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A look at perturbative long distance behavior of amplitudes and cross sections
in coordinate space. “Where to large corrections come from?

— Coordinate space leading regions for fixed-angle scattering amplitudes
— Approximations and factorization

— Wilson lines: webs and the running coupling in coordinate space

— Extension to cross sections

— Cancellation: the largest time equation



Coordinate space leading regions..

[Analogs in momentum space for amplitudes and cross sections are well-known and continue
to be studied (Collins, GS 1981; Sen, 1983; ... Feige & Schwartz 1403.6472; Caron-Huot 1501.0354)]

Here, look at coordinate space VEVs for all massless fields in configurations reflecting scat-
tering. The scalar propagator, for example, with D = 2 — 2¢:
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Schematically, we have integrals over positions of internal vertices y;:
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Powers p; =1 — ¢ (boson) or 2 — ¢ (fermion, or derivative of boson).

Once UV renormalized, G is singular only at pinches in the complex integrals over positions
of vertices, y; between “incoming” and “outgoing” propagators (on the light cone).
(S. Date 1983; A.O. Erdogan 1312.0058, PRD).



Example:
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Corresponding to a pinch at w—,w,; = 0 when x and y are lined up in the + direction:




The result:

The general “leading (-power) region”; as in momentum space, a “physical picture”:

General pinch surface (p) in coordinate space. Jets are in directions 3; from the position of
a hard scattering. Each 32 — 0 = (37, B - Br = 1. Vertices group along the 3;, near the
origin, or are at finite distances from these.



A picture of “where the vertices are on pinch surface p”:

e Vertices in H(®) are near the origin
e Vertices in J!” are “near” rays 8% o ! for z2 — 0

e Vertices in S(®) are separated from the origin and the rays.

This organizes large numbers of diagrams related by connecting vertices in all possible ways.



In each such region (p), introduce an approximation operator acting on each diagram ~:
(GS, Erdogan 1411.4588)
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For gluons attaching “soft” function to jet I in direction 3;, keep only the 3; polarization
and the coordinate 77 along the 3; direction:

This can be a starting point for “deriving” Soft-Collinear EFT: in J;:
AF = A’C‘(:B) + Ag(BI - x). (E.g., as described in Becher, Broggio, Ferroglia 2014. Stewart talk here.)



The operators t, organize all divergences as external points approach the light cone relative
to the hard scattering:
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Each t, acts to approximate the integrand by its leading behavior near the singular surface.
Following Collins and Soper (1983) in axial gauge and Collins (2013) in covariant gauge,
the sum is over all possible nested regions, which cancels overlapping divergences. For this
process formalizes a strategy of regions. (Beneke Smirnov 1998, Jantzen 2011.) Within each region
p, only t, approximation contributes, but each approximation extends over all coordinate
space.

This generalizes arguments given for Sudakov-related processes. The arguments are appli-
cable to momentum space, and the relation to NNLO arguments (c.f. talk by M. Czakon) is
clear. Each subtraction corresponds to a leading region. Any application illustrates that the
general elimination of double counting can be complicated even at low orders. Complicated
or not, double counting can be avoided to all orders, even with jets in the final state.



As x3 — O relative to the hard scattering (H): =7 o 87, 8% = 0, this allows the derivation
of a factorized amplitude in coordinate space

Already at one loop, nesting for fixed-angle scattering becomes nontrivial because in QCD,
hard scatterings can be disjoint
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Either gluon can carry the hard scattering, with the other soft or (2 choices of) collinear (or
part of the hard scattering).



The result for VEVs with fixed-angle geometry:
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with “jet” functions
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and a soft function constructed entirely from Wilson lines in the 3; directions.



Coordinate picture of soft radiation (cusps and polygons in QCD)

(Erdogan (...1312.3310, PRD), Mitov, GS, Sung, PRD,)

e Combinatoric exponentiation in coordinate space (It’s more general, but we’ll consider
just the cusp.) (Gardi, Magnea — see talks here)

e Will find an interesting ‘geometrical’ interpretation directly in QCD, which becomes exact
for large-N.

e The 2-line eikonal form factor is the exponential of a sum of two-eikonal irreducible
diagrams, the “webs” with modified color factors:
(Gatheral, Frenkel Taylor, GS, 1981-83)

A = exp [§ w(i)]
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e ‘“Webs” in the exponent, w¥. are 2-eikonal irreducible diagrams. At 2 loops:
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e All have color factor (fundamental representation) CrC4 (only — no C%).
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e Here’s how it works. Say we know the exponent w(® to order N. Expand to N + 1st
order, as a sum of diagrams and in terms of the exponential
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e This gives a formula for the highest order in the exponent:
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e The simplest (and most general) proofs are in coordinate spacee.
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To the relation
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e Now apply the ‘abelian’ graphical identity, which holds for any number, length or shape
of Wilson lines, simply an expression of the path ordering of exp[/ dA3 - A(BA)]:

The (“shuffle”) identity allows us to interpret the products of order w,’s, n =1...IN
in terms of NV 4 1st order diagrams, so that the effect of all the lower orders is to modify
color factors, since these are unaffected by the identity.
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e Important: The webs automatically subtract all divergences where there is more than
one ‘subjet’ in the web. The entire web is either hard, soft, or collinear to one line or
the other. (Erdogan, GS, 1112.4564 and 1411.4588, PRD)

e The web acts like a single gluon (consistent with the dipole exponentiation).

e As ordered exponentials, the webs can be constructed in coordinate space. Care must be
taken to preserve gauge invariance, or double-logarithmic exponentiation fails in general.
With this in mind, the result, with an IR cutoff L, is:

B(L,e) = [ % w (@ (1/20))

e Here o and A\ are distances along the eikonal lines. The invariant size of the web fixes
the running coupling.

1
w = — 4A(Oﬂ8) + O(e)
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e Again,

E(L,e)= [ d;‘ ‘f: w (as (1/Aa))

e A “surface” interpretation is tempting, viz. minimizing a 5-dimensional surface
(Alday, Maldacena 2007).

In QCD the coupling runs as the integral passes over the surface.

The result holds to all orders in perturbation theory, and gives the structure of power
corrections by Borel or related analysis. It is not limited to “dressed gluon” or related

subsets of diagrams.
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e Another interesting correspondence: polygonal Wilson lines (Korchemskaya, Korchemsky
(1993), Drummond et al (2008)...). Webs appear in “corners, and when defined in a gauge-
invariant fashion give the leading singularities:

e Neglecting the running of o, another analogy to minimal surfaces in 5-D:
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(Again, as in Alday, Maldacena 2007)
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A coordinate picture for cross section: Schematically: 115, f dPkA*({k}) 11, 6. (K*)A({k})

Start with the “cut propagator” with momentum flowing out of w and into y:
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For w® > 4° this is like a propagator in A*, for w® > z°, like a propagator in A.

This feature leads to pinch surfaces for “cut diagrams”, and hence in cross sections.
Then when = and y go to the 4 direction, w is also pinched in the plus direction.

Tw
KMN\A/\/\N\/\I\/\/\/W\A/V\/\!}’

> 4

A A*

For a pinch, we can assume that w" > z°. Then

If y° > w?, the “cut” propagator has a +ie, and produces a pinch just like in the amplitude
for y—wt > 0. If ¥ > 9y the “cut” propagator has a —ie, and it still produces a pinch
because now y=— — wt < 0.
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All this means that cross sections have the same pinch surfaces as amplitudes, but with
energy flow reversed in the complex conjugate. Just like time-ordered perturbation theory,
but with the vertices everywhere in coordinate space.

Because vertices of both A and A* are ordered, the vertex with the largest time is always
adjacent to the final state, and connected across the cut.

As for example, in the simplest case of eTe™ annihilation:

How cancellation takes place: the hermiticity of the interaction.
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Cancellation of IR divergences: Let w® be the “largest time”.
(Veltman 1983 ... R. Akhoury 1992, Laenen, Larsen, Rietkerk 1505.02555)

0 0

w > x andw0>y0

w may be in A or in A*, and we must sum over both cases: N and N’ with vertex at w in
A* and A:
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(Typically, m,n = 1, 2.)

Vanishes because w® > 2%, 99, i.e., is the largest time.
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Directions we should go ... weighted and cut cross sections - all these boil down to
top
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Which can be defined directly in four dimensional space, potentially avoiding an IR-regulated QCD.
(. . . Belitsky, Hohenneger, Korchemsky, Sokachev, Zhiboedov, 1311.6800 [exact in N=4 SYM])

19



Some final thoughts

e Could we introduce “emergent” degrees of freedom more naturally in coordinate space?

e The history of QCD jets and hadronization is there for the reading if only we can learn the language.
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