Radiative μ and τ leptonic decays at NLO

Radcor-Loopfest 2015 UCLA - June 16 2015

Work in collaboration with Lorenzo Mercolli, arXiv:1506.03416

BaBar's branching ratio measurements

RAPID COMMUNICATIONS

PHYSICAL REVIEW D 91, 051103(R) (2015)

Measurement of the branching fractions of the radiative leptonic τ decays $\tau \rightarrow e\gamma\nu\bar{\nu}$ and $\tau \rightarrow \mu\gamma\nu\bar{\nu}$ at *BABAR*

	B.R. of radiative $ au$ leptonic decays ($\omega_0=10{ m MeV})$	
	$ au o e ar u u \gamma$	$ au o \mu ar u u \gamma$
$\mathcal{B}_{\scriptscriptstyle\mathrm{EXP}}$	$1.847(15)_{\rm st}(52)_{\rm sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$

BABAR coll., PRD 91 (2015) 051103

- Babar experimental precision around 3%.
- More precise than CLEO results: T. Bergfeld et al., PRL 84 (2000) 830 $1.75 (6)_{st} (17)_{sy} \times 10^{-2} (\tau \rightarrow e \gamma \nu \bar{\nu}),$ $3.61 (16)_{st} (35)_{sy} \times 10^{-3} (\tau \rightarrow \mu \gamma \nu \bar{\nu}).$
- To be compared with SM branching ratio at NLO of order $(\alpha/\pi)\ln(m_l/m_\tau)\ln(\omega_0/m_\tau)$, ~ 10% for l = e, ~ 3% for $l = \mu$.

- Very clean, can be predicted with very high precision.
- TH formulation in terms of Bouchiat-Michel-Kinoshita-Sirlin parameters allows to test couplings beyond the SM V-A; additional BMKS-like param. accessible in radiative decays.
- SM background for μ and τ flavour violating decays like

 $\mu \to e \gamma$ $\tau \to l \gamma$ $\mu^+ \to e^+ e^- e^+$

Precise data on radiative T decays may allow to determine its anomalous magnetic moment. The Standard Model prediction of the tau g-2 is:

(m_T/m_µ)² ~ 280: great opportunity to look for New Physics, and a "clean" NP test too…

	Muon	Tau
а _{ЕW} /а _Н	1/45	1/7
a _{EW} / δa _H	3	10

... if only we could measure it!!

- The very short lifetime of the tau makes it very difficult to determine a₁ measuring its spin precession in a magnetic field.
- DELPHI's result, from e⁺e⁻ → e⁺e⁻T⁺T⁻ total cross-section measurements at LEP 2 (the PDG value):

a_τ = -0.018 (17) PDG

PDG 2014

With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

 $-0.004 < a_T^{NP} < 0.006 (95\% CL)$ Escribano & Massó 1997 $-0.007 < a_T^{NP} < 0.005 (95\% CL)$ Gonzáles-Sprinberg et al 2000

▶ Bernabéu et al, propose the measurement of $F_2(q^2=M_Y^2)$ from e⁺e⁻ → T⁺T⁻ production at B factories. NPB 790 (2008) 160

The τ g-2 via τ radiative leptonic decays: a proposal

Must employ the polarized differential decay rate.

Study the full phase space.

$$d\Gamma = d\Gamma_{\rm o} + \left(\frac{m_{\tau}}{M_W}\right)^2 d\Gamma_W + \frac{\alpha}{\pi} d\Gamma_{\rm NLO} + \tilde{a}_{\tau} d\Gamma_{\rm a} + \tilde{d}_{\tau} d\Gamma_{\rm d}$$

Under investigation for Belle-II analysis. Should at least improve the Delphi bound. Work in progress with S. Eidelman & D. Epifanov

Differential decay rates

$$\mu^- o e^- \gamma
u_\mu ar
u_e,
onumber \ au^- o l^- \gamma
u_ au ar
u_l, \; (l=e,\mu)$$

- M: mass of the μ or τ .
- m_l : final charged lepton mass.
- \hat{n} : polarization vector of the initial μ or τ .
- Mass ratio $r = m_l/M$.
- Minimum photon energy ω_0 .

Differential decay rates $(d\Gamma_0)$

Kinoshita, Sirlin, PRL 2 (1959) 177; Fronsdal, Uberall, PR 133 (1959) 654 Eckstein, Pratt, Ann. Phys. 8 (1959) 297; Kuno, Okada, RMP 73 (2001) 151

Differential decay rates (d Γ_W)

M. Fael, L. Mercolli, MP, PRD 88 (2013) 093011

Differential decay rates (d Γ_{v})

Fischer et al., PRD 49 (1994) 3426; Arbuzov, Scherbakova, PLB 597 (2004) 285;
also as part of NNLO corrections to μ decay: T. van Ritbergen, R. G. Stuart, PRL
82 (1999) 488, C. Anastasiou, K. Melnikov, F. Petriello, JHEP 0709 (2007) 014,
F. Caola, A. Czarnecki, Y. Liang, K. Melnikov, R. Szafron, PRD 90 (2014) 5.

Differential decay rates (d Γ_{YY} **)**

$$d\Gamma = d\Gamma_{0} + \frac{m_{\mu,\tau}^{2}}{M_{W}^{2}} d\Gamma_{W} + \frac{\alpha}{\pi} \Big[d\Gamma_{\text{virt}} + \int_{0}^{\omega_{0}^{\prime}} d\omega^{\prime} d\Gamma_{\gamma\gamma} \Big]$$

$$2 \times \int_{\tau,\mu}^{\gamma_{1}} \int_{\nu}^{\nu} \int_{\nu}^{\nu} \int_{\nu}^{\gamma_{2}} \int$$

• Extra soft photon emission $\omega' < \omega'_0$ integrated analytically:

$$d\Gamma^{
m soft}_{\gamma\gamma}(\omega_0') = \int_0^{\omega_0'} d\omega' d\Gamma_{\gamma\gamma} \quad (\omega_0' \ll M/2)$$

- ▶ IR divs of soft bremsstrahlung and virtual corrections cancel.
- Double "hard" bremss integrated numerically $(\omega' > \omega'_0)$.

Differential decay rates (full d Γ_{NLO})

$$egin{aligned} &rac{d^6\Gamma}{dE_l\,d\omega\,d\Omega_l\Omega_\gamma} \propto G + \hat{n} \cdot \left[\hat{p}_l\,J + \hat{p}_\gamma\,K + (\hat{p}_l imes \hat{p}_\gamma)L
ight] \ &G(\omega,E_l,\cos heta_{le}) = G_0 + rac{m_l^2}{M_W^2}G_W + rac{lpha}{\pi}G_{
m NLO}, \, ext{same for } J ext{ and } K \ &L(\omega,E_l,\cos heta_{le}) = rac{lpha}{\pi}L_{
m NLO} \quad ext{NEW} @ ext{NLO}. \end{aligned}$$

- > Analytically integrated over neutrinos.
- Visible particle kinematics $\omega, E_l, \Omega_l, \Omega_{\gamma}$.
- ▶ G: isotropic function.
- \blacktriangleright J, K, L: spin dependent parts.

$$rac{d^6\Gamma}{dE_l\,d\omega\,d\Omega_l\Omega_\gamma} \propto G + \hat{n}\cdot \left[\hat{p}_l\,J + \hat{p}_\gamma\,K + (\hat{p}_l imes\hat{p}_\gamma)L
ight]$$

One-loop corrections to $\mu \rightarrow e \gamma \nu \bar{\nu}$ differential decay rate previously computed in:

- A. Fischer et al., PRD 49 (1994) 3426 Only the isotropic part G. Files with results unavailable.
- A. Arbuzov, E. S. Scherbakova, PLB 597 (2004) 285 Full spin dependence, but calculation performed in the $m_l \rightarrow 0$ limit.
 - > Perfect agreement with our isotropic function G (in that limit).
 - The anisotropic functions J, K differ from ours.
 - L has been overlooked.

Branching Ratios

Branching ratios at LO

B.R. for a minimum photon energy ω_0

$$\begin{split} \Gamma_{\rm LO}\left(y_0\right) &= \frac{G_F^2 M^5}{192\pi^3} \frac{\alpha}{3\pi} \Big[3\text{Li}_2(y_0) - \frac{\pi^2}{2} - \frac{1}{2} \left(6 + \bar{y}_0^3\right) \bar{y}_0 \ln \bar{y}_0 \\ &+ \left(\ln r + \frac{17}{12}\right) \left(6\ln y_0 + 6\bar{y}_0 + \bar{y}_0^4\right) + \frac{1}{48} \left(125 + 45y_0 - 33y_0^2 + 7y_0^3\right) \bar{y}_0 \Big] \\ \text{where } y_0 &= 2\omega_0/M, \ \bar{y}_0 = 1 - y_0, \ r &= m_l/M \end{split}$$

Kinoshita & Sirlin, PRL 2 (1959) 177; Eckstein & Pratt, Ann. Phys. 8 (1959) 297

- In $\Gamma_{\rm LO}(y_0)$ only $\ln(r)$ are kept, terms $\mathcal{O}(r)$ are neglected.
- However terms ∝ r² were not, and cannot, be neglected in the integrand dΓ (be careful also at NLO!).

When r is small, $\Gamma_{LO}(y_0)$ gives a good prediction for the branching ratios \mathcal{B}_{LO} , compared with result integrated numerically. For $\omega_0 = 10$ MeV:

	$\mathcal{B}_{ ext{LO}}$	$\mathcal{B}_{ ext{LO}}^{ ext{num}}$	
$\mu ightarrow e \gamma u ar{ u}$	1.31×10^{-2}	1.308×10^{-2}	
$ au o e \gamma u ar{ u}$	1.83×10^{-2}	1.834×10^{-2}	
$ au o \mu \gamma u ar{ u}$	3.58×10^{-3}	3.663×10^{-3}	OFF by ~2%

Inclusive and exclusive branching ratios at NLO

The branching ratio of radiative μ and τ leptonic decays for a minimum photon energy ω_0 :

$$\mathcal{B}(\omega_0) \propto \int d\Phi_4 \left(d\Gamma_{
m LO} + d\Gamma_{
m virt}
ight) + \int d\Phi_5 d\Gamma_{\gamma\gamma}$$

 B^{Exc}(ω₀): only one γ of energy ω > ω₀, additional second soft photon ω' < ω₀.
 B^{Exc}(ω₀) = ■

• $\mathcal{B}^{\mathrm{Inc}}(\omega_0)$: at least one γ of energy $\omega > \omega_0$.

$$\mathcal{B}^{ ext{Inc}}\left(\omega_{0}
ight)=oldsymbol{ ext{=}}+oldsymbol{ ext{=}}$$

Branching ratios: T results

B.R. of radiative $ au$ leptonic decays ($\omega_0=$ 10 MeV)		
	$ au o e ar{ u} u \gamma$	$ au o \mu ar u u \gamma$
$\mathcal{B}_{\scriptscriptstyle ext{LO}}$	1.834×10^{-2}	3.663×10^{-3}
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.06(1)_n(10)_N imes 10^{-3}$	$-5.8(1)_n(2)_N imes 10^{-5}$
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$-1.89(1)_n(19)_N imes 10^{-3}$	$-9.1(1)_n(3)_N imes 10^{-5}$
$\mathcal{B}^{ ext{Inc}}$	$1.728(10)_{ m th}(3)_{ au} imes 10^{-2}$	$3.605(2)_{ m th}(6)_{ au} imes 10^{-3}$
$\mathcal{B}^{ ext{Exc}}$	$1.645(19)_{ m th}(3)_{ au} imes 10^{-2}$	$3.572(3)_{ m th}(6)_{ au} imes 10^{-3}$
${\cal B}^{\dagger}_{\scriptscriptstyle m EXP}$	$1.847(15)_{\rm st}(52)_{\rm sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$

(n): numerical errors (th): (N): uncomputed NNLO corr. (au): $\sim (lpha/\pi) \ln r \ln(\omega_0/M) \times \mathcal{B}_{\mathrm{NLO}}^{\mathrm{Exc/Inc}}$ lifeting † BABAR - PRD 91 (2015) 051103

(th): combined $(n) \oplus (N)$ (τ) : experimental error of τ lifetime: $\tau_{\tau} = 2.903(5) \times 10^{-13}$ s

$$\begin{array}{ccc} \tau \rightarrow e \bar{\nu} \nu \gamma & \tau \rightarrow \mu \bar{\nu} \nu \gamma \\ \Delta^{\mathrm{Exc}} & 2.02\,(57) \times 10^{-3} \rightarrow 3.5\sigma & 1.2\,(1.0) \times 10^{-4} \rightarrow 1.1\sigma \end{array}$$

B.R. of r	$\omega_{ m adiative} \; oldsymbol{\mu} \; { m leptonic} \; { m decays} \ (\omega_0 = 10 \; { m MeV})$
$\mathcal{B}_{\scriptscriptstyle ext{LO}}$	1.308×10^{-2}
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.91(5)_n(6)_N imes 10^{-4}$
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$-2.25(5)_n(7)_N imes 10^{-4}$
$\mathcal{B}^{ ext{Inc}}$	$1.289(1)_{ m th} imes 10^{-2}$
$\mathcal{B}^{ ext{Exc}}$	$1.286(1)_{ m th} imes 10^{-2}$
$\mathcal{B}^{\dagger}_{\scriptscriptstyle\mathrm{EXP}}$	$1.4(4) imes 10^{-2}$

†Crittenden et al.
PR 1961 (1961) 1823
*J. Adam et al.
arXiv:1312.3217 [hep-ex]
‡ D. Počanić et al.
1403.7416 [nucl-ex].

Preliminary new measurements		
	cuts	$\mu ightarrow e \gamma u ar{ u}$
MEG^{\star}	$E_e > 45$ MeV, $\omega_0 > 40$ MeV	$6.03(14)_{ m st}(53)_{ m sy} imes 10^{-8}$
PIBETA [‡]	$\omega_0 > 10{ m MeV}, heta_{e\gamma} > 30^\circ$	$4.365(9)_{\rm st}(42)_{\rm sy} imes 10^{-3}$

Conclusions

- We studied the differential rates and BRs of the radiative decays $\tau \rightarrow l\gamma\nu\bar{\nu} \ (l = \mu, e)$ and $\mu \rightarrow e\gamma\nu\bar{\nu}$ in the SM at NLO in α .
- QED RC were computed taking into account the full mass dependence $r = m_l/M$, needed for the correct determination of the BRs.
- We found agreement with an earlier calculation of the isotropic function G in the r → 0 limit, while our anisotropic functions J and K differ. Also, the function L has been previously overlooked.
- BRs: our results agree with the experimental value for B(μ → eγνν̄) and BaBar's recent measurement of B(τ → μγνν̄), both for a minimum photon energy ω₀ = 10 MeV.
- On the contrary, BaBar's recent precise measurement of $\mathcal{B}(\tau \to e \gamma \nu \bar{\nu})$, for the same ω_0 , differs from our prediction by 3.5σ .

Backup Slides

The total differential decay for a polarized μ or τ lepton in the tau r.f. for $y > y'_0$ is

$$egin{aligned} &rac{d^6 \Gamma(y_0')}{dx \, dy \, d\Omega_l \, d\Omega_\gamma} = rac{lpha \, G_F^2 m_ au^5}{(4\pi)^6} rac{x eta}{1+\delta_{\mathrm{W}}(m_\mu,m_e)} \Bigg[G &+ \ &+ x eta \, \hat{n} \cdot \hat{p}_l \, J + y \, \hat{n} \cdot \hat{p}_\gamma \, K + y \, x eta \, \hat{n} \cdot (\hat{p}_l imes \hat{p}_\gamma) \, L \Bigg] \end{aligned}$$

where $x = 2E_l/m_{\tau}$, $y = 2E_{\gamma}/m_{\tau}$, $c = \cos \theta_{l\gamma}$. The polarization vector $n = (0, \hat{n})$ satisfies $n^2 = -1$ and $n \cdot p_{\tau} = 0$. The function $G(x, y, c; y'_0)$, and similarly for J and K, is given by

$$G(x,y,c;y_0') = rac{4}{3yz^2} \left[g_0(x,y,z) + rac{lpha}{\pi} g_{ ext{NLO}}(x,y,z;y_0') + \left(rac{m_ au}{M_W}
ight)^2 g_{ ext{W}}(x,y,z)
ight]$$

$$\mathcal{B}(\omega_0) \propto \lim_{\omega_0' o 0} \left\{ \int \!\! d\Phi_4 \left(d\Gamma_{
m LO} + d\Gamma_{
m virt} + d\Gamma_{\gamma\gamma}^{
m soft}(\omega_0')
ight) + \int_{\omega_0'} \!\! d\Phi_5 d\Gamma_{\gamma\gamma}
ight\}$$

- We use a soft threshold $\omega'_0 \ll \omega_0$ to cancel IR.
- Soft photon radiation $d\Gamma_{\gamma\gamma}^{\text{soft}}(\omega_0')$ computed thanks to the factorization of the amplitude.
- ▶ Integration over the phase space performed numerically.
- Double "hard" emission also checked with MadGraph5.