RadCor-Loopfest

Non-renormalization Theorems without Supersymmetry

Chia-Hsien Shen

Walter Burke Institute for Theoretical Physics, Caltech

based on 1505.01844 with Clifford Cheung

• Full 59×59 anomalous dimension matrix of dimension-6 operators

Alonso, Jenkins, Manohar, Trott: 1409.0868

• Holomorphy without supersymmetry?

Alonso, Jenkins, Manohar, Trott: 1409.0868

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

Outline

• Introduction

- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

Theory space

• EFTs: massless theories with marginal interactions, deformed by irrelevant operators of the same dimension.

• Operator mixing at 1-loop: $\frac{1}{(4\pi)^2}$

$$\frac{1}{(4\pi)^2} \frac{dc_i}{d\log\mu} = \sum_j \gamma_{ij} c_j$$

- Suitable for the anomalous dimension of SMEFT.
- No assumption on matter content or gauge symmetries!

Independent Basis of Operators

• Field Redefinitions \Leftrightarrow Equations of Motion:

$$\phi \to \phi + \frac{1}{\Lambda} \delta \phi$$

 $\mathcal{L} \to \mathcal{L} + \frac{1}{\Lambda} \delta \phi \times \text{EoM} + \mathcal{O}(\frac{1}{\Lambda^2})$

 $\bar{\psi}^2 \psi^2 \xrightarrow{\text{loop}} \bar{\psi} \sigma^\mu \psi [D_\nu, F_{\mu\nu}] \xrightarrow{\text{EoM}} \bar{\psi} \sigma^\mu \psi \bar{\psi} \sigma_\mu \psi$

- Independent basis: no operators related by EoM
- Applying equations of motion at loop level
 - local operator from non-local diagram!

Independent Basis of Operators

• Field Redefinitions \Leftrightarrow Equations of Motion:

$$\phi \to \phi + \frac{1}{\Lambda} \delta \phi$$

 $\mathcal{L} \to \mathcal{L} + \frac{1}{\Lambda} \delta \phi \times \text{EoM} + \mathcal{O}(\frac{1}{\Lambda^2})$

- Independent basis: no operators related by EoM
- Applying equations of motion at loop level
 - local operator from non-local diagram!

$$\bar{\psi}^2 \psi^2 \xrightarrow{\text{loop}} \bar{\psi} \sigma^\mu \psi [D_\nu, F_{\mu\nu}] \xrightarrow{\text{EoM}} \bar{\psi} \sigma^\mu \psi \bar{\psi} \sigma_\mu \psi$$

Off-shell Lagrangian v.s. On-shell Amplitudes

- **Off-shell** Lagrangian: **unphysical**, *e.g.*, gauge choice and field redefinition
- **On-shell** amplitudes: **all physical** information!
 - Use multiplicity & helicity; factorization & unitarity

Off-shell Lagrangian v.s. On-shell Amplitudes

- **Off-shell** Lagrangian: **unphysical**, *e.g.*, gauge choice and field redefinition
- **On-shell** amplitudes: **all physical** information!
 - Use multiplicity & helicity; factorization & unitarity

Off-shell Lagrangian v.s. On-shell Amplitudes

- **Off-shell** Lagrangian: **unphysical**, *e.g.*, gauge choice and field redefinition
- **On-shell** amplitudes: **all physical** information!
 - Use multiplicity & helicity; factorization & unitarity

Zvi Bern: On-shell: Good Off-shell: Bad TASI 2014

RadCor-Loopfest

Off-shell Lagrangian v.s. On-shell Amplitudes

Off-shell	On-shell
Higher dimensional operator \mathcal{O}_i	Contact amplitude A_i with \mathcal{O}_i insertion
Anomalous dimension γ_{ij}	UV divergence of the loop amplitude $A_i^{ m loop}$ from \mathcal{O}_j .
Field redefinitions/Equations of motion	Full amplitudes including non-1PI diagrams
Non-renormalization	UV finiteness of loop amplitudes

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

Definition of Weights

• Weight/Anti-weight for an **amplitude**

$$w(A) = n(A) - h(A), \qquad \overline{w}(A) = n(A) + h(A)$$

- n(A): total number of particles; h(A): sum over helicities
- Weight/Anti-weight for an **operator**

$$w(\mathcal{O}) = \min\{w(A)\}, \qquad \overline{w}(\mathcal{O}) = \min\{\overline{w}(A)\}$$

- Minimum weights for all contact amplitudes with this operator ${\cal O}$
- Weights of amplitudes are greater or equal to \mathcal{O} (to be proven...)

Weights 101

- Physical: free from field redefinition/gauge choice
- Non-negative: $(w, \overline{w}) \ge 0$ $(n \ge h \text{ for spin} \le 1 \text{ theories})$
- In practice, sum over each field component in an operator

\mathcal{O}	$F_{\alpha\beta}$	ψ_{lpha}	ϕ	$ar{\psi}_{\dot{lpha}}$	$ar{F}_{\dot{lpha}\dot{eta}}$
h	+1	+1/2	0	-1/2	-1
(w,\overline{w})	(0,2)	(1/2, 3/2)	(1, 1)	(3/2, 1/2)	(2,0)

- Using spinor indices: e.g. $F_{\alpha\dot{\alpha}\beta\dot{\beta}} = F_{\alpha\beta}\bar{\epsilon}_{\dot{\alpha}\dot{\beta}} + \bar{F}_{\dot{\alpha}\dot{\beta}}\epsilon_{\alpha\beta}$
- Covariant derivative D does not contribute (*i.e.* taking $D=\partial$)
- Example: $F^3 \to (0,6), \ \overline{\psi}\psi\phi^2D \to (4,4)$
- same as k-charge in N=4 sYM.

New Non-renormalization Theorems

• An operator \mathcal{O}_j CANNOT renormalize operator \mathcal{O}_i at 1-loop if \mathcal{O}_j has higher weight or anti-weight than \mathcal{O}_i .

$$\gamma_{ij} = 0$$
 if $w_i < w_j$ or $\overline{w}_i < \overline{w}_j$,

only violated by non-holomorphic Yukawa interactions.

• The direction of RG has to go **positive** (non-negative) in weights and anti-weights.

RadCor-Loopfest

Positivity in RG Running

w

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

Three-point Amplitudes

• Universal formula for massless particles [Benincasa & Cachazo,0705.4305]

 $A(1^{h_1}2^{h_2}3^{h_3}) = g \begin{cases} \langle 12 \rangle^{r_3} \langle 23 \rangle^{r_1} \langle 31 \rangle^{r_2}, & \sum_i h_i \leq 0 \quad (\text{MHV}) \\ \\ [12]^{\overline{r}_3} [23]^{\overline{r}_1} [31]^{\overline{r}_2}, & \sum_i h_i \geq 0 \quad (\overline{\text{MHV}}) \end{cases}$

Little group+dimensional analysis

 $(w_3, \overline{w}_3) = (4 - [g], 2 + [g]), (2 + [g], 4 - [g])$

• Lower bound for marginal interactions:

$$w_3, \overline{w}_3 \ge 2$$

Four-point Amplitudes

- Most of w < 4 amplitudes vanish
 - w = 1, 3 : no diagram
 - w = 0, 2 : have diagrams, but vanish on-shell, e.g., all-plus/all-but-one plus gluon amplitudes
- Lower bound for four-point amplitudes: •

$$w_4, \overline{w}_4 \ge 4$$
 mod

- dulo Exceptional amplitude A(ψ⁺ψ⁺ψ⁺ψ⁺): w = 2
 Non-holomorphic Yukawa: ψ²φ + ψ²φ[†]

Tree Rule

• Approach factorization limit of an amplitude

General Tree Amplitudes

Factorize higher point amplitudes with renormalizable interactions: w₃ ≥ 2, w₄ ≥ 4 & w_i = w_j + w_k - 2
5pt → 3pt × 4pt: (w₅, w₅) ≥ (4, 4)...

$$w_n, \overline{w}_n \ge \begin{cases} 2, & n=3\\ 4, & n>3 \end{cases}$$

• modulo exceptional amplitudes with w_n or $\overline{w}_n = 2$ from non-holomorphic Yukawa interactions.

General Tree Amplitudes

• Factorize an amplitude built from a single insertion higher dimensional operator: higher dim'l operator × renormalizable

• Contact amplitudes have minimal weights among all amplitudes with the same operator insertion.

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

Anomalous Dimensions and Loop Amplitudes

• Anomalous dimension v.s. loop correction to A_i from \mathcal{O}_j

• "Cut" = locate internal propagators on-shell

$$\frac{1}{\ell^2 + i\epsilon} \xrightarrow{\operatorname{cut}} \delta^+(l^2)$$

• This breaks 1-loop amplitudes into products of tree amplitudes

One-loop Rule

• Selection rule via massive two-cut on a 1-loop amplitude

Non-renormalization Theorems (?)

- 1-loop rule+ lower bound on tree: $\begin{cases} w_i = w_j + w_k - 4\\ \overline{w}_i = \overline{w}_j + \overline{w}_k - 4 \end{cases}$
- Massive two-cut is non-trivial only if the operators satisfy

$$w_i \ge w_j \quad \text{and} \quad \overline{w}_i \ge \overline{w}_j$$

- Necessary for massive bubble/triangle/box integrals.
- Finite 1-loop amplitude in dimensional regularization.

$$w_i < w_j$$
 or $\overline{w}_i < \overline{w}_j$
"Non-renormalization?"

Massless Bubbles

- Known result: find QCD beta function if stop here. [Dixon; Arkani-Hamed, Cachazo, and Kaplan 0808.1446; Huang, McGady, Peng 1205.5606]
- Scaleless massless bubble integrals vanish in dimensional regularization as UV-IR cancellation.

$$I_2(p^2 = 0) = \frac{1}{(4\pi)^2} \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \right) \xrightarrow{\epsilon_{\rm UV} = \epsilon_{\rm IR}} 0$$

• Massless bubbles DO contribute to UV divergence despite being invisible under unitarity cut!

Massless Bubbles

- Known result: find (-1)×QCD beta function if stop here. [Dixon; Arkani-Hamed, Cachazo, and Kaplan 0808.1446; Huang, McGady, Peng 1205.5606]
- Scaleless massless bubble integrals vanish in dimensional regularization as UV-IR cancellation.

$$I_2(p^2 = 0) = \frac{1}{(4\pi)^2} \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \right) \xrightarrow{\epsilon_{\rm UV} = \epsilon_{\rm IR}} 0$$

• Massless bubbles DO contribute to UV divergence despite being invisible under unitarity cut!

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

- Kinoshita-Lee-Nauenberg (KLN) Theorem:
 - IR divergence in (1-loop) virtual correction is cancelled by inclusive sum over (a single) unresolved final state(s)!—cross section level statement.

- Kinoshita-Lee-Nauenberg (KLN) Theorem:
 - IR divergence in (1-loop) virtual correction is cancelled by inclusive sum over (a single) unresolved final state(s)!—cross section level statement.
- Focus on $w_i < w_j$, divergence only from massless bubbles

- Kinoshita-Lee-Nauenberg (KLN) Theorem:
 - IR divergence in (1-loop) virtual correction is cancelled by inclusive sum over (a single) unresolved final state(s)!—cross section level statement.
- Focus on $w_i < w_j$, divergence only from massless bubbles

- Kinoshita-Lee-Nauenberg (KLN) Theorem:
 - IR divergence in (1-loop) virtual correction is cancelled by inclusive sum over (a single) unresolved final state(s)!—cross section level statement.
- Focus on $w_i < w_j$, divergence only from massless bubbles

- Kinoshita-Lee-Nauenberg (KLN) Theorem:
 - IR divergence in (1-loop) virtual correction is cancelled by inclusive sum over (a single) unresolved final state(s)!—cross section level statement.
- Focus on $w_i < w_j$, divergence only from massless bubbles

Soft-Collinear Singularity

- Singular terms also factorized universally
 - soft/collinear behavior $S \propto \frac{1}{\omega} \propto \frac{1}{\sqrt{1 \cos \theta}}$
- Upon integration $\int d\omega \omega \, d\cos \theta \, |S|^2 \propto \ln \omega \, \ln \cos \theta$
- Focus leading soft and collinear singularity!

Soft Divergence?

- Soft particle does not change helicities of hard process to leading order [Weinberg 1965]
- The two amplitudes start with the same weight to interfere. Stripping the soft particle unchanged the weights.
- $w_i = w_j$ for hard processes; impossible for operators with

 $w_i < w_j$

Collinear Divergence?

• Collinear on both sides: TWO BACK-TO-BACK "JETS"

- Rotation around jet direction= little group!
- Different weights of hard processes $(w_i < w_j)$ are balanced by the two collinear functions—produce net helicity/phase after conjugation, $\int_0^{2\pi} d\phi S_{i \to i'}^* S_{j \to i'} \propto \int_0^{2\pi} d\phi e^{2i\phi} = 0.$

No collinear divergence: $w_i < w_j$ or $\overline{w}_i < \overline{w}_j$

Outline

- Introduction
- New Non-renormalization Theorems
- Weighting Tree Amplitudes
- Weighting 1-loop Amplitudes
- Weightlifting from IR to UV
- Application to the Standard Model
- Conclusion

 ϕ^6

 \times

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Anomalous Dimension of Dim-6 SMEFT

• How many can be explained?

□=non-zero X=no diagram ■=non-trivial zero ■=zero by theorems

 $\psi^2 \phi^3$ \bar{F}^3 $\bar{\psi}^2 \phi^3 \mid$ $F^2\phi^2 F\psi^2\phi$ ψ^4 $ar{F}^2 \phi^2 \ ar{F} ar{\psi}^2 \phi$ $ar{\psi}^4$ $\bar{\psi}^2 \psi^2 \ \bar{\psi} \psi \phi^2 D \ \phi^4 D^2$ F^3 F^3 Х Х Х Х Х Х Х Х Х $F^2 \phi^2$ Х Х \times Х Х $egin{array}{c} F\psi^2\phi\ \psi^4\ \psi^2\phi^3\ \hline \psi^2\phi^3 \end{array}$ Х Х y^2 Х Х Х Х Х Х Х \times \times y^2 \overline{F}^3 Х Х Х Х Х \times Х \times Х $\bar{F}^2 \phi^2$ Х Х \times Х Х $\bar{F} \bar{\psi}^2 \phi \\ \bar{\psi}^4 \\ \bar{\psi}^2 \phi^3 \\ \bar{\psi}^2 \psi^2$ \times \times \bar{y}^2 Х Х Х \times Х Х \times Х Х \bar{y}^2 \bar{y}^2 y^2 \times Х Х Х Х $\bar{\psi}\psi\phi^2 D$ $\phi^4 D^2$ \times Х Х ϕ^{6} Х Х Х Х Х

Alonso, Jenkins, Manohar, Trott: 1409.0868

Anomalous Dimension of Dim-6 SMEFT

- Got almost all zeros for free!
- Explain the breaking via Yukawa Alonso, Jenkins, Manohar, Trott: 1409.0868

		F^3	$F^2 \phi^2$	$F\psi^2\phi$	ψ^4	$\psi^2 \phi^3$	\bar{F}^3	$ar{F}^2 \phi^2$	$ar{F}ar{\psi}^2\phi$	$ar{\psi}^4$	$ar{\psi}^2 \phi^3$	$ ar{\psi}^2\psi^2 $	$ar{\psi}\psi\phi^2 D$	$\phi^4 D^2$	ϕ^6
	(w, \bar{w})	(0, 6)	(2, 6)	(2, 6)	(2, 6)	(4, 6)	(6,0)	(6, 2)	(6, 2)	(6, 2)	(6, 4)	(4, 4)	(4, 4)	(4, 4)	(6, 6)
F^3	(0, 6)			×	×	×			×	×	×	×	×	×	×
$F^2 \phi^2$	(2, 6)				×	×				×	×	×			×
$F\psi^2\phi$	(2, 6)									×				×	×
ψ^4	(2, 6)	×	×			×	×	×	×	×	×	y^2		×	×
$\psi^2 \phi^3$	(4, 6)										y^2				×
$ar{F}^3$	(6, 0)			×	×	×			×	×	×	×	×	×	×
$ar{F}^2 \phi^2$	(6, 2)				×	×				×	×	×			×
$ar{F}ar{\psi}^2\phi$	(6, 2)				×									×	×
$ar{\psi}^4$	(6, 2)	×	×	×	×	×	×	×			×	\bar{y}^2		×	×
$ar{\psi}^2 \phi^3$	(6, 4)					\bar{y}^2									×
$ar{\psi}^2\psi^2$	(4, 4)		×		\bar{y}^2	×		×		y^2	×			×	×
$ar{\psi}\psi\phi^2 D$	(4, 4)														×
$\phi^4 D^2$	(4, 4)				×					×		×			×
ϕ^6	(6, 6)			×	×				×	×		Х			

Anomalous Dimension of Dim-6 SMEFT

- Got almost all zeros for free!
- Explain the breaking via Yukawa Alonso, Jenkins, Manohar, Trott: 1409.0868

		F^3	$F^2 \phi^2$	$F\psi^2\phi$	ψ^4	$\psi^2 \phi^3$	\bar{F}^3	$ar{F}^2 \phi^2$	$ar{F}ar{\psi}^2\phi$	$ar{\psi}^4$	$ar{\psi}^2 \phi^3$	$ar{\psi}^2\psi^2$	$ar{\psi}\psi\phi^2 D$	$\phi^4 D^2$	ϕ^6
	(w, \bar{w})	(0, 6)	(2, 6)	(2, 6)	(2, 6)	(4, 6)	(6, 0)	(6, 2)	(6, 2)	(6, 2)	(6, 4)	(4, 4)	(4, 4)	(4, 4)	(6, 6)
F^3	(0, 6)			×	×	×			×	×	×	×	×	×	×
$F^2 \phi^2$	(2, 6)				×	×				×	×	×			×
$F\psi^2\phi$	(2, 6)									×	ن			×	×
ψ^4	(2, 6)	×	×			×	×	×	×	×		y^2		×	×
$\psi^2 \phi^3$	(4, 6)										y^2		<u>.</u> :		×
\bar{F}^3	(6, 0)			×	×	×			×	×		×	×	×	×
$ar{F}^2 \phi^2$	(6, 2)				×	×				×	×	×			×
$ar{F}ar{\psi}^2\phi$	(6, 2)				×									×	×
$ar{\psi}^4$	(6, 2)	×	×	×	×		×	×			×	\bar{y}^2		×	×
$ar{\psi}^2 \phi^3$	(6, 4)			ġ.		$ar{y}^2$			i						×
$\overline{\psi}^2 \psi^2$	(4, 4)		×	<u> </u>	\bar{y}^2			×		y^2	×			×	×
$\bar{\psi}\psi\phi^2 D$	(4, 4)			- Harr											×
$\phi^4 D^2$	(4, 4)				×					×		×			×
ϕ^6	(6, 6)			×	×				×	×		×			

RadCor-Loopfest

Holomorphy from Positivity

dimension 5 dimension 6 $\begin{array}{c}F^2\phi^2\\F\psi^2\phi\\\psi^4\end{array}$ $F^2 \phi \\ F \psi^2$ F^3 $\psi^2 \phi^3$ ϕ^6 $\psi^2 \phi^2$ 5 ϕ^5 6 $ar{\psi}\psi\phi^2 D\ ar{\psi}^2\psi^2\ \phi^4 D^2$ $\bar{\psi}^2 \phi^3$ $\bar{\psi}^2 \phi^2$ 4 3 \overline{w} \overline{w} $\begin{array}{c} \bar{F}^2 \phi^2 \\ \bar{F} \bar{\psi}^2 \phi \\ \bar{\psi}^4 \end{array}$ $\frac{\bar{F}^2 \phi}{\bar{F} \bar{\psi}^2}$ 2 1 3 5 1 \bar{F}^3 0 w

w

4

6

2

0

RadCor-Loopfest

Holomorphy from Positivity

dimension 5dimension 6 $\begin{array}{c} F^2 \phi^2 \\ F \psi^2 \phi \\ \psi^4 \end{array}$ $F^2 \phi \\ F \psi^2$ F^3 $\psi^2 \phi^2$ 5 ϕ^5 6 $\bar{\psi}^2 \phi^2$ 4 3 \overline{w} $\phi^4 D^2$ \overline{w} $\begin{array}{c} \bar{F}^2 \phi^2 \\ \bar{F} \bar{\psi}^2 \phi \\ \bar{\psi}^4 \end{array}$ $\frac{\bar{F}^2 \phi}{\bar{F} \bar{\psi}^2}$ 2 1 3 5 1 \bar{F}^3 0 w

w

4

6

2

0

Conclusion

- We prove a new class of non-renormalization theorems at 1-loop for any 4d massless theory with marginal interactions deformed by leading irrelevant operators.
- Explained the non-trivial cancellations in the anomalous dimensions between different class of operators in dimension six SMEFT.
- No symmetry is assumed. Only use unitarity and helicity selection rule in derivation.

Outlook

- Generalization to higher loop?
 - Seems to fail by finite part of 1-loop amplitudes
 - Lower bound for marginal interactions is broken as well (e.g. all plus amplitudes non-zero at 1-loop)
- Generalization to other space-time dimension?
- Underlying symmetry explanation?
- Special case in N=4 sYM? [Chen, Huang, Wen; 1505.07093]
- Other phenomenological implication? [SM+DM EFT? Crivellin, Francesco, Massimiliano 1402.1173]

RadCor-Loopfest

Backup Slides

Standard Model Effective Field Theories (SMEFT)

• 59 dim-6 operators in SMEFT:

[Grzadkowski, Iskrzynski, Misiak, and Rosiek, 2010]

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\daggerarphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$	
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\daggerarphi)(ar q_p d_rarphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

Standard Model Effective Field Theories (SMEFT)

59 dim-6 operators in SMEFT: [Grzadkowski, Iskrzynski, Misiak, and Rosiek, 2010] •

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	$Q_{ee} \qquad (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$			$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating						
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$					
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$					

• Full 59 × 59 anomalous dimension matrix holomorphy without supersymmetry?

Alonso, Jenkins, Manohar, Trott: 1409.0868

Operator Mixing

- Operators in general mix under loop correction
 - Crucial for constraints in SMEFT

[Grojean, Alonso, Jenkins, Manohar, Trott: 1301.25881308.2627, 1310.4838, 1312.2014; Elias-Miro, Espinosa, Masso, Pomarol, 1302.5661, 1308.1879; Elias-Miro, Grojean, Gupta, Marzocca 1312.2928]

• Anomalous dimension:

$$\frac{1}{(4\pi)^2} \frac{dc_i}{d\log\mu} = \sum_j \gamma_{ij} c_j$$

$$\gamma_{ij}$$
 is dimensionless
 \Rightarrow depends only on marginal

$$\frac{\text{new physics}}{\mathcal{O}_i \quad \mathcal{O}_j} \Lambda \sim \text{TeV}$$

SMEFT EW~100 GeV

Operator Mixing

- Operators in general mix under loop correction
 - Crucial for constraints in SMEFT

[Grojean, Alonso, Jenkins, Manohar, Trott: 1301.25881308.2627, 1310.4838, 1312.2014; Elias-Miro, Espinosa, Masso, Pomarol, 1302.5661, 1308.1879; Elias-Miro, Grojean, Gupta, Marzocca 1312.2928]

• Anomalous dimension:

$$\frac{1}{(4\pi)^2} \frac{dc_i}{d\log\mu} = \sum_j \gamma_{ij} c_j$$

- γ_{ij} is dimensionless
 - ⇒ depends only on marginal couplings in massless theories

$$\begin{array}{c} \begin{array}{c} \text{new physics} \\ \mathcal{O}_{i} & \mathcal{O}_{j} \\ \gamma_{ij} & \gamma_{ij} \\ \end{array} \\ \begin{array}{c} \text{SMEFT} & \mathcal{O}_{i} & \mathcal{O}_{j} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{SMEFT} & \mathcal{O}_{i} & \mathcal{O}_{j} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{EW} \sim 100 \text{ GeV} \end{array}$$

General Soft-Collinear Singularity

• General soft-collinear function S:

Passarino-Veltman Decomposition

• Recycling known scalar integrals:

$$A_{i}^{\text{loop}} = \sum_{\text{box}} d_{4}I_{4} + \sum_{\text{triangle}} d_{3}I_{3} + \sum_{\text{bubble}} d_{2}I_{2} + \text{rational},$$

$$p^{2} \rightarrow 0 \quad (-0, -, -0) = 0$$

• UV (log) divergence only from bubble integrals:

$$I_2(p^2) = \int d^{4-\epsilon} \ell \, / \ell^2 (\ell+p)^2 = 1/(4\pi)^2 \epsilon + \dots$$

- Tadpole and "massless" bubble, $I_2(p^2 = 0)$, are scaleless.
 - vanish in dimensional regularization
 - Important caveat in massless bubble

• Cutting on the integral basis side

Accidental Cancellation in $\psi^2 \phi^3 / \phi^6 - F^3$

- Counterterm analysis for $\phi^4 D^2$, $\psi^2 \phi^3$, ϕ^6 from F^3/\bar{F}^3 :
 - Recasting counterterms from 1PI diagrams only generates $j^{\mu a}_{\phi} [D_{\nu}, X^{\nu \mu}]^a \xrightarrow{\text{EoM}} j^{\mu a}_{\phi} j^a_{\phi \mu}$ where scalar current $j^{\mu}_{\phi} = \phi^{\dagger} \overleftarrow{D}^a_{\mu} \phi$
 - + In standard basis, $j^{\mu a}_{\phi} j^a_{\phi\mu} = \phi^4 D^2 \oplus \psi^2 \phi^3 \oplus \phi^6$
- $j_{\phi}^{\mu a} j_{\phi \mu}^{a}$ has a non-zero 4-scalar amplitude—forbidden to be generated by F^3/\bar{F}^3 according to our theorem!

 $0 = \gamma_{\phi^4 D^2 - F^3}$ $\propto \gamma_{\psi^2 \phi^3 - F^3} \propto \gamma_{\phi^6 - F^3}$

