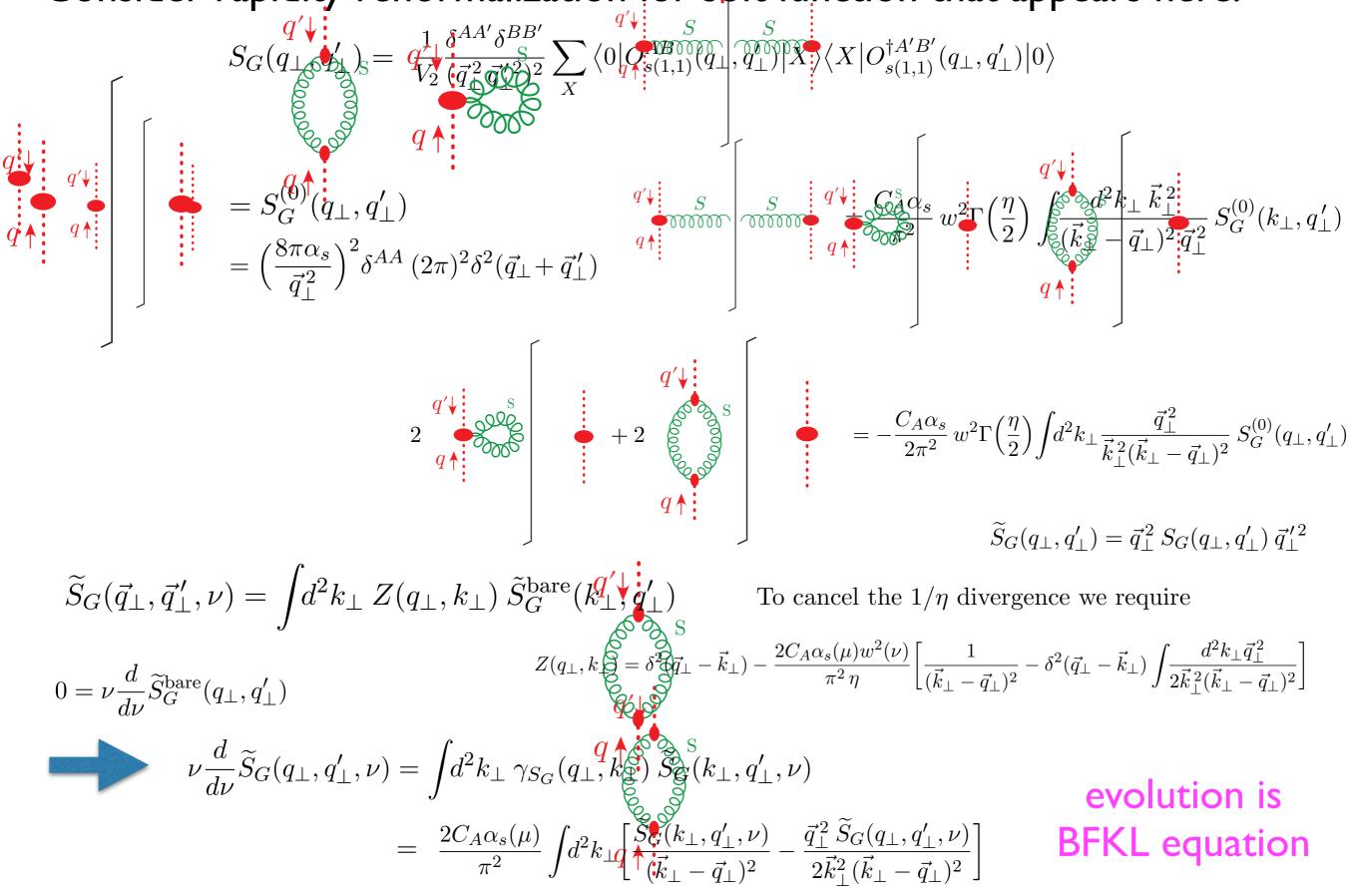
$$T_{(1,1)} = \frac{1}{V_4} \sum_X \langle pp' | U_{(1,1)}^{\dagger} | X \rangle \langle X | U_{(1,1)} | pp' \rangle = \dots$$
$$= \int d^2 q_{\perp} d^2 q'_{\perp} C_n(q_{\perp}, p^-) S_G(q_{\perp}, q'_{\perp}) C_{\bar{n}}(q'_{\perp}, p'^+)$$

after rapidity renormalization:

$$T_{(1,1)} = \int d^2 q_{\perp} d^2 q'_{\perp} C_n(q_{\perp}, p^-, \nu) S_G(q_{\perp}, q'_{\perp}, \nu) C_{\bar{n}}(q'_{\perp}, p'^+, \nu)$$







(see also work by S. Fleming)

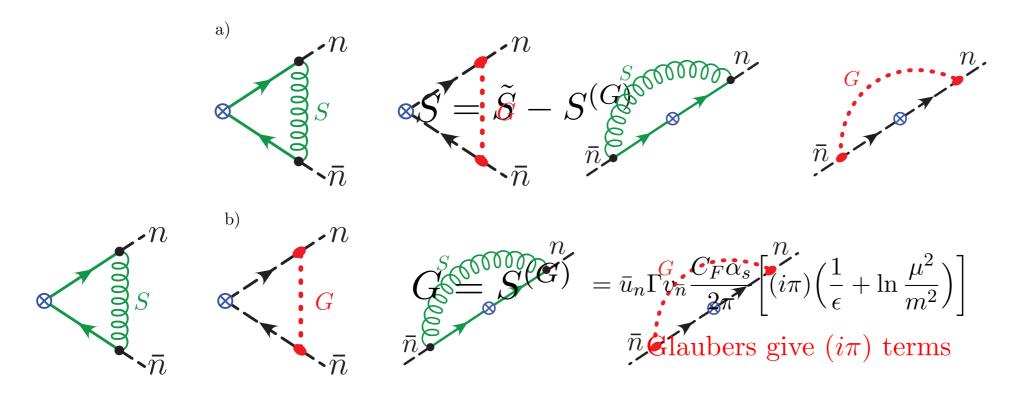
#### RGE consistency of linearized amplitude at LL order implies

$$\nu \frac{d}{d\nu} C_n(q_{\perp}, p^-, \nu) = -\frac{C_A \alpha_s}{\pi^2} \int d^2 k_{\perp} \left[ \frac{C_n(k_{\perp}, p^-, \nu)}{(\vec{k}_{\perp} - \vec{q}_{\perp})^2} - \frac{\vec{q}_{\perp}^2 C_n(q_{\perp}, p^-, \nu)}{2\vec{k}_{\perp}^2 (\vec{k}_{\perp} - \vec{q}_{\perp})^2} \right] - \frac{1}{2} \left( \text{BFKL} \right)$$

same for  $C_{\bar{n}}$ 



#### Active-Active and Soft Overlap



with physical directions for soft Wilson lines in hard scattering

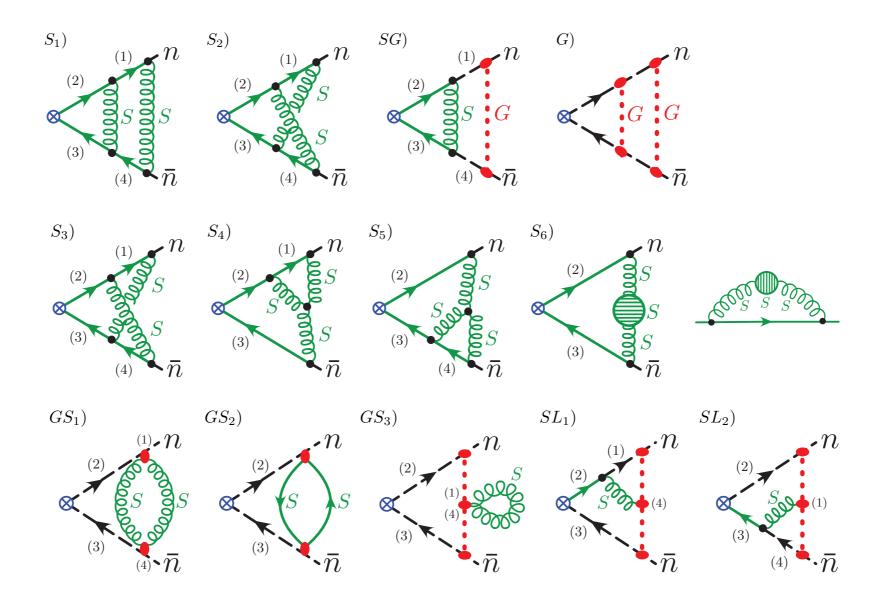
$$(\tilde{S} - S^{(G)}) + G = \tilde{S}$$

so we don't see Glauber in Hard Matching

can absorb this Glauber into Soft Wilson lines if they have proper directions

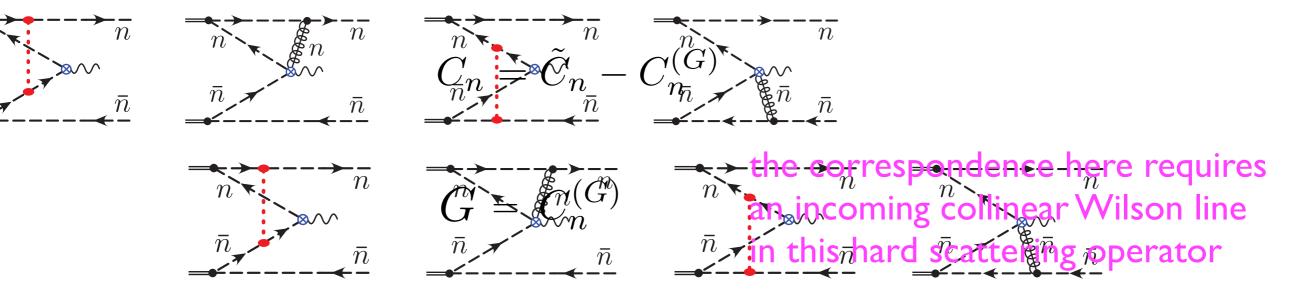
(see Bauer, Lange, Ovanesyan for analog in  $SCET_I$ )

#### This continues at higher orders:

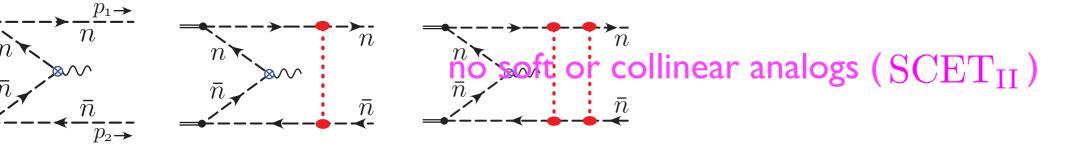


This overlap with the subtractions is the analog in the EFT of the CSS statement that one can deform the contour from the Glauber into Soft region for active-active graphs.

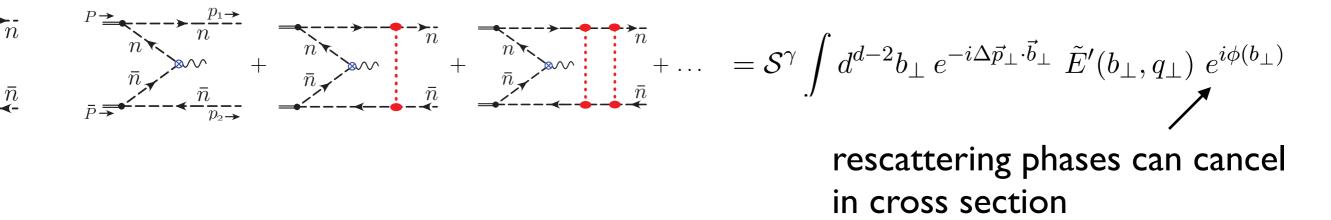
Active-Spectator and the Collinear Overlap



**Spectator-Spectator** 







# Conclusion

- $\bullet~{\rm Constructed}$  an EFT for  $~s\gg t$  , Fwd. Scattering & Fact.Violation
- Universal Operators that can be used for many processes & problems
- Reggeization, BFKL, Soft-Glauber & Collinear-Glauber overlaps, ...

# Near Future

- Amplitude Collinear and Regge Fact. Violation
- Joint DGLAP( $\mu$ ) and BFKL( $\nu$ ) resummation for small-x DIS
- Reproduce classic CSS proof of factorization in Drell-Yan

## Future Directions

- Study and prove or disprove factorization for less inclusive processes
- Improve theoretical description of Underlying Event