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Outline

• Introduction:   Forward Scattering and Factorization (Violation),	


                      why EFT?

•

•

Summary

• Operators,  interactions between 2 or 3 rapidity sectors

• Glauber Interaction Lagrangian in Soft-Collinear Effective Theory

• Rapidity Regulator

One-Loop Graphs,  Eikonal Scattering, Reggeization for Octet Ops.

• Forward Scattering and BFKL
• Rapidity RG equations for Collinear and Soft functions:  BFKL

• Glaubers in Hard Scattering, one and two loop examples

• Subtractions
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Hard Scattering Factorization:

PDFs
d� = fafb � �̂ � F

partonic

hadronization
(In some cases by Operators,!
 or is power suppressed)

Nonperturbative:

eg. Perturbative:

µB µH µJ µS
hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S Used to Sum 	


Logs

µp � �QCD

SCET

µS

µJ , µB

µH

µp

E
QCD
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Hard Scattering Factorization:

SCET

µS

µJ , µB

µH

µp

E
QCD

In SCET:

factorized Lagrangian:

factorized Hard Ops:

L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

C � (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)(SnaSnbSn1Sn2Sn3)

factorized matrix elements defining jet, soft, … functions

�n = W †
n�n

Soft Wilson Lines
Collinear Wilson Lines in quark & gluon operator building blocks:

gBµ
n� =

�
W †

niDµ
n�Wn

�
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Hard Scattering Factorization:

SCET

µS

µJ , µB

µH

µp

E
QCD

Factorization will be broken if:

it is not possible to identify a finite basis of leading power operators

there are non-factorizable leading power Lagrangian interactions 	


between soft & collinear sectors

(examples studied by Collins & Qiu,  Aybat & Rogers, …) 

•

•

Compatible with violation of Collinear factorization (Catani,de Florian,Rodrigo),  	


Regge factorization (Del Duca,Glover,Falcioni,Magnea,Vernazza,Duhr,White), 	


Cross-section factorization (Collins,Soper,Sterman=CSS,…), …
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mode fields pµ momentum scaling physical objects type
na-collinear �na , Aµ

na
(na · p, n̄a · p, p�a) � Q(�2, 1,�) collinear initial state jet a onshell

nb-collinear �nb , Aµ
nb

(nb · p, n̄b · p, p�b) � Q(�2, 1,�) collinear initial state jet b onshell
nj-collinear �nj , Aµ

nj
(nj · p, n̄j · p, p�j) � Q(�2, 1,�) collinear final state jet in n̂j onshell

soft �S, Aµ
S pµ � Q(�, �, �) soft virtual/real radiation onshell

ultrasoft �us, Aµ
us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell

Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell
hard – p2 � Q2 hard scattering o�shell

Relevant Modes
Infrared Structure of Amplitudes (CSS, …)
Method of Regions (Beneke & Smirnov)

�� 1 large Q

Glauber’s (Coulomb gluons) 	


may break factorization:

(CSS proof for Drell-Yan)

122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S�



1

~p 2
1?

1

~p 2
2?

� 

n̄ · p1 n̄ · (P�p1)

n̄ · P
n · p2 n · (P̄�p2)

n · P̄
�

⌘ S� E(p1?, p2?),

spectator-spectator 

Glauber’s dominate 	


Forward Scattering:

19
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,	


BK/BJMWLK, …)

1
k2
�

potential

instantaneous in x+, x� (t and z)

•

•



Goals & Possible Advantages for EFT approach
•

•

•

•

•

      style renormalization for rapidity divergences 	


(counterterms, renormalization group equations, …)

MS

Hard Scattering and Forward Scattering in single framework

•
Operator based:  Can exploit symmetries,  Gauge invariant

Factorization violating interactions also obey 	


  factorization theorems

Distinct Infrared Modes in 	


  Feyn. Graphs + Power Counting 

Valid to all orders in       &  clear path using this formalism to	


  study subleading power amplitudes (subleading ops & Lagrangians)

• Potential method to derive factorization results for less 	


  inclusive collider processes, predict things about UE, etc.

derive when eikonal 	


approximation is relevant

Plan:  Add Glaubers to SCET
L(0)

SCETII
= L(0)

SCETII,S,{ni}+L
(0)
G

�
�S , AS , �ni , Ani)

Focus in this talk 	


on SCETII

�s
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Construction: �� 1 large Q

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

Power Counting formula for graph (any loop order, any power):

38

double counted contributions). With the rapidity regulator we use here these subtractions often

lead to scaleless integrals, but for some diagrams we will consider they do not vanish and play

an important role in avoiding double counting. Without the Glauber dependent subtractions the

results in Eq. (67) reduce to the standard soft subtraction on collinear integrands in SCETII.

In general, the soft and collinear Wilson lines in the operators of the Glauber Lagrangian,

Eq. (41), or in expressions like Eq. (62), should have their position space directions (0,1) or

(�1, 0) specified. This corresponds with the appearance of ±i0 factors in the momentum space

Feynman rules, see App. C 3. The dependence on whether the line extends to ±1 will most often

be canceled by the 0-bin subtractions. Soft lines generate propagators such as (n · k ± i0) with

n · k ⇠ �, while it is the Glauber region describes the region of smaller momenta n · k ⇠ �2

which includes the pole n · k = �i0. The situation is similar for collinear Wilson lines, which

have both soft and Glauber 0-bin subtractions. We will show explicitly the cancellation of Wilson

line direction dependence by 0-bins for soft and collinear loop graphs in one-loop and two-loop

calculations for forward scattering in Secs. IVA and IVC and for hard scattering in Secs. VIA

and VIB. In particular, we explain in Sec. VIB that the directions of the soft Wilson lines in the

leading power Glauber Lagrangian can be chosen to be either as (0,1) or as (�1, 0) without

changing results. This occurs due to the presence of Glauber region 0-bin subtractions. On the

flip side, we will see that Glauber interactions in certain hard scattering diagrams can be absorbed

into the direction of soft and collinear Wilson lines in the hard scattering operators. In general, the

dependence on these directions may then still cancel out in factorization theorems where infinite

Wilson lines are combined into finite lines.

E. Power Counting and Operator Completeness

In this section we give the all orders power counting formulae for SCETI and SCETII that hold

in the presence of loops carrying Glauber momenta, and arbitrary power suppressed interactions.

We then discuss the complete basis for Glauber exchange at leading power, namely O(�0). The

ingredients needed for this analysis are an SCET power counting theorem valid to any order in �

in the presence of Glauber e↵ects, information about the structure of infrared divergences in gauge

theory, gauge invariance, dimensional analysis, and the momentum structure of forward scattering

operators in the limit s � t.

In App. B we derive a general power counting formula for an arbitrary diagram with operators

at any order in the power counting in both SCETI and SCETII. As shown there, the final formula

can be applied to both of these theories and says that the graph will scale as �� where

� = 6�Nn �N n̄ �NnS �N n̄S + 2u , (68)

+
X

k

(k � 8)V us
k + (k�4)

�

V n
k + V n̄

k + V S
k

�

+ (k�3)
�

V nS
k + V n̄S

k

�

+ (k�2)V nn̄
k .

� ��

need � �3 � �2

operators at leading power

(gauge invariant)
�

Glauberstandard SCET
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Construction: �� 1 large Q

n n

ss

fwd. scattering  (2 rapidity sectors)n-s

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n n

ss

n n

ss

n n

ss

26

which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) + 1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

25

n

s

n

s

k

= �8⇡i↵s

(~̀?�~k?)2
h

ūn
n̄/
2T

Aun

ih

v̄s
n/
2T

Avs
i

n

s

n

s
k

+�B i�C

A

' '
=

�8⇡↵sfABC

(~̀0?�~k0?)2
h

ūn
n̄/
2T

Aun

ih

n·k0 gµ⌫? � nµ`0⌫? � n⌫k0µ
? +

`0?·k0?nµn⌫

n·k0
i

n

s

n

s

k
+�B i�C

A
=

�8⇡↵sfABC

(~̀?�~k?)2
h

n̄·k gµ⌫? � n̄µ`⌫? � n̄⌫kµ
? + `?·k?n̄µn̄⌫

n̄·k
ih

v̄s
n/
2T

Avs
i

s s
n n

+�B i�C

h�D o�E
' k'

k =
8⇡i↵sfABCfADE

(~̀?�~k?)2
h

n̄·k gµ⌫? � n̄µ`⌫? � n̄⌫kµ
? + `?·k?n̄µn̄⌫

n̄·k
i

⇥
h

n·k0 g�⌧? � n�`0⌧? � n⌧k0�
? +

`0?·k0?n�n⌧

n·k0
i

FIG. 9. Lowest order Feynman rules for the Glauber operators Oij
ns for n-s forward scattering. Results for

Oij
n̄s are analogous with n $ n̄.

adjoint indices in Eq. (34), and the 1/P2
? gives the central terms in square brackets in Eq. (36).

The remaining right most terms in square brackets are reproduced by the soft quark and gluon

operators:

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

,

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ

n

2
· (P+P†)BnDµ

S?
⌘

. (38)

Here the soft fields with n superscripts carry Sn Wilson lines and were defined in Eqs. (13) and

(17) above. The appearance of these Wilson lines is necessary to preserve soft gauge invariance,

and we will see in Sec. IIIA that they arise from integrating out soft attachments to the n collinear

lines. By convention we group the gauge coupling with the soft component of the operator. Due to

our normalization conventions the total operators in Eq. (37) have Wilson coe�cients that are 1

at tree level. To derive the scaling of the operators we note that OiB
n ⇠ �2, and OiB

s ⇠ �3, so with

the 1/P2
? ⇠ ��2 we have the total scaling Oij

ns ⇠ �3. This is the correct scaling for a mixed n-s

Glauber operator that contributes at leading power in the SCET Lagrangian as shown below in

Sec. II E. The lowest order Feynman rules for n-s forward scattering from the operators in Eq. (37)

are shown in Fig. 9.

If there is another collinear sector, such as our n̄, then there will be a set of soft-n̄ scattering

operators analogous to Eq. (37), which we can simply obtain by taking n $ n̄ in the above analysis.

This gives

Oqq
n̄s = OqB

n̄
1

P2
?
Oqn̄B

s , Oqg
n̄s = OqB

n̄
1

P2
?
Ogn̄B

s , Ogq
n̄s = OgB

n̄
1

P2
?
Oqn̄B

s , Ogg
n̄s = OgB

n̄
1

P2
?
Ogn̄B

s , (39)

20

notation:

Oqq
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ . (29)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = 8⇡↵s�BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (28), are matrix elements of the n-collinear operators

OqB
n = �nT

B n̄/

2
�n , OgB

n =
i

2
fBCDBC

n?µ

n̄

2
· (P+P†)BDµ

n? . (30)

Each of these operators are bilinears in the quark or gluon building blocks. For the gluon operator,

an extra factor of 1/2 is included to compensate for the symmetry factor from switching the two

Bn?s when computing the corresponding Feynman rules. The operator OgB
n is even under this

swap because both the color factor and momentum factor n̄ · (P + P†) give a change of sign. The

n̄-collinear quark and gluon terms appear as the contributions in the last square brackets of each

of the four terms in Eq. (28), and are matrix elements of the operators,

OqB
n̄ = �n̄T

B n/

2
�n̄ , OgB

n̄ =
i

2
fBCDBC

n̄?µ

n

2
· (P+P†)BDµ

n̄? . (31)

Examining Eqs. (30) and (31) we see that the n-collinear and n̄-collinear results are the same,

just with n $ n̄. These collinear operators are bilinears of the fundamental quark and gluon

gauge invariant building block operators in SCET. Furthermore, both of these operators are octet

combinations of the building blocks. Due to momentum conservation, and the fact that there are

only two building blocks in each collinear sector, each collinear bilinear has a conserved momentum

in its large ⇠ �0 component. This implements the forward scattering kinematics. The tree level

matching that yields the proper Wilson line structure in the operators in Eqs. (30) and (31) is

actually non-trivial due to operator mixing, and is described in detail in Sec. IIIA.

The middle terms in square brackets in Eq. (28), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the 1/P2
? factors in Eq. (29) these operators must reduce to 8⇡↵sP2

? when all soft

fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (32)
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notation:

Oqq
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2
?
OBC

s

1

P2
?
OgC

n̄ . (29)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = 8⇡↵s�BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (28), are matrix elements of the n-collinear operators

OqB
n = �nT

B n̄/

2
�n , OgB

n =
i

2
fBCDBC

n?µ

n̄

2
· (P+P†)BDµ

n? . (30)

Each of these operators are bilinears in the quark or gluon building blocks. For the gluon operator,

an extra factor of 1/2 is included to compensate for the symmetry factor from switching the two

Bn?s when computing the corresponding Feynman rules. The operator OgB
n is even under this

swap because both the color factor and momentum factor n̄ · (P + P†) give a change of sign. The

n̄-collinear quark and gluon terms appear as the contributions in the last square brackets of each

of the four terms in Eq. (28), and are matrix elements of the operators,

OqB
n̄ = �n̄T

B n/

2
�n̄ , OgB

n̄ =
i

2
fBCDBC

n̄?µ

n

2
· (P+P†)BDµ

n̄? . (31)

Examining Eqs. (30) and (31) we see that the n-collinear and n̄-collinear results are the same,

just with n $ n̄. These collinear operators are bilinears of the fundamental quark and gluon

gauge invariant building block operators in SCET. Furthermore, both of these operators are octet

combinations of the building blocks. Due to momentum conservation, and the fact that there are

only two building blocks in each collinear sector, each collinear bilinear has a conserved momentum

in its large ⇠ �0 component. This implements the forward scattering kinematics. The tree level

matching that yields the proper Wilson line structure in the operators in Eqs. (30) and (31) is

actually non-trivial due to operator mixing, and is described in detail in Sec. IIIA.

The middle terms in square brackets in Eq. (28), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.
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? factors in Eq. (29) these operators must reduce to 8⇡↵sP2

? when all soft

fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (32)

with bilinear octet operators

15

coupling are

�n = W †
n⇠n , Wn = FT Wn[n̄ ·An] = FT P exp

✓

ig

Z 0

�1
ds n̄ ·An(x+ n̄s)

◆

,

�n̄ = W †
n̄⇠n̄ , Wn̄ = FT Wn̄[n ·An̄] = FT P exp

✓

ig

Z 0

�1
ds n ·An̄(x+ ns)

◆

,

 n
s = S†

n s ,  n̄
s = S†

n̄ s , Sn = FT Sn[n ·AS ] = FT P exp

✓

ig

Z 0

�1
ds n ·AS(x+ ns)

◆

, (13)

where FT is for Fourier transform, and P stands for path ordering. The Fourier transform is

often written out in momentum space which enables making explicit the notation for the multipole

expansion (the lines remain local in the coordinate corresponding to residual momenta, even though

they are extended for the larger momentum associated with the s coordinate shown here). Under a

collinear gauge transformation ⇠n ! Un⇠n, Wn ! UnWn, so �n is invariant, and a similar property

holds for the other fields with transformations that have support in their respective momentum

sectors. In general the direction of the Wilson lines in the fields in Eq. (13) are determined by

matching calculations from full QCD, so although we show only one direction in Eq. (13) the

integrals could instead extend over [0,1].4 Expressions for Wilson lines over (0,1) and (�1, 0)

and their Feynman rules are summarized in App. C 3. Note that we follow a convention where the

subscript on the collinear field indicates the type of collinear gluon field that the operator contains,

rather than the light-like direction of the Wilson line. Thus the n subscript on collinear building

blocks means something di↵erent than the n superscript on soft building blocks.

We denote fundamental collinear Wilson lines by Wn, where n̄ ·An = n̄ ·AA
nT

A in Eq. (13), and

adjoint collinear Wilson lines by Wn, where n̄ · An = n̄ · AA
nT

A
adj with (TA

adj)BC = �ifABC . Note

that

W †
nWn = , WAB

n WCB
n = �AC . (14)

These Wilson lines are related by

W †
nT

AWn = WAB
n TB , WnT

AW †
n = WBA

n TB . (15)

Their momentum space expansion with an incoming momentum k for the gluon are

Wn = 1� g TA n̄ ·AA
n,k

n̄ · k + . . . , W †
n = 1 +

g TA n̄ ·AA
n,k

n̄ · k + . . . ,

WAB
n = �AB +

g ifCAB n̄ ·AC
n,k

n̄ · k + . . . , (W†
n)

AB = �AB � g ifCAB n̄ ·AC
n,k

n̄ · k + . . . . (16)

We have analogous results for the fundamental soft Wilson lines Sn, S
†
n, and adjoint soft Wilson

lines Sn and Sn̄.

4 It is important for a proof of factorization that unique directions and structure for Wilson lines can be assigned

to build a fixed basis for the hard scattering operators. The examples of factorization violation in Refs. [49–52]

exploit cases for kT dependent distributions where, in our language, the matching construction should not lead to

unique hard scattering operators.

integrated outs� t

�2 =
t

s
� 1

O(�2) : O(�3) :

O(�3) :
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Construction: �� 1 large Q

fwd. scattering 

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n-n̄
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) + 1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.
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Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) + 1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

must allow for soft emission from between the rapidity sectors:
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/

2
TCvn̄

i

, (27)

i
h

ifBA3A2gµ2µ3
? n̄ · p

2

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2

?

ih

ifCA4A1gµ1µ4
? n · p

1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p

2

ih�8⇡↵s(µ)�BC

~q 2

?

ih

ifCA4A1gµ1µ4
? n · p

1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p

2

) etc, for simplicity.

We begin our analysis by discussing the SCET
II

operators whose tree level matrix elements

reproduce the results in Eq. (27). The four SCET
II

operators whose matrix elements reproduce

Eq. (27) factorize into collinear and soft operators separated by 1/P2

? factors, so we adopt the

notation:

Oqq
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ . (28)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
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with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
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scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/

2
TCvn̄

i

, (27)

i
h

ifBA3A2gµ2µ3
? n̄ · p

2

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/
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TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2

?

ih

ifCA4A1gµ1µ4
? n · p

1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p

2

ih�8⇡↵s(µ)�BC

~q 2

?

ih

ifCA4A1gµ1µ4
? n · p

1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p

2

) etc, for simplicity.

We begin our analysis by discussing the SCET
II

operators whose tree level matrix elements

reproduce the results in Eq. (27). The four SCET
II

operators whose matrix elements reproduce

Eq. (27) factorize into collinear and soft operators separated by 1/P2

? factors, so we adopt the

notation:

Oqq
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ . (28)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},

Operator 
basis:

OBC
s = 8⇡↵sP2

?�
BC + ....
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while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = �BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (27), are matrix elements of the n-collinear operators

OqB
n = �n,!T

B n̄/

2
�n,! , OgB

n =
i

2
fBCDBC

n?µ,�! n̄ · (P+P†)BDµ
n?,! . (29)

Here the ! momentum labels ensure that the operators only pick out the forward contribution

where the large momentum of the n-collinear fields is conserved within the n-collinear operators,

and for the gluon operator we will always take ! > 0 (which avoids the need to worry about the

symmetry factor obtained when the two Bn?s are swapped). The n̄-collinear quark and gluon

terms appear as the contributions in the last square brackets of the four terms Eq. (27), and are

matrix elements of the operators,

OqB
n̄ = �n̄,!0TB n/

2
�n̄,!0 , OgB

n̄ =
i

2
fBCDBC

n̄?µ,�!0 n · (P+P†)BDµ
n̄?,!0 , (30)

where for the gluon operator we take !0 > 0. From Eqs. (29) and (30) we see that the n-collinear

and n̄-collinear results are the same, just with n $ n̄. These collinear operators are bilinears of the

fundamental quark and gluon gauge invariant building block operators in SCET. Furthermore, both

of these operators are octet combinations of the building blocks. The special condition imposed by

forward scattering kinematics is that these bilinears have a conserved momentum in one component

(we leave this as implicit in our definitions in Eqs. (29) and (30) since further subscripts would

be needed to indicate it explicitly). The tree level matching that yields the proper Wilson line

structure in the operators in Eqs. (29) and (30) is actually non-trivial due to operator mixing, and

is described in detail in Sec. III A.

The middle terms in square brackets in Eq. (27), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the the 1/P2

? factors in Eq. (28) these operators must reduce to 8⇡↵sP2

? when all

soft fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (31)

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (14) and

the other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (20). The

adjoint soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n

and n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain

soft gauge invariance. The operator in Eq. (31) is gauge invariant under soft gauge transformations

Must allow for soft 
emission

s� t

(3 rapidity sectors)
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FIG. 16. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is

Fig. 17a = i
h

ifA2A1Ag↵�? n̄ · p2
ih

v̄n̄
n/

2
TBvn̄

i

(75)

⇥ 8⇡↵s

~q 2
?~q

02
?

igfABC
h

qµ? + q0µ? � n · q n̄
µ

2
� n̄ · q0n

µ

2
� n̄µ~q 2

?
n̄ · q0 �

nµ~q 02
?

n · q
i

= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq
nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the

O(�2) :
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Wilson Lines in the operators are obtained from Matching:

Gluon Operators include Compton graphs in fwd.limit:
27
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FIG. 10. Tree level matching for the nnn̄n̄ Glauber operators, considering all gluon polarizations. In a) we

show the three full QCD graphs that contribute, and in b) we show the Glauber operator that they match

onto.

We also will use the forward condition on the amplitude, n̄ · p2 = n̄ · p3. Also note that q = p3� p2.

Using Eq. (43) we can set pµ2 ! 0, p⌫3 ! 0, and write

gµ⌫ = gµ⌫? � pm2?un̄
⌫

n̄ · p2 � n̄µpn3?u
n̄ · p2 � n̄µn̄⌫n · (p2 + p3)

2n̄ · p2 , p⌫2 = (p⌫2? � p⌫3?) +
1

2
n · (p2 � p3)n̄

⌫ ,

pµ3 = (pµ3? � pµ2?) +
1

2
n · (p3 � p2)n̄

µ . (44)

With these manipulations, and canceling various terms, the amplitude from the full theory diagrams

in Fig. 10a is

g2fABC

q2

h

v̄n̄
n/

2
TCvn̄

in

2 n̄ · p2 gµ⌫? � 2n̄µp⌫2? � 2pµ3?n̄
⌫ � n·(p2 + p3)n̄

µn̄⌫
o

, (45)

while the leading power contribution from the sum of Fig. 10b,c is

g2fABC

q2

h

v̄n̄
n/

2
TCvn̄

i

⇢

� q2

n̄ · p2

�

. (46)

To obtain Eq. (46) we have dropped the +i0 in the propagators. Keeping the +i0 gives rise to an

additional term proportional to �(n̄·p2) which we can set to zero, since the large momentum n̄·p2 > 0

for this matching calculation. The n̄ ·p2 = 0 contribution is properly accounted for in Glauber loop

graphs, such as those discussed below in Sec. IID 1. Adding the results for the full theory graphs,

and using the equations of motion to carry out the simplification q2+ n̄·p2 n·(p2+p3) = �2p2? ·p3?,
we find

2g2fABC

q2

h

v̄n̄
n/

2
TCvn̄

i

⇢

n̄ · p2 gµ⌫? � n̄µp⌫2? � pµ3?n̄
⌫ +

p2? ·p3?
n̄ · p2 n̄µn̄⌫

�

. (47)

This result is precisely identical to the full Feynman rule for the EFT contribution shown in

Fig. 10c, so the complete set of polarizations are reproduced by the EFT operator. (The Feynman

rule was given above in Fig. 5.)

This same calculation also demonstrates that the full set of polarizations are present in the

operator with two soft gluons (the second graph in Fig. 8b). The full set of polarizations for

soft-collinear and n-n̄ gluon-gluon scattering are also reproduced by the EFT Glauber operators.

D. Formalism for Multi-Glauber Diagrams

Here we discuss additional formalism that is needed for diagrams with multiple insertions of

Glauber operators. In Sec. IID 1 we discuss the regulation of Glauber exchange iterations, then in

QCD EFT
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with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

QCD
eg. Wn in �n
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FIG. 14. a) Full theory graphs for the tree level matching of quark-quark forward scattering with one extra

n-collinear gluon. b) EFT graphs for the tree level matching for the four quark operator with one n-collinear

gluon.

Fig. 14b. There are additional full theory diagram that are not shown, where the kn gluon attaches

to the either of the quarks on the top-line, but these on-shell contributions are exactly reproduced

by gluon attachments to the n-collinear quarks in an Oqq
nsn̄ insertion (also not shown). In contrast

the full theory graphs in Fig. 14a have a gluon with n-collinear scaling that either attaches to

a triple gluon vertex involving one Glauber propagator and one onshell (n-collinear) propagator,

or attaches to the n̄-collinear quark leading to a hard o↵shell propagator. If we consider the kn

external gluon to have ?-polarization for µ, then only the first full theory diagram in Fig. 14a and

the first SCET diagram in Fig. 14b are nonzero. After using the equation of motion relation in

Eq. (43) to eliminate n ·A(kn) in terms of A?(kn) and n̄ ·A(kn), then these two diagrams exactly

match up. This agreement is very analogous to the agreement we saw earlier for the diagrams in

Fig. 10, just with an extra quark line attached to one of the gluons there, and use of the equations

of motion on only one gluon.

When the kn external gluon has n̄µ polarization all the diagrams in Fig. 14 contribute. For this

case the analogy with simply adding a quark line to one of the gluons in Fig. 10 breaks down, since

using the equations of motion on only one gluon line no longer su�ces to achieve agreement. In

this case, the result for the sum of the full theory graphs in Fig. 14a is

Fig. 14a = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2 + 2n·k n̄·k
i

. (71)

The result for the first graph in SCET is

Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

2k? · (q? � k?)
i

. (72)

Using k2 = n·k n̄·k + k2? = 0 and q = q? the di↵erence is

Fig. 14a� Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2? � 2k? · q?
i
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n-collinear gluon. b) EFT graphs for the tree level matching for the four quark operator with one n-collinear

gluon.

Fig. 14b. There are additional full theory diagram that are not shown, where the kn gluon attaches

to the either of the quarks on the top-line, but these on-shell contributions are exactly reproduced

by gluon attachments to the n-collinear quarks in an Oqq
nsn̄ insertion (also not shown). In contrast

the full theory graphs in Fig. 14a have a gluon with n-collinear scaling that either attaches to

a triple gluon vertex involving one Glauber propagator and one onshell (n-collinear) propagator,

or attaches to the n̄-collinear quark leading to a hard o↵shell propagator. If we consider the kn

external gluon to have ?-polarization for µ, then only the first full theory diagram in Fig. 14a and

the first SCET diagram in Fig. 14b are nonzero. After using the equation of motion relation in

Eq. (43) to eliminate n ·A(kn) in terms of A?(kn) and n̄ ·A(kn), then these two diagrams exactly

match up. This agreement is very analogous to the agreement we saw earlier for the diagrams in

Fig. 10, just with an extra quark line attached to one of the gluons there, and use of the equations

of motion on only one gluon.

When the kn external gluon has n̄µ polarization all the diagrams in Fig. 14 contribute. For this

case the analogy with simply adding a quark line to one of the gluons in Fig. 10 breaks down, since

using the equations of motion on only one gluon line no longer su�ces to achieve agreement. In

this case, the result for the sum of the full theory graphs in Fig. 14a is

Fig. 14a = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2 + 2n·k n̄·k
i

. (71)

The result for the first graph in SCET is

Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

2k? · (q? � k?)
i

. (72)

Using k2 = n·k n̄·k + k2? = 0 and q = q? the di↵erence is

Fig. 14a� Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2? � 2k? · q?
i
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Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (15) and the

other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (21). The adjoint

soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n and

n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain soft

gauge invariance. The operator in Eq. (32) is gauge invariant under soft gauge transformations that

vanish at infinity. The fact that we have a non-trivial soft operator OBC
s is related to the existence

of the non-trivial soft sector that sits at rapidities between the n-collinear and n̄-collinear fields.

Here we have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section Sec. IID 2 below. The directions for these soft Wilson lines are

discussed in Sec. IID 3.

At lowest order the Feynman diagrams for these operators may be denoted as in Fig. 4c. The

alternative notation with an extended red dashed line for these operators, as in Fig. 4b, serves to

remind us that the matrix element of OBC
s is non-local, giving a potential that scales as ��2. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex used in small-x physics [? ]. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared

in either the QCD or SCET literature, and gives a completely gauge invariant factorized operator

that reproduces both forward scattering and the Lipatov vertex.

The scaling for the component operators in Eq. (29) are all identical: OiB
n ⇠ �2, OiB

n̄ ⇠ �2, and

Os ⇠ �2. Thus together the operators in Eq. (29) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order
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Fig. 14b. There are additional full theory diagram that are not shown, where the kn gluon attaches

to the either of the quarks on the top-line, but these on-shell contributions are exactly reproduced

by gluon attachments to the n-collinear quarks in an Oqq
nsn̄ insertion (also not shown). In contrast

the full theory graphs in Fig. 14a have a gluon with n-collinear scaling that either attaches to
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the first SCET diagram in Fig. 14b are nonzero. After using the equation of motion relation in
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ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

2k? · (q? � k?)
i

. (72)

Using k2 = n·k n̄·k + k2? = 0 and q = q? the di↵erence is

Fig. 14a� Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2? � 2k? · q?
i



12

Soft         OperatorOBC
s

basis of           operators allowed by symmetries:

50

total) and gBn
S? · gBn

S? + gBn̄
S? · gBn̄

S? (two Sn lines in the first term, two Sn̄ lines in the sec-

ond term). It also eliminates operators like (gBnµ
S?)(S

T
n̄ Sn)(gBn̄

S?µ) and (gBnµ
S?)(S

T
n̄ Sn)(gBn

S?µ) +

(gBn̄µ
S?)(S

T
n̄ Sn)(gBn̄

S?µ).

Finally we have the operator with a single soft gluon field strength, of which there are two

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄ , O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn , (86)

In principle this operator could be eliminated in terms of Bn
S?, Bbn

S?, P?,  n
S , and  

n̄
S fields using

the soft gluon equations of motion. However doing so would introduce non-local factors of 1/in ·@s
and 1/in̄ · @s which we have not allowed in our construction. Therefore we must keep these two

field strength operators.

All together the 10 operators in Eqs. (80,82,85,86) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1 = Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (78). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C1,...,10 in Eq. (76).

D. All Orders Soft Operator by Matching with up to Two Soft Gluons

Here we consider the basis of operators O1,...,10 determined above in Eqs.(80,82,85,86),

O1 = Pµ
?ST

n Sn̄P?µ, O2 = Pµ
?ST

n̄ SnP?µ, (87)

O3 = P? ·(g eBn
S?)(ST

n Sn̄)+(ST
n Sn̄)(g eBn̄

S?)·P?, O4 = P? ·(g eBn̄
S?)(ST

n̄ Sn)+(ST
n̄ Sn)(g eBn

S?)·P?,

O5 = P?
µ (ST

n Sn̄)(g eBn̄µ
S?)+(g eBnµ

S?)(ST
n Sn̄)P?

µ , O6 = P?
µ (ST

n̄ Sn)(g eBnµ
S?)+(g eBn̄µ

S?)(ST
n̄ Sn)P?

µ ,

O7 = (gBnµ
S?)ST

n Sn̄(gBn̄
S?µ), O8 = (gBn̄µ

S?)ST
n̄ Sn(gBn

S?µ),

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄, O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},
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coe�cients C1,...,10 in Eq. (76).
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S?)+(g eBn̄µ

S?)(ST
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S?)ST
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n nµn̄⌫(ig eG
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s )Sn̄, O10 = ST
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s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},

octet Wilson line octet reps

Matching with up to 2 soft gluons fixes all coefficients

O(�2)

OBC
s = 8��s

�

i

CiO
BC
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FIG. 16. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is

Fig. 17a = i
h

ifA2A1Ag↵�? n̄ · p2
ih

v̄n̄
n/

2
TBvn̄

i

(75)
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2
� n̄ · q0n
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2
� n̄µ~q 2

?
n̄ · q0 �

nµ~q 02
?

n · q
i

= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq
nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the
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a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent
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Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.
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FIG. 18. Two Soft Gluon Matching for the Lipatov Operator. a) Full theory graphs with scaling for external

particles labeled. b) EFT graphs involving the Lipatov Operator and two soft gluons. The first three graphs

are T-products while the last is the direct Lipatov Operator two gluon term.

and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1

2
.

Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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are T-products while the last is the direct Lipatov Operator two gluon term.
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structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5 have nonzero coe�cients. Putting together these results back into

Eq. (76) the final result is

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (98)

This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,

54

structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)
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description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-
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tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which
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Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-
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This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,

Form is unique to all loops since there are no hard 	


corrections to this matching (more later)
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One Loop EFT graphs

•
Each dominated by one invariant mass scale & one rapidity•
QCD topologies appear more than once (soft, collinear, …)

• Require invariant mass regulator (dim.reg.)           

|2kz|����

• Zero-bin subtractions, avoid double counting IR regions 

MS(use Chieu et.al., works like       )

Requires rapidity regulator for Glauber potential 	


and for Wilson lines 

Other source of rapidity divergences are the 
Wilson lines which need to be regulated
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (55)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(56)

Wn =
X

perms

exp

⇢ �g

n̄ · P
�

w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)

Other source of rapidity divergences are the 
Wilson lines which need to be regulated
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (55)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp
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n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(56)

Wn =
X

perms

exp

⇢ �g

n̄ · P
�

w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)
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In order that these two momentum routings give the same results, it is important that the rapidity

regulators also are transformed into one another under this change of variable, and of course also

will regulate the singularities in the diagram. Eq. (63) with the in · @ and in̄ · @ factors satisfies

both these criteria. In particular for the loop integrals in the two routings we have

Fig. 13a :

Z

d�dk d�d` |2kz|�2⌘|2`z|�⌘ Na(`, k?, q?)G0(k?)G0(k?+`?)G0(k?+`?�q?)G0(k?�q?)
h

k++p+2 � (~k?+~p2?+~̀?)2

p�2
+i0

ih

�k�+p�1 � (~k?�~p1?)2
p+1

+i0
i

⇥

`2+i0
⇤

,

Fig. 13b :

Z

d�dk d�d` |k+1 +k�2 |�2⌘|k�1 +k�2 �k+1 �k+2 |�⌘ Nb(k
�
1 , k

+
2 , k1?, k2?, q?)

h

k+1 +p+2 � (~k1?+~p2?)2

p�2
+i0

ih

�k�2 +p�1 � (~k2?+~p1?)2

p+1
+i0

i

⇥

k+2 k
�
1 �(~k1?+~k2?)2+i0

⇤

⇥G0(k1?)G0(k2?)G0(k1?�q?)G0(k2?+q?), (66)

where for this equation only, G0(k?) = (ig2)/~k 2
?. Here Na and Nb are functions that are each

obtained from the contraction of two Lipatov vertices from Fig. 6. For the two routings the factors

of |2kz|�2⌘ and |k+1 + k�2 |�2⌘ are each obtained from the |in ·  @ + in̄ · ~@|�⌘ regulator in Eq. (63).

This regulates the dk+dk� integrations in the Fig. 13a routing, and the dk+1 dk
�
2 integrations in

the Fig. 13b routing. The other regulator factors |2`z|�⌘ and |k�1 + k�2 � k+1 � k+2 |�⌘ are generated

by the regulator in the soft Wilson lines in OAB
s , and hence only the depend on the soft gluons

momentum in each case. They regulate eikonal factors that appear inside Na and Nb. Noting that

Nb ! Na under the transformation in Eq. (65), it is easy to see that the two results in Eq. (66)

are exactly equivalent under this transformation.

The SCET graphs also have zero-bin subtractions [42] which are necessary to avoid double

counting between contributions from the various infrared modes. For SCETII the overlapping

modes are Glauber, soft, and collinear. The structure of these subtractions for one-loop soft

graphs S and one-loop n-collinear graphs Cn is

S = S̃ � S(G) , Cn = C̃n � C(S)
n � C(G)

n + C(GS)
n , (67)

where the superscript indicates the momentum region that the subtraction comes from, and G for

the soft subtraction can be any one of the three Glauber momentum scalings (+,�,?) ⇠ (�2,�2,�)

or (�2,�,�) or (�,�2,�), while the G subtraction for the n-collinear case only indicates one of the

first two. The result for Cn̄ is analogous, obtained by taking n ! n̄ in Cn. If we start with the

naive soft loop graph S̃ with loop momentum k, then the Glauber subtraction S(G) is obtained

from scaling the S̃ integrand into the region k+k� ⌧ ~k 2
? and keeping only terms that are the same

order in the � power counting as the original integrand. If we have a naive n-collinear loop graph

C̃n with loop momentum `, then there is a soft subtraction from the region `µ ⇠ �, and a Glauber

subtraction from the region `+`� ⌧ ~̀2?, plus a term that adds back the soft-Glauber overlap

region so that it is not over subtracted. Note that when we consider the scaling limits to construct

the 0-bin subtractions that we do not change the form of the rapidity regulator (the original and

subtraction integrals must share the same regulators for the subtraction to properly remove any

(construction ala 	
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In order that these two momentum routings give the same results, it is important that the rapidity

regulators also are transformed into one another under this change of variable, and of course also

will regulate the singularities in the diagram. Eq. (63) with the in · @ and in̄ · @ factors satisfies

both these criteria. In particular for the loop integrals in the two routings we have

Fig. 13a :

Z

d�dk d�d` |2kz|�2⌘|2`z|�⌘ Na(`, k?, q?)G0(k?)G0(k?+`?)G0(k?+`?�q?)G0(k?�q?)
h

k++p+2 � (~k?+~p2?+~̀?)2

p�2
+i0

ih
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+i0
i

⇥
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⇤
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Fig. 13b :

Z
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where for this equation only, G0(k?) = (ig2)/~k 2
?. Here Na and Nb are functions that are each

obtained from the contraction of two Lipatov vertices from Fig. 6. For the two routings the factors

of |2kz|�2⌘ and |k+1 + k�2 |�2⌘ are each obtained from the |in ·  @ + in̄ · ~@|�⌘ regulator in Eq. (63).

This regulates the dk+dk� integrations in the Fig. 13a routing, and the dk+1 dk
�
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the Fig. 13b routing. The other regulator factors |2`z|�⌘ and |k�1 + k�2 � k+1 � k+2 |�⌘ are generated

by the regulator in the soft Wilson lines in OAB
s , and hence only the depend on the soft gluons

momentum in each case. They regulate eikonal factors that appear inside Na and Nb. Noting that

Nb ! Na under the transformation in Eq. (65), it is easy to see that the two results in Eq. (66)

are exactly equivalent under this transformation.

The SCET graphs also have zero-bin subtractions [42] which are necessary to avoid double

counting between contributions from the various infrared modes. For SCETII the overlapping

modes are Glauber, soft, and collinear. The structure of these subtractions for one-loop soft

graphs S and one-loop n-collinear graphs Cn is

S = S̃ � S(G) , Cn = C̃n � C(S)
n � C(G)

n + C(GS)
n , (67)

where the superscript indicates the momentum region that the subtraction comes from, and G for

the soft subtraction can be any one of the three Glauber momentum scalings (+,�,?) ⇠ (�2,�2,�)

or (�2,�,�) or (�,�2,�), while the G subtraction for the n-collinear case only indicates one of the

first two. The result for Cn̄ is analogous, obtained by taking n ! n̄ in Cn. If we start with the

naive soft loop graph S̃ with loop momentum k, then the Glauber subtraction S(G) is obtained

from scaling the S̃ integrand into the region k+k� ⌧ ~k 2
? and keeping only terms that are the same

order in the � power counting as the original integrand. If we have a naive n-collinear loop graph

C̃n with loop momentum `, then there is a soft subtraction from the region `µ ⇠ �, and a Glauber

subtraction from the region `+`� ⌧ ~̀2?, plus a term that adds back the soft-Glauber overlap

region so that it is not over subtracted. Note that when we consider the scaling limits to construct

the 0-bin subtractions that we do not change the form of the rapidity regulator (the original and

subtraction integrals must share the same regulators for the subtraction to properly remove any
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FIG. 19. Full theory graphs for the matching calculation of quark-quark forward scattering at one-loop.

n̄ · p2 = n̄ · p3 and n · p1 = n · p4, and the large Mandelstam invariant s = n · p1 n̄ · p2 = n · p4 n̄ · p1
to leading power. The exchanged momentum is given by the much smaller Mandelstam invariant

t = q2? = �~q 2 where q = p3 � p2 = p1 � p4, and we take p?1 = �p?2 = p?3 = �p?4 = q?/2.

To regulate IR divergences in the full theory in a manner that can also be implemented in

SCETII, we include a small gluon mass m. For SCETII the mass m is included for both soft

and collinear gluons in loops, as well as for the Glauber potential from 1/P2
? terms via 1/~k 2

? !
1/(~k 2

?+m2). Since we take m ! 0 whenever possible, this does not cause any problems with gauge

invariance in this one-loop calculation (for example we set m = 0 from the start for the vacuum

polarization graphs). The full theory is UV finite after coupling renormalization, and we make use

of dimensional regularization with d = 4 � 2✏ to regulate divergences in individual diagrams. For

SCETII dimensional regularization wit d = 4� 2✏ will be used with factorization scale µ in MS to

regulate invariant mass divergences.

We also use a rapidity regulator [36] to regulate additional divergences that are associated with

distinguishing soft and collinear modes [42]. These divergence arise as a consequence of the fact

that the soft and collinear fields have the same virtuality and to distinguish them we must choose

a rapidity factorization scale ⌫. This is regulator is implemented in the manner in Sec. IID 3, and

shows up in both Glauber, soft, and collinear loops. The limit ⌘ ! 0 is always considered first,

with the rapidity renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs

without rapidity divergences or sensitivity will give the same answer whether one set ⌘ = 0 before

or after the loop integration. At one-loop we will see that graphs with rapidity divergences only

have scaleless 0-bin subtractions. However, there are graphs without rapidity divergences for which

the 0-bin subtractions are crucial for avoiding double counting. In the presence of Glauber gluons,

the appropriate 0-bin subtractions for soft and collinear one-loop graphs are given in Eq. (67). In

the SCETII theory we are considering here, there are no 0-bin subtractions for the Glauber loop

graphs.

QCD graphs with leading power contributions, s� t
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄

1

⇣�i

4⇡

⌘

Z

d�d�2k? (�i⇡)

[~k 2
? +m2][(~k?+~q?)2 +m2]

=
i↵2

s

t
Snn̄
1



8i⇡ ln
⇣�t

m2

⌘

�

. (108)

Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

eq. One Loop       scatteringqq̄

Leading Power EFT graphs (Glauber, Soft,  & Collinear Loops)
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first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

IGcbox =
�
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The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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polarization, we will refer to it as a “soft eye” graph. For this “soft eye” diagram we find

Fig. 20c =
4g4

t2
Snn̄
3 ◆✏µ2✏

Z
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[k2 �m2][(k + q)2 �m2]
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4[k? · (k? + q?)]2

n̄ · k n · k + (d� 2)n · k n̄ · k

+ 2(k? + q?)2 + 2k2?

�
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= � i↵2
s
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Snn̄
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⌘
g(✏, µ2/t) +

4

✏2
+
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✏
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⇣µ2
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⌘

+ 4 ln
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⌘
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⌘

� 2 ln2
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+
⇡2

3

+ 2
⇣

� 11

3✏
� 11

3
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�t
� 67

9

⌘

�

. (112)

Here inside the integral the denominators in square brackets have a +i0, the factor of (d � 2) =

gµ⌫? g?µ⌫ , and the rapidity divergence comes only from the first term in curly brackets. The factor

of 1/2 in the first line is a symmetry factor. The function multiplying the 1/⌘ rapidity divergence

for the result in Eq. (112) is

g(✏, µ2/t) = e✏�E
⇣µ2

�t

⌘✏
cos(⇡✏)�(�✏)�(1 + 2✏) . (113)

For the result in Eq. (112), it is interesting to note that the full 11CA/3✏ factor needed for the

1-loop �-function for the strong coupling has been generated from a graph only involving gluons,

without a ghost contribution. This arises due to the form of the soft gauge invariance of the gluon

operator in the EFT. Only the rapidity divergent integral in Eq. (112) is non-standard, and we

carry it out in App. C.

The choice of ±i0 factors in the (n̄ · k ± i0) and (n · k ± i0) denominators of Eq. (112) does

not change the result for this integral, due to the Glauber 0-bin subtraction that must be carried

out for this soft graph. The easiest way to see this is to carry out the k0 integration by contours.

If the eikonal propagators are (n̄ · k + i0)(n · k + i0) or (n̄ · k � i0)(n · k � i0) then we can close

the k0 contour to only pick the poles from the propagators [k2 �m2 + i0][(k + q)2 �m2 + i0], and

doing the integral gives the result quoted in Eq. (112). In this case the naive soft integral is the

full result, S = S̃, and the Glauber 0-bin subtraction is zero, because these propagators become

[k2?�m2+i0][(k?+q?)2�m2+i0] in the Glauber limit, and the k0 poles in the eikonal propagators

are on the same side. The vanishing of this Glauber 0-bin subtraction occurs for the same reason as

the vanishing of the Glauber cross-box. On the other hand if the eikonal propagators are taken to

have opposite sign i0s, (n̄ ·k+i0)(n ·k�i0) or (n̄ ·k�i0)(n ·k+i0), then when we calculate the naive

soft loop S̃ by closing the k0 contour, and relative to the above we have to include an additional

additive contribution from an eikonal pole. When we pick this pole, we either set n · k = 0 or

n̄ · k = 0 in the other propagators, so the relativistic propagators are exactly reduced to their form

in the Glauber limit. Therefore, in this case this extra contribution in S̃ is exactly canceled by the

graphs non-zero Glauber 0-bin subtraction, S(G),

S(G)(Fig. 20c) =
4g4

t2
Snn̄
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d�dk |kz|�⌘ ⌫⌘
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. (114)
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of 1/2 in the first line is a symmetry factor. The function multiplying the 1/⌘ rapidity divergence

for the result in Eq. (112) is

g(✏, µ2/t) = e✏�E
⇣µ2

�t

⌘✏
cos(⇡✏)�(�✏)�(1 + 2✏) . (113)

For the result in Eq. (112), it is interesting to note that the full 11CA/3✏ factor needed for the

1-loop �-function for the strong coupling has been generated from a graph only involving gluons,

without a ghost contribution. This arises due to the form of the soft gauge invariance of the gluon

operator in the EFT. Only the rapidity divergent integral in Eq. (112) is non-standard, and we

carry it out in App. C.

The choice of ±i0 factors in the (n̄ · k ± i0) and (n · k ± i0) denominators of Eq. (112) does

not change the result for this integral, due to the Glauber 0-bin subtraction that must be carried

out for this soft graph. The easiest way to see this is to carry out the k0 integration by contours.

If the eikonal propagators are (n̄ · k + i0)(n · k + i0) or (n̄ · k � i0)(n · k � i0) then we can close

the k0 contour to only pick the poles from the propagators [k2 �m2 + i0][(k + q)2 �m2 + i0], and

doing the integral gives the result quoted in Eq. (112). In this case the naive soft integral is the

full result, S = S̃, and the Glauber 0-bin subtraction is zero, because these propagators become

[k2?�m2+i0][(k?+q?)2�m2+i0] in the Glauber limit, and the k0 poles in the eikonal propagators

are on the same side. The vanishing of this Glauber 0-bin subtraction occurs for the same reason as

the vanishing of the Glauber cross-box. On the other hand if the eikonal propagators are taken to

have opposite sign i0s, (n̄ ·k+i0)(n ·k�i0) or (n̄ ·k�i0)(n ·k+i0), then when we calculate the naive

soft loop S̃ by closing the k0 contour, and relative to the above we have to include an additional

additive contribution from an eikonal pole. When we pick this pole, we either set n · k = 0 or

n̄ · k = 0 in the other propagators, so the relativistic propagators are exactly reduced to their form

in the Glauber limit. Therefore, in this case this extra contribution in S̃ is exactly canceled by the

graphs non-zero Glauber 0-bin subtraction, S(G),

S(G)(Fig. 20c) =
4g4

t2
Snn̄
3 ◆✏µ2✏

Z

d�dk |kz|�⌘ ⌫⌘

[k2? �m2][(k? + q?)2 �m2]

4[k? · (k? + q?)]2

(n̄ · k ± i0)(n · k ⌥ i0)
. (114)
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄

1

⇣�i
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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two graphs after doing the integrals we find

Figs. 20f + 20k (122)
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Here the factors of ln(s) appear from adding the two diagrams and using ln(n̄ ·p3)+ln(n ·p4) = ln s.

For the collinear loop integral in Eq. (121) we must consider the soft and Glauber 0-bin sub-

tractions, C = C̃ � C(S) � C(G) + C(SG), but here the subtractions give vanishing contributions.

In the soft limit kµ ⇠ �, so in Eq. (121) the denominator (k + p3)2 ! (n · k n̄ · p3). Only the

rapidity divergent term gives an integral scaling as �0, whereas all the remaining terms in the curly

brackets give integrals scaling as O(�) that are dropped. The contribution for the soft subtraction

is therefore

C(S)(Fig. 20f) = �g4

2t
Snn̄
3

Z

d�dk
(◆✏µ2✏|n̄ · k/2|�⌘⌫⌘)

[k2 �m2][(k + q)2 �m2](n · k + i0)

8k? ·(k?+q?)
n̄ · k . (123)

This integral can be performed by contours in k+ = n · k. Since q is purely transverse the poles in

the two relativistic propagators are on the same side for either k� > 0 or k� < 0, so the full result

is obtained from the k� < 0 region by closing about the n · k = �i0 pole. This leaves a vanishing

scaleless integral in k�,
Z 0

�1
dk�

(�k�)�⌘

k�
= �

Z 1

0
dk�

(k�)�⌘

k�
=

1

⌘
� 1

⌘
= 0 , (124)

so the soft subtraction C(S)(Fig. 20f) = 0. The remaining subtractions come from the Glauber

limit, and soft+Glauber limit, and are considered together. Again power counting implies that

only the rapidity divergent term must be considered and we find

C(G)(Fig. 20f)� C(SG)(Fig. 20f) = �g4

2t
Snn̄
3

Z

d�dk
(◆✏µ2✏|n̄ · k|�⌘⌫⌘) n̄·p3

[k2? �m2][(k? + q?)2 �m2]

8k? ·(k?+q?)
n̄ · k

⇥


1

n̄·p3 n·(k+p3)+(k?+p3?)2 + i0
� 1

n̄·p3 n·k + i0

�

. (125)

In the di↵erence we have two poles on the same side in the n·k contour integral, so the contributions

from the subtractions in Eq. (125) vanish. Thus, with our regulators all the 0-bin subtractions

vanish for the collinear graph and result for the n-collinear V-graph loop in Eq. (121) is simply

obtained from the naive integral, C = C̃. The situation is identical for the 0-bin subtractions for

the n̄-collinear V-graph.

Next we consider the collinear Wilson line graphs in Fig. 20h,i,m,n. Using the Feynman rules

from Fig. 6, we see that the contractions with the incoming or outgoing collinear quark give the

+
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rapidity divergence
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Note that the 1/✏2 and ln(µ2/⌫2)/✏ terms have canceled in this result, leaving only the 1/⌘ rapidity

divergences and 1/✏ UV divergences. Since the bare soft operator OAB
s has a factor of ↵bare

s

multiplying the fields, there is also Z↵ coupling counterterm contribution in the operator Feynman

rule. It gives the contribution
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4
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◆

. (119)

This result exactly cancels the 1/✏ terms in Eq. (118), so with the counterterm the total sum of

all soft loop graphs is given by

Soft Loops = Figs. 20c, d, e+ Z↵ c.t.
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Thus the sum of graphs in the soft sector only has rapidity divergences. The logarithms from these

soft loops are minimized for µ ⇠ ⌫ ⇠ p
t which is consistent with our power counting.

Finally we consider the remaining collinear diagrams, in Fig. 20f,g,h,k,l,m. The two V-graphs

in Fig. 20f,k give related contributions, and are induced by the Glauber operator involving n-

collinear gluons, mixing back into n-collinear quarks (and likewise for the n̄-collinear loop). The

Ogq
nsn̄ Glauber operator only produces An? and n̄ · An gluons, so for the n-collinear V-graph we

have
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⇥ ūnT
BTA n̄/

2

✓

n⌫ +
�?⌫ (/k?+/p3?)
n̄ · (k+p3)

+
/p3?�

?
⌫

n̄ · p3

◆✓

nµ +
�?µ /p2?
n̄ · p3 +

(/k?+/p3?)�
?
µ

n̄ · (k+p3)

◆

un

= �g4CA

2t

h

v̄n̄T
An/

2
vn̄

i

Z

d�dk
(◆✏µ2✏|n̄ · k|�⌘⌫⌘)

[k2 �m2][(k + q)2 �m2](k + p3)2
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Only the first term in curly braces has a rapidity divergence, and we give the result for this

integral in App. C. All the other loop integrals are standard. The result for the n̄-collinear V-

graph in Fig. 20k is the same as the final answer with p3 ! p4. Combining the results for these
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Thus the sum of graphs in the soft sector only has rapidity divergences. The logarithms from these

soft loops are minimized for µ ⇠ ⌫ ⇠ p
t which is consistent with our power counting.

Finally we consider the remaining collinear diagrams, in Fig. 20f,g,h,k,l,m. The two V-graphs

in Fig. 20f,k give related contributions, and are induced by the Glauber operator involving n-

collinear gluons, mixing back into n-collinear quarks (and likewise for the n̄-collinear loop). The

Ogq
nsn̄ Glauber operator only produces An? and n̄ · An gluons, so for the n-collinear V-graph we
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Only the first term in curly braces has a rapidity divergence, and we give the result for this

integral in App. C. All the other loop integrals are standard. The result for the n̄-collinear V-

graph in Fig. 20k is the same as the final answer with p3 ! p4. Combining the results for these
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The sum of all the collinear graphs from Eqs. (109,122,C7) gives
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale

65

The sum of all the collinear graphs from Eqs. (109,122,C7) gives

Collinear Loops = Figs. 20f -o

=
i↵2

s

t
Snn̄
3

⇢

8

⌘
h
⇣

✏,
µ2

m2

⌘

+
8

⌘
g
⇣

✏,
µ2

�t

⌘

+ 4 ln
⇣⌫2

s

⌘

ln
⇣�t

m2

⌘

+ 2 ln2
⇣m2

�t

⌘

+4+
4⇡2

3

�

+
i↵2

s

t
Snn̄
2



� 4 ln2
⇣m2

�t

⌘

� 12 ln
⇣m2

�t

⌘

� 14

�

. (129)

Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).
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and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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1. Full Theory Graphs

Consider first the full QCD graphs shown in Fig. 19 which we number from a) to j). These

graphs are computed exactly, and then the results are expanded in the EFT limit with t ⌧ s.

There are two additional box-type graphs obtained by rotating Fig. 19a,b by 90�, but neither of

these graphs contributes at leading power in this limit. The proper cut structure is obtained with

s = s+ i0 and t = t+ i0, where we note that for our kinematics s > 0 and t < 0. For brevity when

giving our results below, we quote the original QCD integrand and then the final expanded result

for each graph. The group theory and spinor factors come in one of four combinations which we
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Since the techniques for carrying out one-loop integrals are standard, we will only quote the result

for the graphs at the integrand level, and then the final result. For the full theory box graph we

have
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where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box we have
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ū(p3)TATB�⌫(/p2 � /k)�µu(p2)
⇤⇥

v̄(p1)TATB�⌫(/k � /p4)�µv(p4)
⇤

[k2 �m2](k � p2)2(k � p4)2[(k + q)2 �m2]

=
4i↵2

s

t

⇣

Snn̄
1 � 1

2
Snn̄
3

⌘



2 ln
⇣�s

t

⌘

ln
⇣�t

m2

⌘

+ ln2
⇣�t

m2

⌘

� ⇡2

3

�

+ . . . . (101)

For the two Y-graphs with a single three-gluon vertex the graphs give equal contributions and we

have

Figs. 19c+ 19d =
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Here we include the MS factors of ◆✏ = (4⇡)�✏e✏�E and µ2✏, and the triple gluon vertex momentum

factor is Tµ⌫�(k1, k2, k3) = gµ⌫(k1�k2)�+g⌫�(k2�k3)µ+g�µ(k3�k1)⌫ . Since there are four external

fermions, the wavefunction renormalization graph shown in Fig. 19e contributes through 2(Z �1)

multiplying the tree level t-channel exchange diagram, and we will refer to this contribution as the
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators
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matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

no 1/� poles

m = gluon mass IR regulator

(after coupling	


renormalization)
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The sum of all the collinear graphs from Eqs. (109,122,C7) gives
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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As anticipated, comparing Eq. (284) to Eq. (278) we see that this is the second term in the

expansion of an exponential.

Next consider the double box diagram. Again performing the contour integrals over the energies,

and then using Eq. (280) we find
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where to obtain the third equality we performed the kz1 and kz2 integrals to get �(x� y + ↵1)�(y �
z + ↵2) and then performed the ↵1 and ↵2 integrals. Again due to the ⌘3 term in the prefactor

only the leading ultraviolet divergent from the dxdydz integral contributes, which comes from the

limit x, y, z ! 0 where the �1 = �1(k1?) and �2 = �2(k2?) dependence drops out. In this

limit we can either do the integral directly to give the 1/3!, or note that we can symmetrize as

✓(z > y > x) ! [✓(z > y > x)+✓(y > z > x)+✓(z > x > y)+✓(x > z > y)+✓(x > y > z)+✓(y >
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Performing the ? Fourier transform of this integral using Eq. (281) gives
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which is the third term in the expansion of the exponential. This naturally generalizes to the case

of the N -loop box graph with (N + 1)-rungs. Doing the energy integrals by contours and using

Eq. (280) we have
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where to take the final Fourier transform we used Eq. (281) for the integral
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The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give
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where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so
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where to take the final Fourier transform we used Eq. (281) for the integral

I(N)
? (q?) =

Z

d�d�2k1? · · · d�d�2kN? (◆✏µ2✏)N+1

(~k1? + ~q?)2(~k2? � ~k1?)2 · · · (~kN? � ~k(N�1)?)2 ~k 2
N?

. (289)

The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2
N (q?) = �2Snn̄

�

G̃(b?)� 1
�

(290)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)
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Then taking the inverse Fourier transform of Eq. (290) we get
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The momentum space Glauber function corresponds to the sum of Glauber exchange diagrams,

including the diagram with no-exchange,
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The result in Eq. (294) is equal to the lowest order Glauber exchange potential (tree-level) times a

phase. Unlike in position space, this momentum space phase � is an infinite series in ↵s. Since the

infrared divergence only appears in �, it will drop out of physical predictions for scattering cross

sections (just like the IR divergent Coulomb phase for scattering with a Coulomb potential drops

out of the cross section).

Note that the same results for the summation of box graphs is obtained for situations where

the small plus and minus momenta of the collinear lines are not equal, p+2 6= p+3 and p�1 6= p�4 or

where the exchanged ?-momentum is not evenly split, p?2 6= �p?3 and p?1 6= �p?4 . The only place

that p?2,3 and p?1,4 appeared was in the �i factors in the collinear fermion propagators, but the

result was independent of these factors. When q+ = p+3 � p+2 6= 0 and q� = p�1 � p�4 6= 0 we have

both a modification to the �i factors, and nonzero exchanged momenta q+ and q�. The smaller

q+q� ⌧ q2? do not modify the Glauber potentials, and again the change to �i does not e↵ect the

result. So the only possible change induced by the non-zero q± is to the rapidity regulator for

(say) the first rung of the ladder graphs. This implies that the same results for this summation

are obtained even when the ladder graphs are considered inside of another loop in SCET, as long

as that additional loop does not need a rapidity regulator. To leave the propagators onshell the

extra loop can only have Glauber (or ultrasoft) scaling. We will exploit this property for some of

our calculations in Sec. VII below.

The independence of the �i in Eq. (288) implies that the collinear lines in these box diagrams

are e↵ectively behaving as if they were eikonal and hence classical. However, we stress that this

is not a general property of collinear propagators in the presence of Glauber exchange. Examples

where it is not true include for spectator interactions with a hard scattering vertex as discussed
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where to take the final Fourier transform we used Eq. (281) for the integral
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The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give
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where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function
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Z
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While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so
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Gluon Reggeization
Consider separate rapidity renormalization 	


of soft & collinear component operators
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determined from the SCETII diagrams given in Sec. IVA, while results with external gluons require

additional calculations.

First consider the n-collinear sector with the bilinear quark and gluon operators OqA
n and

OgA
n . For OqA

n mixing back into OqA
n there are W Wilson line graphs and the vertex graph (plus

wavefunction renormalization), all of which can be read o↵ from the results in Sec. IVA by stripping

o↵ the appropriate prefactor that is related to the other sectors. We have

n n

n
+ n n

n
+ n n
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�

= Snq �V qq
n , (150)

where the spinors are contained in the tree level matrix element Snq = ūnTA n̄/
2un, and h(✏, µ2/m2)

was defined in Eq. (117). To obtain Eq. (150) we have taken Fig. 20g,h,i, stripped o↵ a prefactor

of i(ūn̄TAn/
2un̄)(8⇡↵s)/t, which includes the factors associated with the tree level matrix element

of the non n-collinear parts of the operator, namely (1/P2
?)OAB

s (1/P2
?)O

B
n̄ , as well as an overall

i. Since we are interested in determining anomalous dimensions, only the divergent terms that are

needed to determine the �V qq
n counterterm are shown in Eq. (150) and the results below. Just as

discussed in the matching calculation, the collinear tadpole loop graphs vanish due to their soft

zero-bin subtractions

n nn

n n

= 0 ,

n nn

n n

= 0 . (151)

There is only one non-zero graph where the operator OgA
n mixes into OqA

n , namely the V-graph.

This result can be again found from the results in Sec. IVA, and determines the �V gq
n counterterm,
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� 3
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= Snq �V gq
n , (152)

where the function g(✏, µ2/(�t)) is given in Eq. (113).

To determine the remaining n-collinear counterterms we need to consider graphs involving

external gluons, which require new calculations. Rather than giving a detailed discussion of these

diagrams we simply relegate non-trivial ingredients like the 3-gluon vertex from Ogg
n to App. C,
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and quote here the final results for the divergent terms (using Feynman gauge):
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where Sng = ifABCg��? n̄ · p"B�"C� is the tree level matrix element of OgA
n . Just like in the quark

calculation, the collinear gluon tadpole graphs give zero due to their soft zero-bin subtraction.

There is also a graph with the four-gluon vertex which has a vanishing integral even before the

zero-bin subtraction. Thus we have
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3✏

�
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Adding the results in Eq. (153) we see that the CA/✏ terms cancel. The remaining contributions

determine the �V gg
n counterterm to be
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Finally, we consider the mixing of OqA
n into OgA

n . The relevant diagrams are
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where we have summed over all possible nf light flavors that can appear in the OqA
n operator.

Again the collinear quark loop tadpole graph is exactly cancelled by the soft zero-bin subtraction,
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Thus, the result in Eq. (156) yields the counterterm for OqA
n mixing into OgA

n ,

�V qg
n =
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. (158)

At one-loop order the n-collinear rapidity anomalous dimension contributions are given by

�ijn⌫ = �(⌫d/d⌫)�V ij
n . Di↵erentiating both the explicit ln ⌫ dependence and the ⌫ dependence in
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where we have summed over all possible nf light flavors that can appear in the OqA
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where we have summed over all possible nf light flavors that can appear in the OqA
n operator.
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For the µ anomalous dimensions at one-loop we have �ijnµ = �(µd/dµ)�V ij
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Note that these results satisfy the necessary condition for the paths in ⌫ and µ space to be in-

dependent [36], (⌫d/d⌫)�ijnµ = (µd/dµ)�ijn⌫ . From these results we can immediately check that
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�qqnµ + �gqnµ = �ggnµ + �qgnµ = 0. Thus there is no overall µ anomalous dimension for the relevant

combination of operators, (OqA
n + OgA

n ), as anticipated. It is interesting to note that this occurs

due to a cancellation of terms between the anomalous dimensions generated by the two individual
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Again mixing plays a key role in obtaining this result. In particular, the graph that contributes

the ln(�t) in the anomalous dimension for OqA
n is initiated by gluons, and enters through �gqn⌫ .

Next we turn to the soft anomalous dimensions. For the operators OqnA
s and OgnA

s the con-

tributing diagrams are very similar to our analysis of the n-collinear operators above. For this

reason we do not bother to give a detailed discussion of the various diagrams. The key di↵erence

is that for the soft graphs the rapidity regulator appears as |n̄ · k � n · k|�⌘ rather than |n̄ · k|�⌘,

which reverses the sign of the 1/⌘ poles. For this reason, the final rapidity anomalous dimension

for the relevant combination of single color index soft operators, (OqnA
s +OgnA

s ) has the opposite

sign to the n-collinear case,
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the coupling w by using (⌫d/d⌫)w2 = �⌘w2 (then setting the renormalized w = 1), we have
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between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d
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ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual

soft and collinear sectors,

µ
d

dµ
(OqA

n +OgA
n ) = 0 , µ

d

dµ
(OqnA

s +OgnA
s ) = 0 , (144)

which implies even simpler relations for the µ anomalous dimensions,

�nµ ⌘ �qqnµ + �gqnµ = �ggnµ + �qgnµ = 0 , �snµ ⌘ �qqsnµ + �gqsnµ = �ggsnµ + �qgsnµ = 0 . (145)

Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of
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For the µ anomalous dimensions at one-loop we have �ijnµ = �(µd/dµ)�V ij
n . Noting that the
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Note that these results satisfy the necessary condition for the paths in ⌫ and µ space to be in-

dependent [36], (⌫d/d⌫)�ijnµ = (µd/dµ)�ijn⌫ . From these results we can immediately check that

we reproduce the first relation in each of Eq. (141) and Eq. (145), �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ and

�qqnµ + �gqnµ = �ggnµ + �qgnµ = 0. Thus there is no overall µ anomalous dimension for the relevant

combination of operators, (OqA
n + OgA

n ), as anticipated. It is interesting to note that this occurs

due to a cancellation of terms between the anomalous dimensions generated by the two individual

operators. We also obtain the relevant rapidity anomalous dimension for (OqA
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n ) which is
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Again mixing plays a key role in obtaining this result. In particular, the graph that contributes

the ln(�t) in the anomalous dimension for OqA
n is initiated by gluons, and enters through �gqn⌫ .

Next we turn to the soft anomalous dimensions. For the operators OqnA
s and OgnA

s the con-

tributing diagrams are very similar to our analysis of the n-collinear operators above. For this

reason we do not bother to give a detailed discussion of the various diagrams. The key di↵erence

is that for the soft graphs the rapidity regulator appears as |n̄ · k � n · k|�⌘ rather than |n̄ · k|�⌘,

which reverses the sign of the 1/⌘ poles. For this reason, the final rapidity anomalous dimension

for the relevant combination of single color index soft operators, (OqnA
s +OgnA

s ) has the opposite

sign to the n-collinear case,

�sn⌫ = �↵sCA

2⇡
ln

⇣�t

m2

⌘

. (162)

70

between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

X

ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual
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which implies even simpler relations for the µ anomalous dimensions,
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Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) + 1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

eg.
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emerges in SCET. In the next section we will carry out the renormalization for the soft function,

where the IR divergence is resolved.

1. Notation for Virtual Counterterms and Anomalous Dimensions

The rapidity divergent n-collinear loops in Fig. 20 consist of the V-graphs (Fig. 20f,g) and the

W -Wilson line graphs (Fig. 20k-n). In addition the sum of vertex and wavefunction renormalization

graphs (Fig. 20h-j) contribute a CA/✏ pole that cancels that of the V-graphs. From the point of

view of the n-collinear sector, the V-graphs involve a mixing of Og
n into Oq

n and the Wilson line,

vertex, and wavefunction graphs take Oq
n back to Oq

n. Thus we see that the n-collinear virtual

renormalization can be viewed as involving mixing with a 2⇥ 2 matrix structure

~OAbare
n = V̂On · ~OA

n (⌫, µ) , V̂On =

0

B

@

1 + �V qq
n �V qg

n

�V gq
n 1 + �V gg

n

1

C

A

, ~OA
n =

0

B

@

OqA
n

OgA
n

1

C

A

. (131)

Here we use the notation ”V ” rather than a traditional ”Z” for the renormalization factors to

remind the reader that these are the divergent 1/✏ and 1/⌘ contributions from virtual graphs

and may still involve the IR regulator m. They are not the complete renormalization results.

The component notation for terms in ~OA
n in Eq. (131) applies to both the bare and renormalized

operators. The terms �V qq
n and �V gq

n are determined by graphs with external quark fields, whereas

�V gg
n and �V qg

n are analogs with external gluon fields (which are not subcomponents in Fig. 20). We

have built in the fact that the renormalization is diagonal in color space by using the same index

A for the bare and renormalized operators. The same decomposition applies for the n̄-collinear

sector with n ! n̄ for all terms, which we write out just to be definite

~OBbare
n̄ = V̂On̄ · ~OB

n̄ (⌫, µ) , V̂On̄ =

0

B

@

1 + �V qq
n̄ �V qg

n̄

�V gq
n̄ 1 + �V gg

n̄

1

C

A

, ~OB
n̄ =

0

B

@

OqB
n̄

OgB
n̄

1

C

A

. (132)

The structure for the rapidity divergent soft sector is more complicated since we have operators

OqnA
s , OgnA

s , Oqn̄A
s , Ogn̄A

s , as well as OAB
s . Phrased in the language of mixing, the single color

index operators with Sn Wilson lines, OqnA
s and OgnA

s , will mix with themselves, but not with

Oqn̄A
s and Ogn̄A

s which have Sn̄ Wilson lines. This occurs because soft loops and emissions from a

soft operator alone do not generate Wilson lines. Thus for these single index operators we have

~OAbare
sn = V̂Osn

· ~OA
sn(⌫, µ) , V̂Osn

=

0

B

@

1 + �V qq
sn �V qg

sn

�V gq
sn 1 + �V gg

sn

1

C

A

, ~OA
sn =

0

B

@

OqnA
s

OgnA
s

1

C

A

, (133)

plus a direct analog for Oqn̄A
s and Ogn̄A

s obtained with n ! n̄. For the double index operator

OAB
s we have self renormalization as well as mixing from time-ordered products (T-products) with
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Written as a path integral the full time evolution operator in SCET is

U(a, b;T ) =

Z

⇥D�
⇤

exp
h

i

Z T

�T
d4x

�L(0)
nn̄s(x) + LII(0)

G (x)
�

i

, (192)

where L(0)
nn̄s = L(0)

n +L(0)
n̄ +L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b indicate the

field boundary conditions at time t = �T,+T , and [D�] is a short hand to indicate the functional

integral over all relevant SCET soft and collinear fields. We will only be interested in the large T

limit, T ! 1(1� i0). All these Lagrangian terms are leading order in the power counting. Using

Eq. (55) we can expand the Glauber part of the time evolution operator as

T exp i

Z

d4xLII(0)
G (x) =



1 + i

Z

d4y1 LII(0)
G (y1) +

i2

2!

Z

d4y1 d
4y2 LII(0)

G (y1)LII(0)
G (y2) + . . .

�

(193)

= 1 + T
1
X

k=1

1
X

k0=1

 k
Y

i=1

Z

[dx±i ]
Z

d2q?i

q2?i

⇥OqAi
n (q?i) +OgAi

n (q?i)
⇤

(xi)

�

⇥
 k0
Y

i0=1

Z

[dx±i0 ]
Z

d2q?i0

q2?i0

⇥OqBi0
n̄ (q?i0) +OgBi0

n̄ (q?i0)
⇤

(xi0)

�

⇥O
A1·Ak,B1···Bk0
s(k,k0) (q?1, . . . , q?k0)(x1, . . . , xk0)

⌘ 1 +
1
X

k=1

1
X

k0=1

U(k,k0) ,

where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (193) we have organized

the expansion according to the number k of n-collinear operators, and number k0 of n̄-collinear

operators, rather than according to the number of insertions of the Glauber Lagrangian. Any

symmetry factors like 1/k! are included in the definition of O
A1·Ak,B1···Bk0
s(k,k0) .

For example, the first nontrivial term with k = k0 = 1 is

U(1,1) = i

Z

[dx±][dx0±]
X

k±

Z

d2q?
q2?

d2q0?
q02?

⇥OqA
n,k�(q?) +OgA

n,k�(q?)
⇤

(x̃)
⇥OqB

n̄,k+
(q0?) +OgB

n̄,k+
(q0?)

⇤

(x̃0)

⇥OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) . (194)

Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)
G , as well as a T-product term from the product OinA

s Ojn̄B
s that

comes from two insertions of LII(0)
G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (195)

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T
X

i,j=q,g

OinA
s,�k�(q?)(x̃) Ojn̄B

s,�k+
(�q0?)(x̃

0) .

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T eix̃
0·P̂ X

i,j=q,g

OinA
s,�k�(q?)(x̃�x̃0) Ojn̄B

s,�k+
(�q0?)(0)e

�ix̃0·P̂ .

Expand time evolution,  do soft-collinear factorization term by term:

As a traditional approximation, consider forward scattering with just 	


the first term (linearization which leads to BFKL equation):

85

Written as a path integral the full time evolution operator in SCET is

U(a, b;T ) =

Z

⇥D�
⇤

exp
h

i

Z T

�T
d4x

�L(0)
nn̄s(x) + LII(0)

G (x)
�

i

, (192)

where L(0)
nn̄s = L(0)

n +L(0)
n̄ +L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b indicate the

field boundary conditions at time t = �T,+T , and [D�] is a short hand to indicate the functional

integral over all relevant SCET soft and collinear fields. We will only be interested in the large T

limit, T ! 1(1� i0). All these Lagrangian terms are leading order in the power counting. Using

Eq. (55) we can expand the Glauber part of the time evolution operator as

T exp i

Z

d4xLII(0)
G (x) =



1 + i

Z

d4y1 LII(0)
G (y1) +

i2

2!

Z

d4y1 d
4y2 LII(0)

G (y1)LII(0)
G (y2) + . . .

�

(193)

= 1 + T
1
X

k=1

1
X

k0=1

 k
Y

i=1

Z

[dx±i ]
Z

d2q?i

q2?i

⇥OqAi
n (q?i) +OgAi

n (q?i)
⇤

(xi)

�

⇥
 k0
Y

i0=1

Z

[dx±i0 ]
Z

d2q?i0

q2?i0

⇥OqBi0
n̄ (q?i0) +OgBi0

n̄ (q?i0)
⇤

(xi0)

�

⇥O
A1·Ak,B1···Bk0
s(k,k0) (q?1, . . . , q?k0)(x1, . . . , xk0)

⌘ 1 +
1
X

k=1

1
X

k0=1

U(k,k0) ,

where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (193) we have organized

the expansion according to the number k of n-collinear operators, and number k0 of n̄-collinear

operators, rather than according to the number of insertions of the Glauber Lagrangian. Any
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Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)
G , as well as a T-product term from the product OinA

s Ojn̄B
s that

comes from two insertions of LII(0)
G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (195)

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T
X

i,j=q,g

OinA
s,�k�(q?)(x̃) Ojn̄B

s,�k+
(�q0?)(x̃

0) .

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T eix̃
0·P̂ X

i,j=q,g

OinA
s,�k�(q?)(x̃�x̃0) Ojn̄B

s,�k+
(�q0?)(0)e

�ix̃0·P̂ .
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Here �2(x̃� x̃0) = 2�(x+ � x0+)�(x� � x0�). Note that we have flipped the q0? sign when defining

OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) so that both q? and q0? are incoming. For the collinear operators in Eq. (194)

the O(�) soft momenta k± are residual to the respective large collinear momenta, but show us how

these soft momenta are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by having a

single U(1,1) on each side of the cut. We take color singlet initial states hpp0|, such as proton-

proton or quarkonia-quarkonia scattering, where one hadron is n-collinear and n̄-collinear. The

corresponding non-trivial transition matrix is

T(1,1) =
1

V4

X

X

⌦

pp0
�

�U †
(1,1)

�

�X
↵⌦

X
�

�U(1,1)

�

�pp0
↵

, (196)

where the volume factor V4 = (2⇡)4�4(0) must be removed since each of these matrix elements

gives a momentum conserving �-function. Since we are working order by order in the Glauber

Lagrangian these matrix elements can be factorized into soft and collinear components. For the

n-collinear matrix element inside hX|U(1,1)|pp0i we have

⌦

Xn

�

�OiA
n,k�(q?)(x̃)

�

�p
↵

= �(x+)
⌦

Xn

�

�

⇥OiA
n (x�)�0,n̄·P†+k��(q? � P†

?)
⇤

�

�p
↵

= �(x+)�(q? � p?Xn
)�(p� � p�Xn

)
⌦

Xn

�

�OiA
n (x�)

�

�p
↵

. (197)

Since the n-collinear matrix element has O(�0) p�-momenta, there is no dependence on the residual

momenta k� ⇠ �, or p�r ⇠ �2, which gives rise to the �(x+). The momentum dependent �-functions

arise from the conservation of momenta in the matrix element. Since �(p� � p�Xn
)�(p� � p�Xn

) =

�(0)�(p� � p�Xn
), one part of the volume factor, V1 = 2⇡�(0), will appear in the squared collinear

matrix element. Therefore

1

V1

X

Xn

D

p
�

�

�

X

j=q,g

OjA0

n,k0�(q
00
?)(x̃

00)
�

�

�

Xn

ED

Xn

�

�

�

X

i=q,g

OiA
n,k�(q?)(x̃)

�

�

�

p
E

= �AA0
2�(x+)�(x00+)�2(q? � q00?)Cn(q?, p�, x�, x00�) ,

1

V1

X

Xn̄

D

p0
�

�

�

X

j=q,g

OjB0

n̄,k0+(q
000
?)(x̃

000)
�

�

�

Xn̄

ED

Xn̄

�

�

�

X

i=q,g

OiB
n̄,k+(q

0
?)(x̃

0)
�

�

�

p0
E

= �BB0
2�(x000�)�(x0�)�2(q0? � q000?)Cn̄(q

0
?, p

0+, x0+, x000+) , (198)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. We see

that the matrix elements of the collinear operators gives only one combination of the color indices.

Since the soft state |Xsi has zero residual O(�2) momenta, using Eq. (195) the matrix element

of OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) is only a function of x̃ � x̃0. The soft fields only depend on x̃ and x̃0 to

conserve the residual O(�2) momenta, and not otherwise through any of the soft Feynman rules.
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Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (199)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (198) removes all the x-integrals in T(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (200)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2x

0+·P̂ X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2x

0+·P̂ .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V2

1

q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
?, q

000
?)

�

�Xs

↵⌦

Xs

�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= SAA0BB0
G (q?, q0?, q

00
?, q

000
?) ,

(201)

where V2 = (2⇡)2�2(0) includes the remaining part of the volume factor. The contraction of color

indices and ? �-functions from the collinear sectors in Eq. (198) allows us to reduce the form of

the required soft function further to

SG(q?, q0?) =
Z

d2q00?d
2q000? �AA0

�BB0
�2(q?�q00?)�

2(q0?�q000?)S
AA0BB0
G (q?, q0?, q

00
?, q

000
?)

=
1

V2

�AA0
�BB0

(~q 2
? ~q 0 2

? )2

X

X

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�X
↵⌦

X
�

�O†A0B0

s(1,1) (q?, q
0
?)

�

�0
↵

. (202)

The �AA0
�BB0

contraction in Eq. (202) implies that the combined Glauber exchanges on either side

of the cut are in a color singlet state. In some applications one may be required to consider a

color-octet configuration and/or a ?-momentum configuration with q? 6= q̃? and q0? 6= q̃0?, but we

will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the Glauber

exchange is given by

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (203)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (198). Finally, we note that conjugation relation in Eq. (78) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
?, q?)

�

�

�

n$n̄
. (204)

= . . .
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= �i 8⇡↵s(µ) �
AB ~q 2

? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q

q'
= S(0)

G (q?, q0?) ⌘
1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�0
↵⌦

0
�

�OAB†
s(1,1)

�

�0
↵

(209)

=
⇣8⇡↵s

~q 2
?

⌘2
�AA (2⇡)2�2(~q?+ ~q 0

?).

Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is

1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�g(k)
↵⌦

g(k)
�

�OAB†
s(1,1)

�

�0
↵

(210)

= �(8⇡↵s)2(4⇡↵s)
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? ~q 0 2
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qµ?�q0µ?�n · q n̄
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2
+n̄ · q0n
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2
�nµ ~q 0 2

?
n · q +

n̄µ ~q 2
?

n̄ · q0
◆2

(2⇡)2�2(~k?�~q?�~q 0
?)
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CA�
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� n · q n̄ · q0 + (~q? + ~q 0
?)

2 � 4~q 0 2
? ~q 2

?
n · q n̄ · q0

◆

(2⇡)2�2(~k?�~q?�~q 0
?)

=
(8⇡↵s)2

(~q 2
? ~q 0 2

? )

(16⇡↵s)

(~q? + ~q 0
?)2

CA�
AA(2⇡)2�2(~k?�~q?�~q 0

?) ,

where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace

q� q�

q�� q��

after rapidity renormalization:
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Since we integrate over soft ±-momenta to define SG(q?, q0?) it only has the trivial n · n̄ = 2

dependence on the collinear directions that show up in the soft operator Wilson lines, and hence

its definition implies that it is a symmetric function

SG(q?, q0?) = SG(q
0
?, q?) . (205)

The result in Eq. (203) gives a factorized form for the forward scattering process at lowest order

in the Glauber exchange operators, but to all orders in the soft and collinear Lagrangians, L(0)
S

and L(0)
n,n̄. Therefore the functions Cn(q?), Cn̄(q0?), and SG(q?, q0?) each have non-trivial series

in ↵s. In the next two sections, Secs. VB and VC we will consider the renormalization of the

lowest order transition amplitude T(1,1), which at leading logarithmic order simply involves the

rapidity renormalization of these soft and collinear functions, and only requires O(↵s) real and
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At this order in ↵s we can either contract both the Oi
nO

i
n and Oj

n̄O
j
n̄ in U(2,2) to give a Glauber

box diagram as in Fig. 11 or we could attach the two forward collinear lines in each of Oi
nO

i
n

and Oj
n̄O

j
n̄ to di↵erent partons in the incoming hpnp0̄n| state. Neither of these contributions has

a logarithmic rapidity divergence, and hence it su�ces to consider just T(1,1) when deriving the

leading-logarithmic renormalization equations.

Introducing the rapidity cuto↵ ⌫ and renormalized collinear and soft functions we have

T(1,1) =

Z
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0
?, p

0+, ⌫) . (207)

In the next section we derive the leading-logarithmic evolution equation for the soft function

SG(q?, q0?, ⌫) and show that it is the BFKL equation. Then in Sec. VC we will derive the BFKL

equations for Cn(q?, p�, ⌫) and Cn̄(q0?, p
0+⌫) by using renormalization group consistency. We will

further discuss the more general set of matrix elements for the U(k,k0) case, where we allow an

arbitrary number of insertions of the forward scattering operators, in Sec. VD below.

B. BFKL Equation for the Soft Function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the

tension between the collinear modes whose natural rapidity scale is ⌫c ⇠
p
ŝ and the soft mode for

which ⌫s ⇠ p�t. Thus the large logs can not be minimized with a single choice of the rapidity

scale ⌫ in the SCET matrix elements. Since the final result is independent of which ⌫ we choose, we

will take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

n-collinear

n̄-collinear

soft

� 1 + T
��

k=1

��

k�=1

�
OjAi

n (qi�)
�k�
Oj�Bi�

n̄ (qi��)
�k�

�OA1·Ak,B1···Bk�
s(k,k�) (q�1, . . . , q�k�)



25

Consider rapidity renormalization for soft function that appears here:
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Therefore the dependence in this matrix element is only in a �-function, and
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Combining these �-functions and the four present in Eq. (198) removes all the x-integrals in T(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore
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Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by
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where V2 = (2⇡)2�2(0) includes the remaining part of the volume factor. The contraction of color

indices and ? �-functions from the collinear sectors in Eq. (198) allows us to reduce the form of

the required soft function further to
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The �AA0
�BB0

contraction in Eq. (202) implies that the combined Glauber exchanges on either side

of the cut are in a color singlet state. In some applications one may be required to consider a

color-octet configuration and/or a ?-momentum configuration with q? 6= q̃? and q0? 6= q̃0?, but we

will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the Glauber

exchange is given by

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (203)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (198). Finally, we note that conjugation relation in Eq. (78) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
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. (204)
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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�OAB
s(1,1)(q?, q

0
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�0
↵

= �i 8⇡↵s(µ) �
AB ~q 2

? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q
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=
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~q 2
?

⌘2
�AA (2⇡)2�2(~q?+ ~q 0

?).

Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (210) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal
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To obtain the third equality we shifted ~k? ! ~k? � ~q?/2 and then simplified the integrand, and to

obtain the last line we partial fractioned the numerator and dropped integrands that are odd in ~k?
and which vanish in dimensional regularization because they are power law divergent. Similarly,

for the flower graph we have

S

q

q'
= �4g4~q 2

? CA�
AB

Z

d�4k
w2|2kz|�⌘ ⌫⌘

[k2](n · k)(n̄ · k)(2⇡)
2�(~q? + ~q 0

?)

=
4i(4⇡↵s)2~q 2

?
(4⇡)

CA�
ABw2�(⌘2 )�(

1�⌘
2 )

2⌘
p
⇡

Z

d�2k?
~k 2
?

(2⇡)2�(~q? + ~q 0
?)

= i 16⇡↵2
s CA�

ABw2�
⇣⌘

2

⌘

Z

d�2k? ~q 2
?

~k 2
?

(2⇡)2�(~q? + ~q 0
?) . (214)

Combining Eqs. (213) and (214) we see that the self contraction of Wilson lines in the soft flower

graph cancels one of the terms in the eye-graph, leaving
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The contribution coming from the soft Wilson line and the time ordered product can be combined

to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (325). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly
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di↵erent normalization,
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With this modified normalization, the results up to O(↵s) from Eqs. (325,212,216) can be summa-

rized as yielding
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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Note that this anomalous dimension is not just a function of the di↵erence q? � q0?, but it is easy

to check from Eq. (224) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (225)
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rized as yielding

eSbare
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
?, ⌫) =

Z

d2k? Z(q?, k?) S̃bare
G (k?, q0?) . (219)

To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,

0 = ⌫
d

d⌫
eSbare
G (q?, q0?) = ⌫

d

d⌫

Z

d2k? Z�1(q?, k?) eSG(k?, q0?, ⌫) . (221)

Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
d

d⌫
eSG(q?, q0?, ⌫) =

Z

d2k? �SG
(q?, k?) eSG(k?, q0?, ⌫) , (222)

where the anomalous dimension is given by

�SG
(q?, q0?) = �

Z

d2k?Z(q?, k?) ⌫
d

d⌫
Z�1(k?, q0?) . (223)

Inserting the one-loop result from Eq. (220) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives

�SG
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. (224)

Note that this anomalous dimension is not just a function of the di↵erence q? � q0?, but it is easy

to check from Eq. (224) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (225)
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
?, ⌫) =

Z

d2k? Z(q?, k?) S̃bare
G (k?, q0?) . (219)

To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,

0 = ⌫
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eSbare
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
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where the anomalous dimension is given by
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Inserting the one-loop result from Eq. (220) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives
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Note that this anomalous dimension is not just a function of the di↵erence q? � q0?, but it is easy

to check from Eq. (224) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (225)
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The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,

⌫
d
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2CA↵s(µ)

⇡2

Z

d2k?


eSG(k?, q0?, ⌫)
(~k? � ~q?)2

� ~q 2
? eSG(q?, q0?, ⌫)
2~k2?(~k? � ~q?)2

�

. (226)

The BFKL equation is often written in terms of the derivative of a rapidity, Y = ln(⌫2). The fact

that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on the RHS of Eq. (226). Note

that in our SCET calculation, the fact that Eq. (226) is obtained for the all orders soft function

SG (rather than just the one-loop soft function) follows immediately from the structure of the

e↵ective field theory operators and the form of the rapidity renormalization in Eq. (219). In classic

derivations of the BFKL equation, this step is often quite involved.

C. BFKL Equations for the Collinear Functions via Consistency

At leading logarithmic order the ⌫ dependence in the soft and collinear functions of the transition

matrix T(1,1) must cancel, so

⌫
d

d⌫

Z

d2q?d2q0? Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) = 0 . (227)

This result su�ces to derive the LL RGE equation for Cn and Cn̄, which will also be given by

BFKL equations. Generically, the form of the SCET matrix elements implies that we can have

⌫
d

d⌫
Cn(q?, p�, ⌫) =

Z

d2k? �C(q?, k?) Cn(k?, p�, ⌫) , (228)

⌫
d

d⌫
Cn̄(q?, p0+, ⌫) =

Z

d2k? �C(q?, k?) Cn̄(k?, p0+, ⌫) .

Note that the same anomalous dimension �C(q?, k?) appears for both collinear functions. This

follows from the fact that Cn $ Cn̄ if we take n $ n̄, and that the anomalous dimensions can not

involve convolutions in the large conserved collinear momenta, and hence are independent of n and

n̄. To exploit Eq. (227) it is useful to write the RGE for the soft function in a symmetric form.

Using the fact that both SG and �SG
are symmetric in their two arguments, the BFKL equation

for the soft function can be written as

⌫
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evolution is	


BFKL equation

(see also work by S. Fleming)
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm Z(q?, q0?) through the convolution

eSG(~q?, ~q 0
?, ⌫) =

Z

d2k? Z(q?, k?) S̃bare
G (k?, q0?) . (219)

To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,

0 = ⌫
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eSbare
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d
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Z

d2k? Z�1(q?, k?) eSG(k?, q0?, ⌫) . (221)

Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation

⌫
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d⌫
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where the anomalous dimension is given by
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Z�1(k?, q0?) . (223)

Inserting the one-loop result from Eq. (220) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives
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Note that this anomalous dimension is not just a function of the di↵erence q? � q0?, but it is easy

to check from Eq. (224) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (225)
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Plugging Eqs. (228) and (229) into Eq. (227) we then have
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h
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+ Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)�C(q
0
?, k?)Cn̄(k?, p0+, ⌫)

+
1

2
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i

.

Using our ability to swap around the three integration variables we see that this equation can only

be satisfied for arbitrary Cn, SG, and Cn̄ functions if �C(q?, k?) = �1
2�SG

(k?, q?) and �C(q0?, k?) =

�1
2�SG

(q0?, k?), which implies that �C is also a symmetric function and is given by

�C(q?, q0?) = �1

2
�SG

(q?, q0?) . (231)

Therefore the RGE equations for Cn and Cn̄ are also given by the BFKL equation. Writing this

out explicitly we have

⌫
d

d⌫
Cn(q?, p�, ⌫) = �CA↵s

⇡2

Z

d2k?


Cn(k?, p�, ⌫)
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� ~q 2
? Cn(q?, p�, ⌫)
2~k2?(~k? � ~q?)2

�

, (232)

with the same form of BFKL equation for Cn̄(q?, ⌫). Note that there is a factor of (�1/2) for

the BFKL equations for the collinear functions as compared to the soft function. The sign comes

from the fact that they run in the opposite direction in rapidity space, from ⌫ ' p� =
p
s down

to ⌫ ' p
t, and the 1/2 comes from the fact that two collinear functions must balance against a

single soft function.

D. Multiple Insertions: Factorization of Glauber Lagrangian Interactions

In this section we consider how multiple insertions of the Glauber Lagrangian impacts renor-

malization and observables. Recall

exp iL(0)II
G =

1
X

k=1

1
X

k0=1

 k
Y

i=1

(OqAi
n +OgAi

n )

� k0
Y

i0=1

(O
qBi0
n̄ +O

gBi0
n̄ )

�

O
A1·Ak,B1···Bk0
s(k,k0) (233)

NOTE(Discuss number of ?-convolutions, and the renormalization of individual soft and

collinear functions. Can ? integrals diverge? It appears that this is a necessary

condition for terms T(k,k0) with di↵erent k, k0 to mix.)

VI. PROPERTIES OF GLAUBER OPERATORS IN LOOP GRAPHS

In this section we consider various properties of Glauber gluons. In Secs. VIA and VIB we

consider Glauber gluon exchange in the context of a hard vertex that either annihilates or scatters

�1
2
(BFKL)

same for Cn̄



27

Hard Scattering

126

n

n

n

n

n

n

n

n
S

a) b)

FIG. 30. a) Active-Active interaction for the hard scattering correlator in Eq. (314). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.

alone it is far from a proof of factorization, even in the Abelian case. What this resummation does

do however is to illuminate the semi-classical nature of the physics.

Notice that for these spectator-spectator interactions, as opposed to the active-active case pre-

viously discussed in Sec. VIA, that there is no analogous diagrams in SCET where the Glauber

gluons are soft. If one of the Glauber gluons became soft then it would knock all other fermion

lines in the end loop integral o↵shell, and hence such interactions are power suppressed. There

are also no diagrams where a spectator-spectator Glauber exchange is replaced by and n-collinear

or n̄-collinear gluon, again these are power suppressed. Thus once we consider matrix elements

involving spectators lines the Glauber mode is necessary to reproduce the full theory result.

B. Active-Active and Soft Overlap

Next we will consider Glauber interactions between two partons that participate in the hard

scattering, namely active-active terms. In Secs. VIA and VIB we showed that in hard scattering

graphs without spectators, such Glauber interactions give the same contributions as the Glauber

zero-bin subtractions of soft Wilson line graphs. The Glauber exchange could therefore be absorbed

into these soft graphs as long as the correct directions for the soft Wilson lines are employed. In

this section we will demonstrate that all the results and conclusions about active-active Glauber

interactions from those sections carry over to the case when we include the interpolating fields for

the incoming hadrons.

The general reason for this can be discussed by looking at the example given in Fig. 30. In

any purely active-active loop graph with spectators present, the hadron interpolating fields are

always external to the loops. From the n- and n̄-collinear propagators that are outside of the loop,

we immediately get the same tree-level end factor E(p1?, p2?) as in Eq. (315). The only possible

changes to the calculations done in Secs. VIA and VIB are due to the fact that the active collinear

propagators entering the loops are now not onshell. This does not a↵ect any soft propagator from

a Wilson line (solid green in Fig. 30), since here only the soft gluon loop momentum appears.

This is immediate from the SCET Feynman rules, and is also clear from expanding a full-theory

propagator, since (pn + ps)2 = n̄ · pn n · ps + . . ., where the displayed leading O(�) term gives

precisely the eikonal propagator of the soft Wilson line, and the o↵shellness of the external collinear
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without the (i⇡) contribution

S(Fig. 23a) = S̃ � S(G) (237)
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄

Z

d�dk
(◆✏µ2✏ |kz|�⌘ ⌫⌘)
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= ūn�vn̄
CF↵s

2⇡



(i⇡)
⇣1

✏
+ ln

µ2

m2

⌘

�

, (238)

where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have

S̃(Fig. 23c) = �2ig2CF ūn�un̄
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S(G)(Fig. 23c) = �2ig2CF ūn�un̄

Z

d�dk
(◆✏µ2✏ |kz|�⌘ ⌫⌘)

[k2? �m2][n · k + i0][n̄ · k + i0]
= 0 ,

G(Fig. 23d) = �2ig2CF ūn�un̄

Z

d�dk
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming
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FIG. 23. One loop soft gluon and Glauber potential exchange with a Hard Scattering vertex ⌦ in SCETII.

The solid green lines denote eikonal propagators from soft Wilson lines. Graphs a) and b) are for 2-particle

production, while c) and d) involve one incoming and one outgoing particle.

two energetic particles, and demonstrate a connection with contributions from soft gluons. It

implies that the same results are obtained with or without Glauber operators as long as the correct

directions for soft Wilson lines are taken. In Sec. VIC we carry out the all order resummation of

Glauber boxes in forward scattering, demonstrating that the rapidity regulator yields an eikonal

phase. The precise connection to the semi-classical interpretation of this scattering in terms of

shock wave solutions is discussed and reviewed in Sec. VID.

A. Hard Matching: the Cheshire Glauber

In carrying out hard matching calculations from full QCD onto SCET at one, two, and even three

loops, it is known that Glauber exchange graphs are not needed to reproduce the infrared structure

of the full theory result and obtain a Wilson coe�cient that is independent of the infrared. In this

section we demonstrate that the hidden nature of Glauber exchange for calculations involving active

lines that participate in the hard scattering, is explained by the need to modify soft diagrams by

including 0-bin subtractions from the Glauber region once Glauber interactions are included in

SCET. In particular, in SCETII the Glauber exchange contribution G is also present as part of the

result from soft gluon exchange between pairs of active lines, but this soft graph also has a Glauber

subtraction, S(G), which removes this contribution. These Glauber subtractions are non-zero for

soft diagrams involving pairs of soft Wilson lines that are both outgoing or both incoming, and in

general there is a precise connection between the subtractions, active-active Glauber graphs, and

the direction of soft Wilson lines. In contrast, in SCETI the Glauber exchange contributions G

between active lines are scaleless, and are exactly canceled by the ultrasoft 0-bin subtraction on

the Glauber graph, G(U). In the remainder of this section we explore the above connections in

detail at one-loop. We will continue this discussion at higher orders in Sec. VIB.

We begin our discussion in SCETII, considering the one-loop graphs shown in Fig. 23 with a

mass IR regulator m. We take the physical momenta to be p for the n-collinear quark, and p̄ for

the n̄-collinear (anti)quark. The soft diagrams drawn here arise from the contraction between two
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two energetic particles, and demonstrate a connection with contributions from soft gluons. It

implies that the same results are obtained with or without Glauber operators as long as the correct

directions for soft Wilson lines are taken. In Sec. VIC we carry out the all order resummation of

Glauber boxes in forward scattering, demonstrating that the rapidity regulator yields an eikonal

phase. The precise connection to the semi-classical interpretation of this scattering in terms of

shock wave solutions is discussed and reviewed in Sec. VID.
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In carrying out hard matching calculations from full QCD onto SCET at one, two, and even three

loops, it is known that Glauber exchange graphs are not needed to reproduce the infrared structure

of the full theory result and obtain a Wilson coe�cient that is independent of the infrared. In this

section we demonstrate that the hidden nature of Glauber exchange for calculations involving active

lines that participate in the hard scattering, is explained by the need to modify soft diagrams by

including 0-bin subtractions from the Glauber region once Glauber interactions are included in

SCET. In particular, in SCETII the Glauber exchange contribution G is also present as part of the

result from soft gluon exchange between pairs of active lines, but this soft graph also has a Glauber

subtraction, S(G), which removes this contribution. These Glauber subtractions are non-zero for

soft diagrams involving pairs of soft Wilson lines that are both outgoing or both incoming, and in

general there is a precise connection between the subtractions, active-active Glauber graphs, and

the direction of soft Wilson lines. In contrast, in SCETI the Glauber exchange contributions G

between active lines are scaleless, and are exactly canceled by the ultrasoft 0-bin subtraction on

the Glauber graph, G(U). In the remainder of this section we explore the above connections in

detail at one-loop. We will continue this discussion at higher orders in Sec. VIB.

We begin our discussion in SCETII, considering the one-loop graphs shown in Fig. 23 with a

mass IR regulator m. We take the physical momenta to be p for the n-collinear quark, and p̄ for

the n̄-collinear (anti)quark. The soft diagrams drawn here arise from the contraction between two
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have
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= ūn�vn̄
CF↵s

2⇡

�2h(✏, µ2/m2)

⌘
+ ln

µ2

⌫2

⇣1

✏
+ ln

µ2

m2

⌘

+
1

✏2
� 1

2
ln2

µ2

m2
� ⇡2

12

�

.

To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄
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= ūn�vn̄
CF↵s

2⇡



(i⇡)
⇣1

✏
+ ln

µ2

m2

⌘

�

, (238)

where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is
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for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)
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this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.
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This continues at higher orders:
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FIG. 25. Non-abelian two loop graphs with soft gluons and Glauber exchange with a Hard Scattering vertex

⌦ in SCETII. Only graphs that are non-vanishing in Feynman gauge are shown. We will refer to them as

S3, S4, S5, S6, GS1, GS2, GS3, LS1, LS2, and we number the collinear/eikonal fermion propagators (1),

(2), (3), (4) as shown.

LS1 and LS2, have two collinear propagators and terms with both both two and zero eikonal

propagators (depending on whether the Lipatov vertex cancels the soft eikonal propagator or adds

an additional one). Since these terms also need to be considered separately we divide the graphs

up as

LS1 = LS1r + LS1f , LS2 = LS2r + LS2f , (261)

where the “f” subscript refers to terms with two eikonal plus two collinear propagators, and the “r”

subscript refers to terms with just the two (black-dashed) collinear propagators that are explicit

in Fig. 25. To summarize the nontrivial Glauber subtractions for these contributions we write

S3 = S̃3 �
⇥

S(G23)
3 � S(G23)(G14)

3

⇤� ⇥

S(G13)
3 � S(G13)(G24)

3

⇤� ⇥

S(G24)
3 � S(G24)(G13)

3

⇤

,

S4h = S̃4h � S(G23)
4h , S4r = S̃4r � S(G13)

4r , S5h = S̃5h � S(G23)
5h , S5r = S̃5r � S(G24)

5r ,

S6 = S̃6 � S(G23)
6 , GS1f = gGS1f �GS(G14)

1f , GS3 = gGS3 �GS(G14)
3 ,

LS1f = fLS1f � LS(G24)
1f , LS2f = fLS2f � LS(G13)

2f , (262)

whereas there are no nontrivial subtractions for GS1h, GS2, LS1r, or LS2r.

The simplest soft two loop contributions are those that only have eikonal propagators next to

the hard vertex, for (2) and (3). This includes the entire S6, as well as S4h and S5h where the

momentum factor from the 3-gluon vertex cancels propagators (1) and (4) respectively. For these

terms, (G23) is the only nontrivial Glauber subtraction on these soft graphs, and the equivalence

This overlap with the subtractions is the analog in the EFT of the 	


CSS statement that one can deform the contour from the Glauber 	


into Soft region for active-active graphs.
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FIG. 24. Two loop graphs that have abelian contributions and either soft gluons or Glauber exchange with

a Hard Scattering vertex ⌦ in SCETII. We refer to these graphs as S1, S2, SG, and G, and we number the

collinear/eikonal fermion propagators (1), (2), (3), (4) as shown.

discussion.) The subtraction S(G1234)
i simultaneously considers both loop momenta to have Glauber

scaling. The SCET graph SG shown in Fig. 24c contains a soft loop, and hence also has a Glauber

subtraction given by SG(G23).

Since the Abelian soft graphs have trivial numerators, it su�ces to study these overlaps by

listing the denominator propagators for the integrands for the graphs shown in Fig. 24, and for

their 0-bin subtractions. For the original graphs these are

S̃1 :
⇥

n · k1
⇤⇥

n · (k1+k2)
⇤⇥� n̄ · (k1+k2)
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⇤
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,
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where we show the eikonal propagators listed from (1) to (4), and multiple momentum routings

are shown for the purely soft graphs for later convenience. Here and below, all propagators in

square brackets include a +i0. The results are all regulated with |kz1|�⌘|kz2|�⌘ (using the notation

of the first momentum routings) and these regulator factors are not modified when taking the 0-bin

limits, and hence need not be written out explicitly in the analysis below. It should be evident

from Fig. 24 that the gSG diagram has the same propagator scaling as S(G14)
1 , while the G diagram

has the same scaling as S(G1234)
1 .

First consider the Abelian terms in the (23) limit. Since there are no Glauber graphs that

correspond to this limit we anticipate that the soft box and cross-box diagrams will cancel. Using

Eq. (248) we find

S(G23)
1 :

⇥

n · k1
⇤⇥

n · k02
⇤⇥� n̄ · k02

⇤⇥� n̄ · k1
⇤⇥

k21
⇤⇥

k+1 k
�
1 �(~k02?�~k1?)2

⇤

, (249)
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by
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where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take
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Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

128

a) b) c) d)

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n n

FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by

Fig.31a = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?)|2kz|�⌘⌫⌘

[k���2+i0][�k+��1+i0][k+��0
1+i0]

, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�kzd�d
0
k?

G0(k?)|2kz|�⌘⌫⌘

[2kz��1��2+i0][��1��0
1+i0]

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�1 +�0

1

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

n̄·p1 n̄·(P�p1)

n̄·P
Z

d�d
0
k?

G0(k?)
(~k? + ~p1?)2

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) , (328)

where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

Cn = C̃n � C(G)
n
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it to be Wn(�1, 0) since in this case it is generated in the QCD to SCETII matching calculation

from integrating out o↵shell propagators along the incoming quark line plus non-abelian graphs.

We have

C̃n(Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

n̄ · (k�P+p1) n̄ · (k+p1) |n̄ · k|�⌘⌫⌘

[k� + i0][(k�P+p1)2 + i0][(k+p1)2 + i0]
.

(329)

From Eq. (67) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (329) gives

C(S)
n (Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

(�1)|n̄ · k|�⌘⌫⌘

[k� + i0][�k+ + i0][k+ + i0]
, (330)

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(GS)
n vanishes for the same reason). The

reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons can not

couple to collinear lines without knocking them o↵shell, and hence are only leading power for the

active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
n (Fig.31b) = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?) |n̄ · k|�⌘⌫⌘
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1 + i0]

. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives

C(G)
n (Fig.31b) = �1
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k? G0(k?)E(p1? + k?, p2?) . (332)

This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (314). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(315)
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⌘ S� E(p1?, p2?),

where we have defined the spinor factor for the outgoing quark-antiquark as

S� = ūn�
µ
?un̄ . (316)

Note that n̄ · p1 > 0, n̄ · (P � p1) > 0, n · p2 > 0, and n · (P̄ � p2) > 0. To obtain the second line

of Eq. (315) we used momentum conservation, and the equation of motion to remove the small

momentum components, n·p1 = ~p 2
1?/n̄·p1 and n̄·p2 = ~p 2

2?/n·p2. The final momentum dependence

of the result is defined as the end-function E(p1?, p2?). We suppress the dependence on the light
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lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(315)

= S�


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~p 2
1?

1

~p 2
2?

� 

n̄ · p1 n̄ · (P�p1)

n̄ · P
n · p2 n · (P̄�p2)

n · P̄
�

⌘ S� E(p1?, p2?),

where we have defined the spinor factor for the outgoing quark-antiquark as

S� = ūn�
µ
?un̄ . (316)

Note that n̄ · p1 > 0, n̄ · (P � p1) > 0, n · p2 > 0, and n · (P̄ � p2) > 0. To obtain the second line

of Eq. (315) we used momentum conservation, and the equation of motion to remove the small

momentum components, n·p1 = ~p 2
1?/n̄·p1 and n̄·p2 = ~p 2

2?/n·p2. The final momentum dependence

of the result is defined as the end-function E(p1?, p2?). We suppress the dependence on the light
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factors in Eq. (318) include

�0
1 =

(~k? + ~p1?)2

n̄ · p1 � n · p1 , �1 =
(~k? + ~p1?)2

n̄ · (P�p1)
+ n · p1 , (320)

�0
2 =

(~k? � ~p2?)2

n · p2 � n̄ · p2 , �2 =
(~k? � ~p2?)2

n · (P̄�p2)
+ n̄ · p2 .

To obtain the second line of Eq. (318) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (320) and Eq. (317). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �1 +�0
1 and �2 +�0

2, so the fermions are

not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (318) in Fourier space. If we

hold the photons q? = �p1? � p2? fixed, then we can consider Fourier transforming in �p? =

(p2? � p1?)/2, to give

ASS(�p?, q?) = Fig. 29b

= S�

Z

d�d�2k? G(k?) E
⇣

k? ��p? � q?
2
,�p? � k? � q?

2

⌘

⌘ S�

Z

d�d�2k? G(k?) E0(�p? � k?, q?)

= S�

Z

d�d�2k?
Z

dd�2b? e�i~k?·~b? G̃(b?)
Z

dd�2b0? e�i(�~p?�~k?)·~b0?Ẽ0(b0?, q?)

= S�

Z

dd�2b? e�i�~p?·~b? Ẽ0(b?, q?) ei�(b?). (321)

Thus the iterations of the spectator-spectator Glauber potentials produce a final rescattering state

scattering phase �(b?) where the distance b? is conjugate to the di↵erence of ?-momenta of the

two spectators.

It is interesting to ask: under what conditions this Glauber phase cancels? Considering the

modulus squared of the amplitude, the phase cancels as long as we carry out the phase space

integral over �p?,
Z

d�d�2�p?
�

�ASS(�p?, q?)
�

�

2
(322)
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, (323)

where this is just the integral over the tree level result in Eq. (315). Thus the Glauber exchange

for these SS graphs cancel as long as the limits of integration for �p? are taken to infinity in the

e↵ective theory. Although this result does exhibit the cancellation of final state interactions, taken

rescattering phases can cancel	


in cross section
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Conclusion

•

•

Near Future

Future Directions

•  Amplitude Collinear and Regge Fact. Violation

• Joint DGLAP(  ) and BFKL(  ) resummation for small-x DIS

• Reproduce classic CSS proof of factorization in Drell-Yan 

µ �

• Study and prove or disprove factorization for less inclusive processes

• Improve theoretical description of Underlying Event

• ….

•
Constructed an EFT for             ,  Fwd. Scattering & Fact. Violations� t

Universal Operators that can be used for many processes & problems

Reggeization,  BFKL,  Soft-Glauber & Collinear-Glauber overlaps,  … 


