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Begin with related notions

(1) Compressive Sensing
D. Donoho, E. Candes, T. Tao (2006)
Sparse Recover via L1 Minimization

(2) Fast Optimization Algorithms for L1 Related Problems
(Including Total Variation)
S.0., W.Yin, M. Burger, D. Goldfarb (2006)

(3) PDE and Variational Methods for Image Processing
L.I. Rudin, S.0O., E. Fatemi (1989)

(4) Level Set Methods
S.0., J.A. Sethian (1987)



L1 minimization :>|_O minimization

Old idea (Galileo?!!)

u=argmin|u|, suchthat Au= f

ueRN

Intersection on an axis with probability = 1 sparse!
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Intersects off axes with probability = 1 nonsparse!

Example:

A =la,...a, ueR", feR’
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L, minimum: Suppose |a,|>a;, j#Kk
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L, minimum: U =/0...,—,0...0| sparse
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L, minimum: U, :£Z(ai )Zj la,...a, | f, nonsparse



Compressed Sensing (CS)

 Compressed sensing techniques constructs
high resolution images from a small number
of measurements

 |If done properly, then the image constructed
from the small data set is exactly equivalent
to the original image constructed from the
large data set.

— T. Tao, E. Candes, and D.L. Donoho

— For this to work, the data must be acquired in a
different “basis” than the underlying image



CS MRI

 |n MRI, we do not directly acquire images, we
acquire “K-Space” data
-- The actual image is reconstructed by taking the Fourier
transform of the K-Space data

« With CS, we can reconstruct a high-quality/high-

resolution image from a fraction of the K-space data
-- This allows image acquisition to be done 3-5 times

faster



Work being done at UCLA

CS allows high resolution images to be acquired
much faster than conventional techniques

Drawback: It is very difficult to compute the image
reconstructions

At UCLA, we develop new algorithms, such as the
“Split Bregman Method” that allow these images to
be reconstructed quickly (less than 1 second per
Image)

Our techniques also allow CS to be done using “TV
regularization” — an idea pioneered in Los Angeles
that yields results superior to other CS methods



A simulated Example
(artificial data)

Conventional
Reconstruction
using 25% of
K-space data

Original Image
(Full K-Space)

CS - Split
Bregman
method using
only 25% of
K-Space data

CS
reconstruction
using Wavelet
Basis




An Example using a real MR
Image (a phantom)

V} -t Conventional Fast
. ol Acquisition Method

W T A (30% OF k-Space
RS data)

Original Image
(Full K-Space)

10 iterations of
Split Bregman
Method

20 iterations of
Split Bregman
Method

Final
reconstruction
using only 30%
of K-Space data

30 iterations of
Split Bregman
Method



Comparison of CS to
conventional techniques

Both images below were acquired using only 35% of K-Space
data

Image on the left was reconstructed using a conventional
technique (fill all unknown K-Space data with zeros)

Image on right was reconstructed using Compressed Sensing




Conclusion

« CSis atechnigue that allows MR
Images to be reconstructed from small
amounts of K-Space data without
sacrificing resolution or quality

« Using this technique, MRI acquisition
can be sped up to 3-5 times the speed
of conventional technigues that use full
K-Space acquisitions



The Bregman Methods: Reviews and New Error
Cancellation Results

With Wotao Yin



Bregman iteration has been unreasonably successful in

1. Better regularization quality over (4, total variation, ...

2. Fast, accurate iterations for constrained (1-like minimization.

Points 1 and 2 are different!

Bregman iteration has been unreasonably successful in

1. Better regularization quality over ¢4, total variation, ...

2. Fast, accurate iterations for constrained ¢1-like minimization.

Points 1 and 2 are different!



Bregman Distance

» Original model: min J(u) + f(u). Regularizer J(-)
» Given u*, p* € 8J(u*)

» Bregman distance:

D(u, uk) = J(u) — (J(uk) - (pk, u— u"))

e — o I -
'u.k u k . u

» New model: v**! « minaD(u,u*)+f(u). Eg:a=5. p~is
obtainable from previous iteration.



Bregman = Add Back Residuals

» Original model:
: 1 2
u+ min pJ(u) + §||Au — b||5.
» Bregman original form:

_ 1
T = min p [J(u) = (J(6F) + (pF u—ud¥))] + SlAu - b3
pk+1 — pk +AT(b—Auk+1).
» Add-Back form:
1~ min pd(u) + %HAU — b¥||3
b1 «— b+ (b* — AuktY).

Each subproblem has the same form of the original problem.



Bregman Regularization: Better Solution Quality

Example: Compressive Sensing Reconstruction from Noise Input

Original signal u, sparse

15k

1 | ,‘. ||‘

.,,."" HI‘
|
0 0

) 0 100 150

Noisy Gaussian measurements: b = Au + w, where A: 100 x 250.
Compare:

1. Basis pursuit: u < min pl|ul|; + 3|/Au— b||3

2. Bregman: u**! « minji||uly + 3||Au — b*||3, b**! < add back



Basis Pursuit (Non-Bregman) vs Bregman
1. Recover u by:  min pl|ull1 + %||Au— b||3

1 =485
Not sparse

it too small



Basis Pursuit (Non-Bregman) vs Bregman

1. Recover u by: min pl|ull; + %”Au — b||%

lll.r ' ‘ ” ’II‘J!

L C==dl
=485 =49
Not sparse Sparse but poor

i too small fitting



Basis Pursuit (Non-Bregman) vs Bregman

1. Recover u by:  min pf|ull; + %HAU - b||§

===l L. EB==
=485 p =49

Not sparse Sparse but poor

it too small fitting

2. Recover u by Bregman: set ji = 150, after 5 iterations

1
T

. L
¥

Sparse, better fitting



Example: image deblurring and/or denoising

> J(u) = pTV(a)
> f(u) = 3[|Au— b||3
» Stop when ||Au* — b||3 = est.||Aut™e — b||3

00

®...(UWM-CMRI Lab)

Less signal in the residual.



» For /1, Bregman gives sparser, better fitted signals

» For TV, Bregman gives less staircasing, higher contrast

» For /1, Bregman gives sparser, better fitted signals

» For TV, Bregman gives less staircasing, higher contrast

» Reasons: iterative boosting

1. For small k, u* is over-regularized yet correctly captures larger
nonzeros/edges.
2. Minimizing D(u, u*) does not penalize the nonzeros/edges in u*.



1. Better regularization quality over ¢4, total variation, ...

» Work for noisy data
» Start with over-regularization
» f(u¥) ], stop f(u*) ~ f(real u) est.

2. Fast, accurate methods for constrained #; and TV minimization.

» Work for noiseless data
» f(u*) ], stop f(u*)=0.

1. Better regularization quality over ¢, total variation, ...

» Work for noisy data
» Start with over-regularization
» f(u*) ], stop f(u*)~ f(true u) est.

2. Giving fast, accurate methods for constrained ¢; and TV
minimization.
» Work for noiseless data
» f(u*) ], stop f(u*)=0.



Applied to Constrained Minimization

Y .-Osher-Goldfarb-Burger 07
» Purpose: uesr < min{J(u) : Au = b}, constrained
» Bregman: u**! < min D,(u, u*) + 3||Au — b||3, unconstrained

» Properties:

» uk = Ureal

» Fast, finite convergence for /1-like J(u)

» Even if subproblems are solved inexactly, under some conditions,
solution is accurate and error converges to machine precision.



Convergence results

Assumption: J is convex, f is convex & differentiable, subproblem
solutions exist; p* starts from 0 (equivalent, b* starts from b).
Theorem (General convergence)
Under the Assumption, {u*} of (1) satisfies
1. Monotonic decrease: f(u**1) < D(u**1) + f(uk+1) < F(u¥).
2. Convergence: if u* minimizes f and J(u) < oo, then
f(u*) < f(u*) + J(u*)/k and, thus, f(u*) — f(u*).
3. Denoise b, noise reduction: let f(-) = f(-; b) (e.g.,
f(-)= %”A —b||%) and suppose f(u, f_)) =} (E and U are noiseless

input and signal, resp); then D(u, u*™') < D(@, u*) as long as
f(u**1; b) > f(1; b).



Convergence results

Lemma

If f(-) = 3||A- —b||3 and an u* satisfies f(u*) = 0, then u* is a solution
of min{J(u) : f(x) = 0}. This holds even if subproblems are inexactly
solved.

Theorem (Finite convergence for ;)
Let J(-) =p|l - |1 and f(-) = %HA - —b||3. If Ax = b is consistent, then

there exists K such that any u*, k > K, is a solution of

min{J(u) : f(x) = 0}.

The theorem extends to any piece-wise linear J.



Error Cancellation

» Error cancellation is a happy result due to adding back!

b* « b+ (b1 - ALY (2)
1 minJ(u) + %”AU — b3 (3)
» Suppose we computed . = ¥ + w*. w¥ is error.

» (2) becomes b

inexact

— b+ (b1 — Auk

inexact

) = b* — Awk.

» (3) becomes

1 min J(u) + %”A(U + w*) — b¥|)3

which includes the model error w*.



Let w be a model error, and consider
min J(u) + f(u+ w). (4)

Define
> Ugacr: exact solution of (4)
> Ujnexact = Uexact + €: computed inexact sol of (4)

> Urea: exact solution of min J(u) + f(u).



Let w be a model error, and consider
min J(u) + f(u + w). (4)
Define

> Ugacr: exact solution of (4)
> Ujnexact = Uexact + €: computed inexact sol of (4)

> Upe: exact solution of min J(u) + f(u).

Theorem (General case)

If Uexace and Ugxace — w are on the same face of graph(J), then

Uinexact — Ureal = € — W.



Let w be a model error, and consider
min J(u) + f(u + w). (4)

Define
> Ugacr: exact solution of (4)
> Ujnexact = Uexact + €: computed inexact sol of (4)

> Ues: exact solution of min J(u) + f(u).

Theorem (General case)

If Uexact and Uexace — w are on the same face of graph(J), then

Uinexact — Ureal — € — W.

Corollary (J is ¢;)

If ukil and uftl — w* have no opposite signs, then

k+1 k+1 __ k+1 k

Uinexact — Ureal = € —w.



Error Cancellation Example

Urear: D00 entries, 25 nonzero, sparse
b = Aues: 250 linear projections, A has Gaussian random entries

Recover urey by solving min{||ul|; : Au = b}

vy v v v

Run Bregman, each subproblem inexactly solved with the same tol
= le-6

by: FPC, FPC-BB, GPSR, GPSR-BB, or SpaRSA



Error Cancellation Example

vy vV v Vv

Urear: D00 entries, 25 nonzero, sparse
b = Auyez: 250 linear projections, A has Gaussian random entries
Recover urey by solving min{||ul|; : Au = b}

Run Bregman, each subproblem inexactly solved with the same tol
= le-6

by: FPC, FPC-BB, GPSR, GPSR-BB, or SpaRSA

Itr k 1 2 3 4 5
lur ~Vooc|l | 6562 2.3e7 6.2e-14 7.9e-16 5.6e-16.

Relative error converged to the machine precision!



Error Cancellation Example

Ureai: D00 entries, 25 nonzero, sparse
b = Auez: 250 linear projections, A has Gaussian random entries

Recover uye, by solving min{||u||; : Au = b}

Yy v v v

Run Bregman, each subproblem inexactly solved with the same tol
= le-6

by: FPC, FPC-BB, GPSR, GPSR-BB, or SpaRSA

ltr k 1 2 3 4 5
list—Vhnsal [ 652 23e7 62014 7.9e16 5.6e-16.

Relative error converged to the machine precision!

» Classical results require diminishing tolerances for convergence, but
they are not needed for /1 and above solvers. Why?



Short Answer:

In u:"n:)}act - ufe:} = k1 — wk, k*1 almost cancels w* for all k large.



A Slightly Long Answer:

1. Finiteness. With enough accuracy, Bregman u* reaches the optimal

face in finitely many iterations (denoted by K') and stays.
e The Theorem applies for k > K.

2. Error forgetting. For any k > K, two exact Bregman iterations
yields the global solution. In other words, errors before K can be

forgotten.
e Forany k > K, ufej,l = Ureas, the global solution.
o wX =€k and, thus, ult) | — e = 1 — €

3. Convergence. Use a first-order solver with a fixed tol. Given
ek+1 — ek is small enough, ||e¥*1 — k|| — 0 geometrically in k.

k . . .
® U ... converges to Uy, the global solution, geometrically in k.




Generalizations

» Inverse scale space (Burger, Gilboa, Osher, Xu, etc.)
» Linearized Bregman (Yin, Osher, Mao, etc.)

» Logistic Regression (Shi, et al. Rice CAAM 08-08)
» Split Bregman (Goldstein, Osher, UCLA CAM08-29)
-

A unified primal-dual framework, BOS (X.Zhang, et al. UCLA
CAMO09-99)

» More ... People use the words “Bregmanize”



Linearized Bregman

Idea: Linearize the fidelity term at u*

Work: Y .-Osher-Goldfarb-Darbon 07, Osher-Mao-Dong-Y. 08, Cai-Osher-Shen
08, Y. 09



Linearized Bregman

Idea: Linearize the fidelity term at u*

Work: Y .-Osher-Goldfarb-Darbon 07, Osher-Mao-Dong-Y. 08, Cai-Osher-Shen
08, Y. 09

» Example: data fitting = 3||Au — b||3

u 1 min D(u, u*) + (AT (Au* — b), u) + 2_10 |u— “k”i



Linearized Bregman

|dea: Linearize the fidelity term at u*

Work: Y .-Osher-Goldfarb-Darbon 07, Osher-Mao-Dong-Y. 08, Cai-Osher-Shen
08, Y. 09

» Example: data fitting = 3||Au — b||3
gl ¢ min D(u, uk) " (AT(AUk — b), u) =% 2—10 ||U - ”k”i

» For D(u, u*) induced by J(u) = pl|ul|1, iterations become

u*t1 —  § shrink(v¥, p)

virl VR AT(b - AdFTY).

Kl kel | AT K+l
Note: Second equation above is NOT Vit =u""+A (b-Au")



Linearized Bregman

|dea: Linearize the fidelity term at u*

Work: Y .-Osher-Goldfarb-Darbon 07, Osher-Mao-Dong-Y. 08, Cai-Osher-Shen
08, Y. 09

» Example: data fitting = 3||Au — b||3

1 o min D(u, 0¥) + (AT (Au¥ — b), ) + o [Ju — o[

u

» For D(u, u*) induced by J(u) = pl|ul|;, iterations become

u**t1 «—  § shrink(v¥, p)
Vil VK AT (b — AdFTY).

» Application: non-negative least—squares, matrix completion



Linearized Bregman, Cont'd

Properties:
» gradient-ascend the dual of min{u||u|; + 2%5||u||2 : Au = b}
» Exact regularization: 35: if § > 4, then solves min{||u||; : Au = b}
» Empirically, # nonzeros of u* grows monotonically in k

Yin, W. Analysis and Generalizations of the Linearized Bregman Method, Rice
CAAM Report TR09-02. [link]



Operator Splitting ADM

Operator splitting + ADM gives Split Bregman (Goldstein—-Osher 08)

» Operator splitting by (Wang—Yang-Y.—Zhang 07,08): Split TV(u) to
Du and ), ||(-)i||. Great payoff for many imaging problems.

» Apply the alternating direction of multipliers (ADM) method to
above splitting.



Operator Splitting ADM

Alternating direction method: (Douglas—Rachford 60s, Glowinski—-Marocco,
Gabay—Mercier, 70s)

1. fix u, minimize w.r.t. v
2. fix v, minimize w.r.t. u
3. update A
Example (Wang—Yang-Y —Zhang 07,08) Compressed MRI, image deblr

min TV (u) + 2| Au — b[3 & min{u|w|s + 2| Au — b|3 - w = Du}

where A is partial Fourier or convolution. ADM extends to color images,

duals, rank-minimization



Summary

1. Bregman improves {1-like regularization quality for noisy data

2. Bregman applied to constrained (Au = b) minimization is not new
but is fast and accurate due adding back

3. Various extensions take advantages of model structures



L1 Based Bregman lteration Forgives & Forgets Errors

Stan Osher & Wotao Yin

We are solving 1
min{DJ (0,0,)+ S ]Au- fHZ}
v=12,...

J = pul,
| | means L2 norm

We are sloppy, making numerous errors.

But at the k" step:



we arrive at u, such that
(1) The subgradient p(uk ) = A"g forsome g.

(2) There is a vector u’ having the property that

Au” = f
D(u*,uk):o

Then y, solves  u, =argminju| suchthat Au= f

We have finished the iterative procedure!



Note D, (u*, uk): Cfor this  méans, for every component

u (i) - u” (i Xsign u, (i))

0

If u*(i);t 0, then uk('iés the same sign as u*(i)

That’s all that’s needed!!
Similar results for BV.

However, for strictly convex  J (u)
D(u*, u): O u =u,

Not interesting!

u(i)



Proof

U, =arg min<D(u, uk)+%HAu - fH>

2 *
we know D(U, Uk)Z 0, HAU - fH >0 and they are both zerofor U =U
Therefore, the Uk+from Bregman satisfies Auk+1 = f

Also, let Usatisfy AU = frhen:

J (uk+1) < ‘U‘ —\U—Ug, P(uk+l)>



Minimizing for u &€ R", |u|; suchthat Au=f

Apxn M<n

get sparse solutions.
Also, penalized problem, for u > 0

.1 1 2
min—|ul; + > [|Au — f]| ;
u 2
get sparser than just least squares.
Sparsity increasesas u 1 0.

Now: Suppose we think about calculus of variations type
problems in physics?



Think continuously

eg. let u,f:R'> R, ueH!?

fel?
Toy problem
min { — fluxl2 ffu+ f|u|>
u
u>0
Leads to
1
= -T+ —
f+- p(w)

p(u) isasubgradient of u, i.e.forany u
vl = luli-{v —u,p(w)) = 0

Or |v]y = (v,p(u))



The addition of the L! term shrinks the support of u, support
decreases with u 1

Similarly for the “heat equation”

1
ut'uxxzf';p(u)

which is gradient descent on the toy problem.



This was noticed (in some generality) by H. Brezis [1974] and
H. Brezis and A. Friedman [1976].

Generalized a bit recently by R. Caflisch, S.0., H. Schaeffer
and G. Tran.

An easy intuitive explanation of the shrinking support for the
elliptic equation:

Suppose u(x) >0 inaninterval x; < x < x;,1 with
u(x;) =u(x;+1) =0. Then p(u) =1 in this interval.
We have

Xy - X1 = p(uy(xz) —uy(x1)) + f;lz f(s)us

Xy -X1 < ,uf;lzf(s)ds

which diminishes with .

Similarly for intervals in which u(x) < 0.



This concept is very useful in obtaining spatially localized
solutions to a class of problems in mathematical physics,
such as finding compactly supported approximations to
eigenfunctions of the Schrodinger equation.



Joint work: V. Ozolins, R. Lai, R. Caflisch, S.O., F. Barekat and
K. Yin.

Motivated by localized Wannier functions developed in solid
state physics and quantum chemistry.

Consider the Hamiltonian

H-= —%A + V(x), e.values 1; < A,...
Ground state energy for a finite system with N electrons

Eo = Z?’=1 A



This is obtained by solving the variational problem

Ey, = ﬂyzl(cpj,l’-l\cpj) such that (@}, px) = 8

Get densely supported @;

We want short-ranged interaction.



Wannier functions (1937) involve a subspace rotation of the

@; (unitary transformation). Usually cut off by hand to get
compact support.

We just replace the variational problem by adding an L!
regularization:

E = mln
1P1»1/12

“MZ

( [, + w,,Hzp]))

such that (1/Jj,1/1k) = Oj



This can be solved by split Bregman with an extra step of
projecting onto the constraint set (R. Lai & S.0., (2012)).
Nonconvex, but works (Faster with “more L'” added). Get
localized modes.

Proven

(1) These “compressed modes” have compact support
in R%. There exists o depending on N, d and ||V ]|

Isup ;| < Cu?d/4+4 for i=1,..,N.
forO < u <y

(2) As u T oo, i.e. the L! term diminishes to 0 the compressed
modes converge in L? to a unitary transformation of
eigenfunctions of the original Hamiltonian.

(3) The sub-eigenspace spanned by the first M eigenfunctions
can be approximated by the first N compressed modes as N
increases (with improvable accuracy) for any fixed L.



Shift Invariance:

Wannier Function Based Variational Formalism for
Electronic Structure Calculations

V. Ozolins, F. Barekat, R. Lai, K. Yin, S.O. & R. Caflisch

Wannier functions

Unitary transformations of eigenstates of the Hamiltonian

Subject to constraint of orthogonality to all their
translations by lattice vectors, shift orthogonality. Usually
they are localized after first going through the construction

by first calculating the eigenstates. The localization is
problematic.

We will use L, regularization in a very fast algorithm to
obtain localized approximations directly.



3D Lattice
Ra(a =1,2,3)

any point on the lattice

Reciprocal lattice

QuRp = 2T5aB

Supercell

L,R,, L, positive integers



Periodic B.C. on supercell

Y(x) =Y (x + Ry.), wave functions i

R, = z NgLoRy, VN, €2
a

Eigenfunctions 1 are in general not lattice periodic.

Reciprocal lattice vector

G=Xm,Q, mye”Z
el®R =1 VR
Fourier expansion of i) contains only plane waves with

wave vectors k + G.
k belongs to the first Brillouin zone.



i.e. first Voronoi cell in the reciprocal lattice, also called
Wigner-Seitz cell, WS, the volume is |WS|

[ = {R|R ¢ WS}

Y(x) = 2 2 D(k + G)eilk+o)x
G k

1 .
1) — —i(k+G)x
Yk +G) WS] WSt/J(x)e dx

Function is shift-orthogonal iff
(W(x —R),P(x —R)) =86(R,R)

for R,R'eT



Well known result

Supercell-Periodic function
Y(x) s shift orthogonal
iff

~ 2 1
Sk + 6| = W[ Vk ¢ BZ

IT'| is the cardinality of set I'. Also, if Y (x), @(x) supercell
periodic.

(Y(x-R), (x-R"))= 0 VR,R'eT
iff

>k +G6)p(k+G)=0,VkeBZ



Simple to project.
Given f, supercell periodic  f(x + R,.) = f(x)
Find
[f = argllrjninllf —Pll2
such that ¢ is shift orthogonal.
Easy. (Not unique)

in 1D

N
Compute Cr = 2 If (Z(k + mQ))lz
m=—N



If C, # 0 then

f (k + mQ)
IT|WS|Cy,

[f ((k +mQ)) =
else (non unique)

[1f(k + mQ) = any unit vector.

Now we use the split Bregman for orthogonal constrained
problems SOC method, algorithm, very fast.



Algorithm for level-k Wannier function

Input

ﬁ:l/)j{;j =1,.. . k—1} Ay, u
Output Y.

(1) Initialize: u(x), v(x) norm, random
b(x) =c(x)=0
(2) While not converged do:

2
By = argl/r)nin{(w, Hp) + 5l —u+ bll 2,

14
+2llp = v +cll2,)



(4) u=1y, p, p.,+b) < Thisis now fast!!

(1 14 )
(5) v=argmin{_ [[vll, +2llp = v +cll?,]

6) b=yY—u+b

(7)) c=yY—v+c

(8) Return vy (x)
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Figure : Model potential V(x) = — Z ZV,,, exp {—w , where
j=—oom=1 .

a=10=0.1a V; =60, Vo =100, x; =0, and x, = a/2 .
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Figure : Compressed Wannier Functions at levels 1-8. A\ = v = 103,
parameter for L' term p = 10/v/L (L = 8 is the length of the supercell).
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Figure : "Spaghetti plot”: Eigenvalue dispersion for bands 1-8 calculated
by exact diagonalization (continuous line) and by using the lowest 8
Wannier modes (filled circles).



