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A look at perturbative long distance behavior of amplitudes and cross sections
in coordinate space. “Where to large corrections come from?

– Coordinate space leading regions for fixed-angle scattering amplitudes

– Approximations and factorization

– Wilson lines: webs and the running coupling in coordinate space

– Extension to cross sections

– Cancellation: the largest time equation
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Coordinate space leading regions..

[Analogs in momentum space for amplitudes and cross sections are well-known and continue
to be studied (Collins, GS 1981; Sen, 1983; . . . Feige & Schwartz 1403.6472; Caron-Huot 1501.0354)]

Here, look at coordinate space VEVs for all massless fields in configurations reflecting scat-
tering. The scalar propagator, for example, with D = 2− 2ε:

∆(y − x) =
1

4π2−ε

1

(−(y − x)2 + iε)1−ε

Schematically, we have integrals over positions of internal vertices yk:

GN(x1, . . . , xN) = 〈0|T (φN(xN) · · · φ1(x1)) |0〉
∑

many
terms

∏

some
vertices k

∫
dDyk

∏

lines j

numerator

[−(
∑
k′ ηjk′ yk′ +

∑
k′ ηjl xl)2 + iε]pj

Powers pj = 1− ε (boson) or 2− ε (fermion, or derivative of boson).

Once UV renormalized, GN is singular only at pinches in the complex integrals over positions
of vertices, yk between “incoming” and “outgoing” propagators (on the light cone).
(S. Date 1983; A.O. Erdogan 1312.0058, PRD).
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Example:

∫
dDw

1

(−2(y − w)+(y − w)− − (y⊥ − w⊥)2 + iε)1−ε

×
1

(−2(w − x)+(w − x)− − (w⊥ − x⊥)2 + iε)1−ε

Corresponding to a pinch at w−,w⊥ = 0 when x and y are lined up in the + direction:

3



The result:

The general “leading (-power) region”; as in momentum space, a “physical picture”:
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FIG. 1: Leading pinch surfaces represented by soft, jet and hard subdiagrams for (a) cusp and (b) a typical multieikonal or
multi-parton amplitude. Gauge lines represent arbitrary number of connections between the subdiagrams. In (b) the double
line represents either Wilson lines or partonic propagators connected to the external vertices.

integrations over the positions of internal vertices considered as variables in complex coordinate space. This is the

direct analog of pinches in loop momenta [7, 31, 32]. As in momentum space, at each such leading region, the diagram

describes a physical processes with fully-consistent classical propagation for the set of lines that connect vertices

that are lightlike separated. We will refer to a manifold in coordinate space with a definite set of vertices pinched

at lightlike or vanishing separations as a pinch surface (PS). (We use this notation in the same sense as “PSS” in

Ref. [7].)

In Ref. [12] it was shown that at such pinch surfaces, diagrams are characterized by subdiagrams of soft, jet-like

and short-distance (hard) sets of lines, as depicted in Fig. 1, which is similar to the familiar structure of diagrams

at pinch surfaces in momentum space both in direct QCD treatments [7, 14, 15, 32] and in soft-collinear effective

theory [33, 34]. In the case of the massless cusp (Fig. 1(a)), for example, nonlocal ultraviolet subdivergences occur

when subsets of vertices align along the Wilson lines, and these configurations define jet subdiagrams. Other vertices

remain at finite distances from both Wilson lines and the cusp in the soft subdiagram, while the remaining vertices

move to the cusp and form the hard subdiagram [8].

The same factorization into the same types of subdiagrams also occurs for multieikonal vertices with more Wilson

lines and in partonic amplitudes in coordinate space whenever a single point in spacetime (the “hard scattering”)

is related to a set of external positions by lightlike distances, as illustrated in Fig. 1(b). (We assume that no

pair of external vertices is related by a lightlike distance.) To anticipate, at these leading regions or PSs, one can

make the coordinate-space soft-collinear and hard-collinear approximations, as defined in Ref. [12], which lead to the

factorization of these subregions by the application of Ward identities in the same way as in momentum space [14, 15].

We will give the expressions for these approximations for a leading PS below. We use the term “leading” to denote

an ultraviolet logarithm or a pole in the dimensionally regulated case, and where necessary to distinguish PSs that

produce such divergences from those that do not. As we quantify in the next subsection, for partonic amplitudes

at leading PSs in Feynman and other covariant gauges, a single line from each jet carries a physical polarization

(transverse for the gauge particle) into the hard subdiagram. All other gauge lines attached to the hard scattering are

scalar- or longitudinally-polarized [12]. We will use this result extensively below, and will assume that the external

General pinch surface (ρ) in coordinate space. Jets are in directions βI from the position of
a hard scattering. Each β2

I → 0 = β̄2
I , βI · β̄I = 1. Vertices group along the βI, near the

origin, or are at finite distances from these.
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A picture of “where the vertices are on pinch surface ρ”:
11
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FIG. 3: Representation of the arrangement of vertices near a leading pinch surface ρ directly in coordinate space and their

assignments to jet, J
(ρ)
I , hard, H(ρ), and soft, S(ρ) subdiagrams. For every region, the direction of the jet J

(ρ)
I is determined

by the relative position of the external point xI with respect to the position of the hard scattering.

can be seen by considering vertices in each of the subdiagrams associated with an arbitrary PS, ρ. For vertices xµ

in the soft subdiagram, the only approximations are for denominators attached to the jets, for which jet vertices are

set on the lightcones, βI . In neighborhood n[ρ], the xµ stay away from all of the lightcones, and the physical picture

correspondence eliminates PSs involving vertices in S(ρ), just as in the original integral. For vertices z
(K)
µ in jet K, the

integrals are unchanged, except for lines attached directly to the hard scattering, where terms that are nonleading in

the scaling variable are neglected. No approximations are made for lines internal to H(ρ). Pinches of the homogeneous

integral are still controlled by the distances of the external vertices xK of J
(ρ)
K to the relevant lightcone, and these

pinches develop in the same manner in the homogeneous as in the original integral. In the homogeneous integral,

defined as in Eq. (8), however, one or more of the the rescaled normal variables are always order unity. Thus, the

pinch surfaces of the homogeneous integral will involve fewer vanishing denominators than those of the original PSs.

We will use this observation in our construction of nested subtractions.

C. Approximation operators and region-by-region finiteness

We will now employ the approximations identified above to define a new set of approximation operators, denoted

tρ, one for each leading pinch surface ρ. Each operator tρ is defined to act on any diagram γ(n) that possesses

the corresponding PS and to give an expression that corresponds to the leading, singular behavior of γ(n) in the

neighborhood of PS ρ. Of course, this condition defines the operator tρ only up to a finite ambiguity. For our

purposes it will be most useful to construct subtractions similar to those employed in proofs of factorization in

Ref. [7].

We define the action of the approximation operator tργ
(n) as the imposition of the soft-collinear and hard-collinear

approximations given above in Eqs. (9), (11) and (12) on all lines to which they apply at PS ρ of diagram γ(n). This

action can be represented schematically by

tργ
(n) ≡

�

I

�
dτ (I) S

(ρ)
{µI}({τ (I)}) βµI

I β̄I,µ�
I

×
�

dη(I)

�
dD−1z(I) J

(ρ)µ�
Iν

�
I

I (z(I), η(I)) β̄I,ν�
I
βνI

I

�
dD−1y(I) H

(ρ)
{νI}(y

(I)) . (20)

• Vertices in H(ρ) are near the origin

• Vertices in J
(ρ)
I are “near” rays βµI ∝ x

µ
I for x2

I → 0

• Vertices in S(ρ) are separated from the origin and the rays.

This organizes large numbers of diagrams related by connecting vertices in all possible ways.
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In each such region (ρ), introduce an approximation operator acting on each diagram γ:
(GS, Erdogan 1411.4588)
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FIG. 3: Representation of the arrangement of vertices near a leading pinch surface ρ directly in coordinate space and their

assignments to jet, J
(ρ)
I , hard, H(ρ), and soft, S(ρ) subdiagrams. For every region, the direction of the jet J

(ρ)
I is determined

by the relative position of the external point xI with respect to the position of the hard scattering.

can be seen by considering vertices in each of the subdiagrams associated with an arbitrary PS, ρ. For vertices xµ

in the soft subdiagram, the only approximations are for denominators attached to the jets, for which jet vertices are

set on the lightcones, βI . In neighborhood n[ρ], the xµ stay away from all of the lightcones, and the physical picture

correspondence eliminates PSs involving vertices in S(ρ), just as in the original integral. For vertices z
(K)
µ in jet K, the

integrals are unchanged, except for lines attached directly to the hard scattering, where terms that are nonleading in

the scaling variable are neglected. No approximations are made for lines internal to H(ρ). Pinches of the homogeneous

integral are still controlled by the distances of the external vertices xK of J
(ρ)
K to the relevant lightcone, and these

pinches develop in the same manner in the homogeneous as in the original integral. In the homogeneous integral,

defined as in Eq. (8), however, one or more of the the rescaled normal variables are always order unity. Thus, the

pinch surfaces of the homogeneous integral will involve fewer vanishing denominators than those of the original PSs.

We will use this observation in our construction of nested subtractions.

C. Approximation operators and region-by-region finiteness

We will now employ the approximations identified above to define a new set of approximation operators, denoted

tρ, one for each leading pinch surface ρ. Each operator tρ is defined to act on any diagram γ(n) that possesses

the corresponding PS and to give an expression that corresponds to the leading, singular behavior of γ(n) in the

neighborhood of PS ρ. Of course, this condition defines the operator tρ only up to a finite ambiguity. For our

purposes it will be most useful to construct subtractions similar to those employed in proofs of factorization in

Ref. [7].

We define the action of the approximation operator tργ
(n) as the imposition of the soft-collinear and hard-collinear

approximations given above in Eqs. (9), (11) and (12) on all lines to which they apply at PS ρ of diagram γ(n). This

action can be represented schematically by

tργ
(n) ≡

�

I

�
dτ (I) S

(ρ)
{µI}({τ (I)}) βµI

I β̄I,µ�
I

×
�

dη(I)

�
dD−1z(I) J

(ρ)µ�
Iν

�
I

I (z(I), η(I)) β̄I,ν�
I
βνI

I

�
dD−1y(I) H

(ρ)
{νI}(y

(I)) . (20)

tργ
(n) = γ(n)

∣∣∣∣
div n[ρ]

≡ ∏

I

∫
dτ (I) S

(ρ)
{µI}({τ

(I)}) βµII β̄I,µ′I

×
∫
dη(I)

∫
dD−1z(I) J

(ρ)µ′Iν
′
I

I (z(I), η(I)) β̄I,ν′Iβ
νI
I

∫
dD−1y(I) H

(ρ)
{νI}(y

(I))

For gluons attaching “soft” function to jet I in direction βI, keep only the β̄I polarization
and the coordinate τI along the βI direction:

This can be a starting point for “deriving” Soft-Collinear EFT: in JI:
Aµ = Aµ

c (x) +Aµ
s (β̄I · x). (E.g., as described in Becher, Broggio, Ferroglia 2014. Stewart talk here.)
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The operators tρ organize all divergences as external points approach the light cone relative
to the hard scattering:

R
(n)
P γ(n)|div n̂[ρ] =


γ

(n) +
∑

N∈NP [γ(n)]

∏

ρ∈N
(− tρ) γ(n)



∣∣∣∣
div n̂[ρ]

= 0

Each tρ acts to approximate the integrand by its leading behavior near the singular surface.
Following Collins and Soper (1983) in axial gauge and Collins (2013) in covariant gauge,
the sum is over all possible nested regions, which cancels overlapping divergences. For this
process formalizes a strategy of regions. (Beneke Smirnov 1998, Jantzen 2011.) Within each region
ρ, only tρ approximation contributes, but each approximation extends over all coordinate
space.

This generalizes arguments given for Sudakov-related processes. The arguments are appli-
cable to momentum space, and the relation to NNLO arguments (c.f. talk by M. Czakon) is
clear. Each subtraction corresponds to a leading region. Any application illustrates that the
general elimination of double counting can be complicated even at low orders. Complicated
or not, double counting can be avoided to all orders, even with jets in the final state.
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As x2
I → 0 relative to the hard scattering (H): xµI ∝ β

µ
I , β2

I = 0, this allows the derivation
of a factorized amplitude in coordinate space

Already at one loop, nesting for fixed-angle scattering becomes nontrivial because in QCD,
hard scatterings can be disjoint

2020

x4

x3

x2

x1

y4

y3

y2

y1

FIG. 5: An example of disjoint hard subdiagrams.

soft function, S(⇢) of ⇢. We will see that when any such vertex is in a jet subdiagram of ⇢, then ⇢ is not a PS for

t��. We will then show that when all the external vertices of H(�) are in S(⇢), then ⇢ is not a leading PS of t��. The

only possibility left is that at least one vertex of H(�) is also a vertex in H(⇢), so that the hard subdiagrams are not

disjoint.

Consider first Fig. 5, which illustrates the possibility that an external vertex of H(�) is in a jet subdiagram of PS ⇢.

In the figure, we identify the hard scattering H(�) as the propagator y1 � y2, along with the vertices y1 and y2 which

it connects. In H(�), y1 ! y2 ! 0, while y3 and y4 remain at finite distances from each other with (y3�y4)
2 6= 0, and

approach the lightcones defined by x3 and x4, respectively. We then let H(⇢) be defined by y3 � y4 and ⇢ by the limit

y3 ! y4 ! 0 while y1 and y2 remain at finite distances with (y1 � y2)
2 6= 0, such that the lines (y1, y3) and (y2, y4)

are in the jet subdiagrams associated with external points x1 and x2, respectively. These two regions clearly cannot

be nested, and their hard subdiagrams are disjoint. Now in the neighborhood of PS ⇢, as y3 and y4 approach the

origin, y1 should move to the �1 light cone, which requires a pinch in the y1 integral. Since (y1 � y2)
2 6= 0 at ⇢, this

pinch can come from the denominators x1�y1 and y1�y3. The action of t�, however, partially decouples the internal

integrals of the hard subdiagram (y1, y2) from the � jet subdiagrams. For the subtracted diagram, t��, t� applies the

hard-collinear approximation hc(1) from Eq. (12) to (x1 � y1)
µ, which is then replaced by a line (x1 � y1 · �1�̄1)

µ.

Similarly, it applies hc(3) to y1 � y3, which is replaced by (y1 · �3�̄3 � y3)
µ. The two lines thus depend on di↵erent

components of yµ
1 , and the y1 integrals cannot be pinched at y1 · �1 = 0. The lines x1 � y1 and y1 � y3 are therefore

not pinched in region ⇢ after the action of t�.

The feature of the example in Fig. 5 that extends to more general cases is that operator t� acts on the line y1 � y3

with the hard-collinear approximation hc(3), which eliminates the pinch that fixes vertex y1 in J
(⇢)
1 . In the original

integral, the coordinate y1 · �1 is pinched at the origin between poles from the propagators of x1 � y1 and y1 � y3

when they are in J1. After the action of t�, however, the propagator associated with line y1 � y3 no longer has a pole

when y1 · �1 = 0 because y1 · �3 6= 0 when y1 / �1. To extend this result to higher orders, we must treat general

hard-scattering subdiagrams, and allow the possibility that more than one external vertex of H(�) appears in the jet

subdiagrams J
(⇢)
L of PS ⇢.

Suppose then, that in the general case more than one external vertices of H(�) attach to lines in one or more

subdiagram J
(⇢)
L . Now, because H(�) is connected, and because in region ⇢ each jet corresponds to physically-

propagating lines, one or more lines in jet J
(⇢)
L must enter subdiagram H(�) at one of its external vertices, and leave

FIG. 5: An example of disjoint hard subdiagrams.

the vertices of H(�) to which they attach can be in H(⇢). Then, each external vertex of the hard subdiagram H(�)

either appears as an internal vertex in some jet subdiagram J
(⇢)
L of ⇢, or is an internal vertex of the soft function,

S(⇢) of ⇢. We will see that when any such vertex is in a jet subdiagram of ⇢, then ⇢ is not a PS for t��. We will then

show that when all the external vertices of H(�) are in S(⇢), then ⇢ is not a leading PS of t��. The only possibility

left is that at least one vertex of H(�) is also a vertex in H(⇢), so that the hard subdiagrams are not disjoint.

Consider first Fig. 5, which illustrates the possibility that an external vertex of H(�) is in a jet subdiagram of PS ⇢.

In the figure, we identify the hard scattering H(�) as the propagator y1 � y2, along with the vertices y1 and y2 which

it connects. In H(�), y1 ! y2 ! 0, while y3 and y4 remain at finite distances from each other with (y3�y4)
2 6= 0, and

approach the light cones defined by x3 and x4, respectively. We then let H(⇢) be defined by y3 � y4 and ⇢ by the limit

y3 ! y4 ! 0 while y1 and y2 remain at finite distances with (y1 � y2)
2 6= 0, such that the lines (y1, y3) and (y2, y4)

are in the jet subdiagrams associated with external points x1 and x2, respectively. These two regions clearly cannot

be nested, and their hard subdiagrams are disjoint. Now in the neighborhood of PS ⇢, as y3 and y4 approach the

origin, y1 should move to the �1 light cone, which requires a pinch in the y1 integral. Since (y1 � y2)
2 6= 0 at ⇢, this

pinch can come from the denominators x1�y1 and y1�y3. The action of t�, however, partially decouples the internal

integrals of the hard subdiagram (y1, y2) from the � jet subdiagrams. For the subtracted diagram, t��, t� applies the

hard-collinear approximation hc(1) from Eq. (12) to (x1 � y1)
µ, which is then replaced by a line (x1 � y1 · �1�̄1)

µ.

Similarly, it applies hc(3) to y1 � y3, which is replaced by (y1 · �3�̄3 � y3)
µ. The two lines thus depend on di↵erent

components of yµ
1 , and the y1 integrals cannot be pinched at y1 · �1 = 0. The lines x1 � y1 and y1 � y3 are therefore

not pinched in region ⇢ after the action of t�.

The feature of the example in Fig. 5 that extends to more general cases is that operator t� acts on the line y1 � y3

with the hard-collinear approximation hc(3), which eliminates the pinch that fixes vertex y1 in J
(⇢)
1 . In the original

integral, the coordinate y1 · �1 is pinched at the origin between poles from the propagators of x1 � y1 and y1 � y3

when they are in J
(⇢)
1 . After the action of t�, however, the propagator associated with line y1 � y3 no longer has a

pole when y1 · �1 = 0 because y1 · �3 6= 0 when y1 / �1. To extend this result to higher orders, we must treat general

hard-scattering subdiagrams, and allow the possibility that more than one external vertex of H(�) appears in the jet

subdiagrams J
(⇢)
L of PS ⇢.

Suppose then, that in the general case more than one external vertex of H(�) attaches to lines in a subdiagram J
(⇢)
L .

Now, because H(�) is connected, and because in region ⇢ each jet corresponds to physically propagating lines, one or

Either gluon can carry the hard scattering, with the other soft or (2 choices of) collinear (or
part of the hard scattering).
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The result for VEVs with fixed-angle geometry:

G ({xI}) =
a∏

I=1

∫
dηI j

part
I (xI, ηIβ̄I) Sren({βI · βJ}) H

(
{ηIβ̄I}

)

with “jet” functions

j
part[fφ]
I (xI, ηIβ̄I) = ccusp

I (βI, β̄I)
〈
0
∣∣∣∣∣T

(
φ(xI)φ

†(ηIβ̄I)Φ
[fφ]

β̄I

†(∞, ηIβ̄I)
)∣∣∣∣∣ 0

〉
,

and a soft function constructed entirely from Wilson lines in the βI directions.
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Coordinate picture of soft radiation (cusps and polygons in QCD)

(Erdogan (. . . 1312.3310, PRD), Mitov, GS, Sung, PRD,)

• Combinatoric exponentiation in coordinate space (It’s more general, but we’ll consider
just the cusp.) (Gardi, Magnea – see talks here)

• Will find an interesting ‘geometrical’ interpretation directly in QCD, which becomes exact
for large-N .

• The 2-line eikonal form factor is the exponential of a sum of two-eikonal irreducible
diagrams, the “webs” with modified color factors:
(Gatheral, Frenkel Taylor, GS, 1981-83)

A = exp



∞∑

i=1
w(i)




• ‘‘Webs” in the exponent, w(i). are 2-eikonal irreducible diagrams. At 2 loops:

• All have color factor (fundamental representation) CFCA (only – no C2
F ).
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• Here’s how it works. Say we know the exponent w(i) to order N . Expand to N + 1st
order, as a sum of diagrams and in terms of the exponential

A(N+1) =


 exp



N+1∑

i=1
w(i)






(N+1)

A(N+1) =
∑

D(N+1)

D(N+1) .

• This gives a formula for the highest order in the exponent:

w(N+1) =
∑

D(N+1)

D(N+1) −


N+1∑

m=2

1

m!

N∑

im=1
. . .

N∑

i1=1
w(im)w(im−1) . . . w(i1)




(N+1)

• The simplest (and most general) proofs are in coordinate spacee.
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To the relation

w(N+1) =
∑

D(N+1)

D(N+1) −
[ N+1∑

m=2

1

m!

N∑

im=1
. . .

N∑

i1=1
w(im)w(im−1) . . . w(i1)

](N+1)

• Now apply the ‘abelian’ graphical identity, which holds for any number, length or shape
of Wilson lines, simply an expression of the path ordering of exp[

∫
dλβ ·A(βλ)]:

W1

W2
W2W1

Figure 2: Illustration of the coordinate identity, Eq. (13), where each line attaching W1 and

W2 to a Wilson line stands for an arbitrary number of gluons (e
(a)
i in the text.) The sum

on the right represents the sum over all mutual orderings of the external gluons of W1 and
W2, preserving the orderings internal to each W along the Wilson line. The color-dependent
product of the web internal factors, W1 and W2 are the same on both sides of the figure.

where in the first equality we define τ
(a)
0 ≡ 0. The second form represents the integrals as

a functional IE , acting on the “internal web function” W(i)
E corresponding to w

(i)
E . W(i)

E is

a function of all the τ
(a)
j s, and includes all color and velocity dependence associated with

the gluons, including the vectors ξµ(τ
(a)
j ) that are contracted with the gluon propagators.

Notice that IE depends only on the assignment of gluon connections, E, and is otherwise
independent of the internal function W(i)

E , including its order, i. We now use this property
of the I’s to derive an identity that will serve as a lemma for our main result.

Let us consider the product of functionals, IEs, s = 1 . . .m, with each factor defined by
(12). For a given choice of Wilson line a, the integrals within each factor of the product
are ordered as in (12) above, but they are not otherwise mutually ordered between different
products. We can, however, write the product as a sum of terms, in which all the integration
parameters τ

(a)
js

from every factor IEs, s = 1 . . .m are ordered with respect to the integrals
along every line from every other factor, while maintaining the original ordering within each
factor. The sum is effectively over all possible interleaving of the integrals with each other.
We label each such ordering by Eπ(∪sEs), with π an element of the set Π({Es}) of the

permutations of all the parameters τ
(a)
js

, which preserve the original ordering internal to each
IEs

m∏

s=1

IEs =
∑

π∈Π({Es})

IEπ(∪m
s=1Es) , (13)

This identity holds for any sets of Wilson lines, which need not be straight, or of infinite
length. We note that at this stage, every term on the right-hand side of (13) is different,
because the integrals within each IEs will act on different functions. We will come back
to this point shortly. Figure 2 illustrates Eq. (13), where the sum in the figure represents
the sum over all interleavings of gluons connecting the two w’s to the lines. As the figure

6

The (“shuffle”) identity allows us to interpret the products of order wn’s, n = 1 . . . N

in terms of N+1st order diagrams, so that the effect of all the lower orders is to modify
color factors, since these are unaffected by the identity.
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• Important: The webs automatically subtract all divergences where there is more than
one ‘subjet’ in the web. The entire web is either hard, soft, or collinear to one line or
the other. (Erdogan, GS, 1112.4564 and 1411.4588, PRD)

• The web acts like a single gluon (consistent with the dipole exponentiation).

• As ordered exponentials, the webs can be constructed in coordinate space. Care must be
taken to preserve gauge invariance, or double-logarithmic exponentiation fails in general.
With this in mind, the result, with an IR cutoff L, is:

E(L, ε) =
∫ L
0

dλ

λ

dσ

σ
w (αs (1/λσ))

• Here σ and λ are distances along the eikonal lines. The invariant size of the web fixes
the running coupling.

w = −
1

4
A(αs) +O(ε)

13



• Again,

E(L, ε) =
∫ L
0

dλ

λ

dσ

σ
w (αs (1/λσ))

• A “surface” interpretation is tempting, viz. minimizing a 5-dimensional surface
(Alday, Maldacena 2007).

In QCD the coupling runs as the integral passes over the surface.

The result holds to all orders in perturbation theory, and gives the structure of power
corrections by Borel or related analysis. It is not limited to “dressed gluon” or related
subsets of diagrams.
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• Another interesting correspondence: polygonal Wilson lines (Korchemskaya, Korchemsky

(1993), Drummond et al (2008). . . ). Webs appear in “corners, and when defined in a gauge-
invariant fashion give the leading singularities:

• Neglecting the running of αs, another analogy to minimal surfaces in 5-D:

4∑

a=1
Wa(βa, β

′
a) =

∫ 1

−1
dy1

∫ 1

−1
dy2

4wconformal

(1− y2
1)(1− y2

2)

(Again, as in Alday, Maldacena 2007)
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A coordinate picture for cross section: Schematically:
∏
k
∫
dDkA∗({k}) ∏k δ+(k2)A({k})

Start with the “cut propagator” with momentum flowing out of w and into y:

∫ dDk

(2π)D
e−ik·(y−w) (2π) δ+

(
k2

)
=

1

4π2−ε

1

(−(y − w)2 + iε(y − w)0)1−ε

For w0 > y0 this is like a propagator in A∗, for w0 > x0, like a propagator in A.

This feature leads to pinch surfaces for “cut diagrams”, and hence in cross sections.
Then when x and y go to the + direction, w is also pinched in the plus direction.

For a pinch, we can assume that w0 > x0. Then
If y0 > w0, the “cut” propagator has a +iε, and produces a pinch just like in the amplitude
for y−w+ > 0. If x0 > y0, the “cut” propagator has a −iε, and it still produces a pinch
because now y− − w+ < 0 .
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All this means that cross sections have the same pinch surfaces as amplitudes, but with
energy flow reversed in the complex conjugate. Just like time-ordered perturbation theory,
but with the vertices everywhere in coordinate space.

Because vertices of both A and A∗ are ordered, the vertex with the largest time is always
adjacent to the final state, and connected across the cut.

As for example, in the simplest case of e+e− annihilation:

How cancellation takes place: the hermiticity of the interaction.
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Cancellation of IR divergences: Let w0 be the “largest time”.
(Veltman 1983 . . . R. Akhoury 1992, Laenen, Larsen, Rietkerk 1505.02555)

w0 > x0 and w0 > y0

w may be in A or in A∗, and we must sum over both cases: N and N ′ with vertex at w in
A∗ and A:

∫
dDw

{ ∏

j

1

−(ywj − w)2 + iε(ywj − w)0
[iV (∂w)]

∏

i

1

−(w − xwi )2 + iε

+
∏

j

1

−(ywj − w)2 − iε
[−iV (∂w)]

∏

i

1

−(w − xwi )2 + iε(w − xwi )0

}

(Typically, m,n = 1, 2.)

Vanishes because w0 > x0, y0, i.e., is the largest time.
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Directions we should go . . . weighted and cut cross sections - all these boil down to
top

2

divergences at intermediate steps and the necessity to
sum over all final states.

EEC (1) admits an equivalent representation analo-
gous to (3) in terms of the Wightman (non-time-ordered)
correlation function

〈E(!n1)E(!n2)〉q =
∫

d4x eiq·x〈0|O†(x)E(!n1)E(!n2)O(0)|0〉
(4)

involving the so-called energy flow operators [4–6]

E(!n) =
∫ ∞

−∞
dτ lim

r→∞
r2niT0i(t = τ + r, r!n) . (5)

Here the stress-energy tensor Tµν(t, !x) is placed infinitely
far from the collision region and is integrated over the
detector working time. The operator (5) describes a
calorimeter and has a simple physical interpretation: it
measures the energy flux per unit solid angle in a given
directions !n (with !n2 = 1). The product E(!n1)E(!n2)
measures the correlation between energy flowing in the
direction of !n1 and !n2. Then, EEC is given by the corre-
lation function (4) averaged over the orientations !n1 and
!n2, with the relative angle χ kept fixed

EEC =
∫

dΩ1dΩ2 δ(!n1 · !n2 − cosχ) 〈E(!n1)E(!n2)〉q
Q2σtot

. (6)

For a scalar source O(x) and qµ = (Q,!0), the correlation
function (4) only depends on (!n1 ·!n2) so that the average
(6) becomes trivial.

Relations (3), (4) and (6) rely on unitarity and the
completeness of the asymptotic states,

∑
X |X〉〈X | = 1.

They hold in a generic field theory, be it QCD or N = 4
SYM. To make use of (3) and (4), we have to specify the
source O(x) and find an efficient way of computing the
Wightman correlation functions involving the energy flow
operators. For e+ e−−annihilation in QCD, the operator
O(x) is given by the electroweak quark current. For the
sake of simplicity, in N = 4 SYM we choose it to be the
simplest half-BPS operator of dimension two, O(x) =
tr[Z2(x)], built from a complex scalar Z(x).

At weak coupling, the operator tr[Z2(x)] produces out
of the vacuum a pair of complex scalars that decays into
an arbitrary number of on-shell massless N = 4 parti-
cles (gluons, gluinos and scalars). EEC in N = 4 SYM
receives contributions from the same type of Feynman
diagrams as in QCD with the only difference that the
detected particles a and b can be of different types. An-
other advantage of the choice of half-BPS operators is
that the two-point correlation function 〈0|O†(x)O(0)|0〉
is protected in N = 4 SYM from quantum corrections
and is given by its Born approximation. Together with
(3) this leads to σtot = (N2 − 1)/(4π) which is valid in
N = 4 SYM for arbitrary coupling. Unlike σtot, EEC is
fixed up to an arbitrary function F (z; a) of the angle χ

and the ’t Hooft coupling a = g2
YMN/(4π2)

EECN=4 = F (z; a)
4z2(1 − z) , z = sin2(χ/2). (7)

Here 0 < z < 1 and the prefactor is chosen for conve-
nience. EEC is expected to be a regular positive-definite
function of z, normalized as

∫ 1
0 dz EEC(z) = 1/2.

In close analogy with the QCD result (2), the weak-
coupling expansion of F (z, a) starts at order O(a). The
lowest order term comes from the transition of the oper-
ator tr[Z2(x)] into three-particle states (two scalars plus
a gluon and a scalar plus a pair of gluinos). It reads [7]

EECN=4 = a

4z3
z

1− z
ln 1

1− z
+O(a2) . (8)

Comparing this relation with (2), we observe that (up to
the redefinition of the coupling a → αsCF /π) EEC in
QCD and in N = 4 SYM have identical asymptotics for
z → 1. Also, both EECs exhibit the same O(1/z) behav-
ior for z → 0, but the coefficient driving this asymptotics
is different. For z → 1, or equivalently χ → π, EEC
measures back-to-back correlations and its asymptotic
behavior is governed by the emission of soft and collinear
particles. Their contribution can be analyzed using the
semiclassical approximation and is known to be univer-
sal, independent of the choice of the source O(x) in both
theories. On the other hand, the z → 0 asymptotics
describes the correlation between particles with almost
aligned momenta. It is driven by the collinear branch-
ing of particles in the final state and is sensitive to the
particle content of the theory.
3. Method and result. Trying to compute the next-
to-leading O(a2) correction to (8) using the conventional
technique based on scattering amplitudes, we encounter
the same complications as in QCD. They can be overcome
by employing (4) and applying the formalism developed
in Refs. [6]. It allows us to avoid infrared divergences
and provides a framework that preserves all symmetries
of the theory at every step of the calculation.

Replacing E in (4) by its definition (5), we see that
EEC is related to a multi-fold integral of the four-point
Wightman correlation function 〈O†TµνTρσO〉 involving
two half-BPS operators and two stress tensors. In N = 4
SYM it has the following remarkable properties. First,
the superconformal symmetry relates it to the one built
from four scalar half-BPS operators, thus eliminating the
complication of dealing with Lorentz indices. Second, in
Euclidean space, the latter correlation function is defined
by a single function Φ(u, v; a) of the conformal cross ra-
tios u and v and admits the Mellin representation

Φ(u, v; a) =
∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2M(j1, j2; a)uj1vj2 . (9)

The Mellin amplitude M(j1, j2; a) is known both at weak
and strong coupling in planar N = 4 SYM. The integral
in (9) goes along the imaginary axis with 0 < δ < 1/2.
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Wightman correlation function 〈O†TµνTρσO〉 involving
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Which can be defined directly in four dimensional space, potentially avoiding an IR-regulated QCD.
(. . . Belitsky, Hohenneger, Korchemsky, Sokachev, Zhiboedov, 1311.6800 [exact in N=4 SYM])
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Some final thoughts

• Could we introduce “emergent” degrees of freedom more naturally in coordinate space?

• The history of QCD jets and hadronization is there for the reading if only we can learn the language.
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