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Outline

• All-order perturbation theory in the Sudakov regime 
!

• Practical relevance of resummation for QCD jet observables 
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• Factorisation theorems and resummation  
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• Devising a general technique at NNLL without a factorisation 
theorem 
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• Observable’s properties 
!

• Amplitudes  
!

• Relevant phase space regions 
!

• Automation for processes with two Born coloured legs 
!

• Conclusions and perspectives
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Fixed order QCD and resummation

• High energy strong interaction can be very well described by 
perturbative QCD (PT) through a power series in the (small) 
coupling constant (fixed order approximation) 
!

• Each radiative emission is associated with an extra power of the 
coupling, evaluated at a scale of the order of the emission’s 
transverse momentum  
!
!
!
!

• If the transverse momentum of the QCD radiation is constrained 
to be small, an arbitrary amount of QCD emissions become 
equally important - need for a all-orders description (large logs) 
!

• Additional (double and single) large logarithms L of kinematical 
origin appear as a left-over of the real-virtual cancellation of IRC 
divergences
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Fixed order QCD and resummation

• In the perturbative regime these logarithms can become as 
large as (breakdown of the PT below this limit) 
!
!
!

• This makes “higher order” corrections as large as leading order 
ones, i.e.  
!
!

• The PT series breaks down and the probability of the reaction 
diverges logarithmically in the large L limit instead of being 
suppressed 
!

• The resummation of the large logarithms to all perturbative 
orders restores the correct physical (Sudakov) suppression and 
rescues the predictive power of perturbation theory
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• Double logarithms due radiation kinematics commonly happen 
to exponentiate exactly (see later) 
!
• non-exponentiating observables are avoided because of issues with 

the simulation in event generators, e.g. JADE algorithm 
!

• For such observables we can define a new perturbative order 
by expressing the cross section as an exponential function  
!
!
!
!

• In the region where                  , LL are enhanced w.r.t. the Born, 
NLL are as large as the Born cross section itself, NNLL count 
as NLO corrections, and so on

Logarithmic accuracy
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Are these regimes of interest ?
• The large-logarithms (Sudakov) regime is probed in several situations 

whenever tight phase space cuts are applied in the definition of the 
physical observables (e.g. event-shapes, jet rates, definition of 
fiducial/control regions for signal or background). 
!
!

• Phenomenological interests: 
• fit of the strong coupling constant 
• precise simulation of background/signal 
• tuning/developing Monte Carlo event generators 
• design of better-behaved observables (e.g. substructure) 
!
!

• Theoretical interests: 
• properties of the QCD radiation to all-orders 
• understanding of IRC singular structure (subtraction) 
• unveiling perturbative scalings in the deep IRC region 
• probing the boundary with the non-perturbative regime, 

and study of non-perturbative dynamics
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• Several NLL resummations exist for a number of observables at 
lepton-lepton (hadron) and hadron-hadron colliders (long literature) 

!
• Automation at NLL for rIRC safe observables in e+e- and hadronic 

collisions (CAESAR) 
!
!

• NNLL corrections are generally sizeable (count as NLO) and 
important for precision physics - few NNLL results exist for 2 scale 
observables in e+e- collisions and even fewer for hadronic 
collisions 
!

• Automation for two hard Born legs at NNLL (ARES) 
!

• Leading jet’s transverse momentum distribution in colour singlet 
production at the LHC automated in MadGraph5_MC@NLO 
(general radiation structure initially established in Higgs 
production, one-loop virtual and luminosity required as an input)

[Banfi, Salam, Zanderighi (2001-2010)]

Glimpses of automation
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[Banfi, McAslan, Monni, Zanderighi (2014)]



• A generic observable in a hadronic process has a complex logarithmic 
structure (e.g. non-global, multi-legs, multiple sources of large logs) 
!

• Can we understand the logarithmic structure of a big class of observables at 
once ? 
!

• So far NNLL resummation relies on our ability to factorise (see later) the 
observable in some (smartly defined) conjugate space - resummation often 
leads to very tedious calculations (~ 14-16 yrs to go from NLL to the next 
order) 
!

• GOAL: devise a (numerical) resummation approach that: 
!

• does not rely on factorisation properties of the observable 
!

• is NNLL accurate and extendable to higher orders 
!

• is fully general for a very broad category of observables (~all that we can 
currently resum to NNLL)   
!

• it is suitable for automation (only input: observable’s routine)
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Finding a general pattern



Finding a general pattern

• Describe the all-orders QCD radiation to a given logarithmic 
accuracy in a (as much as) general way 
!

• To achieve that, we need to study the behaviour of both the 
squared amplitude and the observable in the presence of an 
arbitrary number of emissions 
!

• We divide the problem (and its solution) in three parts  
!

• Observable’s properties 
!

• Amplitudes in the logarithmic regime 
!

• Relevant phase space regions
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[S. Catani, D. de Florian, and G. Rodrigo 2012]
[J. R. Forshaw, M. H. Seymour, and A. Siodmok 2012]

Observable’s properties to all orders

• We consider an Infrared and Collinear (IRC) safe observable in 
the Born kinematics (e.g. two-jet event) 
!

• In this limit the radiative corrections are described exclusively 
by virtual corrections, and collinear and/or soft real emissions - 
amplitudes must factorise at all orders in these regimes w.r.t. 
the Born up to regular terms 
!
!
!
!
!

• Conventional approach to resummation: set up a factorisation 
theorem (i.e. scales separation) by factorising the observable’s 
measurement function. Resum large logarithms by means of 
evolution equations 
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Observable’s properties to all orders

• The observable does not trivially factorise in a product of terms  
arising from each kinematic mode contributing to the factorised 
amplitude - it often requires to transform into a conjugate space 
where the factorisation is explicit (e.g. Mellin - Laplace, Fourier) 
!
• OK for simple additive cases: e.g. thrust in e+e- 
!
!
!

• more difficult for involved observables: e.g. jet broadening in e+e- 
or inclusive vector-boson kt in hadron collisions 
!

• tough/impossible for observables which mix various kinematic 
modes or require iterative optimisations: e.g. jet rates, thrust major  

!
• Main idea: factorisation of the measurement function is an 

unnecessary requirement for resummation. All one needs is some 
scaling properties of the observable
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• The standard requirement of IRC safety implies that the value of the 
observable does not change in the presence of one or more 
unresolved emissions (i.e. very soft and/or collinear) 
!

• In addition, we require recursive IRC (rIRC) safety (see backup 
slides), i.e. 
!
• that in the presence of multiple emissions the observable scales in the same 

fashion as for a single emission (IRC divergences have an exponential form) 
!

• this property ensures the exponentiation of leading logarithms and a 
cancellation of divergences to all orders; 

!
• that for sufficiently small  there exists some  that can be chosen 

independently of    such that we can neglect any  emissions at scales 
!

!
• this property allows one to associate a logarithmic order to each real n-

emission probability, establishing a logarithmic hierarchy between 
correlated branchings
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We limit ourselves to continuously global observables*, i.e. constrain the 
radiation equally everywhere in the phase space 
(it ensures the absence of non-global logarithms) 

!
*Not a real limitation, however currently the full NNLL structure of non-global logarithms 
is still unknown

[Dasgupta, Salam 2001; Banfi, Marchesini, Smye 2002]



Virtual and (unresolved) real emissions
• RGE evolution for virtual corrections leads to a complete exponentiation of IRC 

singularities. To perform the cancellation of IRC poles to all orders, some sort of 
factorisation of the real corrections is required! 
!

• Solution: consider primary emissions  off the Born legs inclusive in secondary 
(gluon) branchings. We introduce a resolution scale   and define a subset of 
(unresolved) emissions, such that 
!

• The observable for unresolved emissions takes the simple (and factorising) form 
!

!
• rIRC ensures that these emissions do not contribute significantly to the 

observable, their contribution factorises at all-orders. Use virtual RGE to cancel 
IRC singularities 
!

• the soft-collinear approximation of the observable for unresolved emissions is 
enough to ensure the cancellation of the IRC poles arising from the virtual 
corrections (a different choice can be adopted - final result is scheme-invariant) 
!

• details of the actual observable’s scaling for several emissions away from the 
soft-collinear region and correct treatment of the gluon branchings are 
introduced at a later stage (next slides)
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[In progress]

[Parisi (1980); Magnea, Sterman (1990)]



Virtual and (unresolved) real emissions
• The combination of unresolved real and virtual corrections gives rise to 

an exponential factor that defines the no-emission probability at scales 
larger than  
!
!

• Since we’re interested in vetoing emissions above  , this can be further 
expanded as 
!
!
!

• The factor        is called the radiator, and defines the physical region 
where no radiation is allowed 
!

• The logarithmic dependence on the resolution parameter cancels when 
all-order resolved real emissions are taken into account (rIRC safety) 
!

• Owing to the above definition of unresolved emissions, the radiator is 
universal for all observables with the same soft-collinear scaling in the 
presence of a single emission
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Virtual and (unresolved) real emissions

• The resulting cumulative resummed cross section takes the 
form 
!
!
!
!
!
!

• rIRC safety ensures that all double logarithms are contained in 
the radiator, and that the multiple emissions function is non 
trivial (at most) at NLL level 
!

• Because of the lower cutoff defined by the resolution 
parameter, each resolved real emission “loses” one logarithmic 
power
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e.g. soft (resolved) matrix elements

• It is useful to decompose the matrix element for n soft emissions 
(w.r.t. the Born) as a sum of terms with an increasing number of 
colour-correlated emissions (i.e. non-abelian contributions) 
!
!
!
!
!
!
!
!
!
!
!
!

• Which diagrams do we need to achieve NNLL, i.e. neglect 
terms of order                ?
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NNLL

• At NNLL keep allow at most for a single soft gluon branching in the real 
corrections (correct for the inclusive approximation in the radiator) 
!

• Analogously, allow for one single emission to be emitted in non-soft-collinear 
(i.e. NLL) regions of the phase space (i.e. wide angle, hard collinear) 

!
• This corresponds to a NLO correction to the NLL cross section 
!
• Subleading terms in the expansion can be included systematically



Measure defined by the   
soft-collinear ensemble

Phase space at NLL

!
• At NLL the multiple emission function is given by an ensemble 

of soft and collinear independent (abelian) emissions widely 
separated in rapidity (coherence) 
!

• Non-abelian effects are completely accounted for in the radiator 
(i.e. inclusive gluon branching treatment -> CMW scheme) 
!
!
!
!
!
!
!
!

• Differences in rapidity bounds of different emissions contribute 
at NNLL (can be neglected at this order)
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[Banfi, McAslan, Monni, Zanderighi]
Phase space at NNLL

• Extension to NNLL involves additional kinematic configurations: 
• (at most) two soft-collinear emissions get close in rapidity

19

... ... ... ... ... ...

Clustering correction  
(jet algorithms only)

Correlated corrections

All corrections in terms of 
four-dimensional integrals



• Extension to NNLL involves additional kinematic configurations: 
• (at most) one collinear emission can carry a significant fraction of the 

energy of the hard emitter (which recoils against it) 
!
!
!
!

• Corrections affect both matrix element (hc) and observable (rec)

20

...

Phase space at NNLL



Phase space at NNLL

• Extension to NNLL involves additional kinematic configurations: 
!
• (at most) one soft-collinear emission has the correct rapidity bounds 

(approximated in the NLL ensemble) 
!
!
!
!
!

• (at most) one soft emission can have very small rapidity (wide angle)
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**With more than two coloured Born legs there are additional (NLL) contributions due  to the coherent 
interference between hard legs

**



[Becher, Bell]

• Observables with very different logarithmic structure can be 
modelled with the same method 
!
!
!
!
!
!
!
!
!

• Reproduce existing results in the literature up to NNLL: 
!
!
!
!

• Obtain new results for involved observables (no factorisation theorem)

Application to processes with 2 Born legs
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[Banfi, McAslan, Monni, Zanderighi]

[Banfi, Monni, Salam, Zanderighi] 
[Becher, Neubert, Rothen]

[Chien, Schwartz][Becher, Schwartz]
[Gehrmann, Luisoni, Monni]

[Stewart, Tackmann, Walsh, Zuberi]

e.g. Thrust major:

NEW

[Hoang, Kolodrubetz, Mateu, Stewart]



+ soft freezing

• The three-jet resolution parameter defines the maximum value of       
that leads to two QCD jets in the final state 
!

• Clustering is performed according to a jet algorithm defined by 
a ordering variable      and a test variable 
!
• Durham kt clustering:  
!
!

• Cambridge kt clustering:  
!

!
!

• Generally complex logarithmic structure (all corrections can be 
non trivial) 
!

• Clustering of emissions far in rapidity (e.g. soft and hard-
collinear) is allowed - possible issues with factorisation

The two-jet rate in e+e-
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The two-jet rate in e+e-
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[Banfi, McAslan, Monni, Zanderighi]
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• The Cambridge algorithm gets sensitive to multiple emissions at NNLL: 
sizeable corrections (uncertainties underestimated at NLL) 
!

• Checks ongoing for Durham algorithm - more involved structure

**

** Preliminary plot



Conclusions

• Novel general method for the resummation of any rIRC safe, 
global two-scales observable at NNLL order 
!

• rIRC safety as only applicability condition 
!

• Contribution of resolved real radiation formulated in terms of four 
dimensional integrals, which is suitable for efficient numerical 
implementation, currently automated for final-state radiation (ARES) 
!

• NNLL corrections systematically derived, each correction has clear 
physical interpretation. Method extendable to higher orders 
!

!
• Formulation in a Parton Shower framework - important hints on 

what’s needed for a NNLL parton shower 
!

• Modulo technical work, NNLL resummation for this (broad) class 
of observables in processes with 2 coloured Born legs is a 
theoretically solved problem
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Outlook
• A number of problems need to be attacked in order to treat the most 

general resummable observable  
!

• Extension to more than two hard legs requires a parametrisation of QCD 
interference between different hard emitters (trivial in the 2-legs case) 
!

• simple at NLL 
!

• slightly more technical at NNLL, but not overly complex (singular 
structure for multi-jet amplitudes known) 

!
• Many jet observables (e.g. > 0 jet rates) at the LHC defined in a non-global 

way 
!

• solution for NNLL non-global logarithms 
!

• Some observables contain more sources of large logarithms at once (e.g. H
+1 jet rate; small-R effects in H+0 jet rate)  

!
• not clear how to resum them simultaneously at NNLL in a general way
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Requirements on the observable

• Parametrisation for single emission and collinear splitting 
!
!
!

• The standard requirement of IRC safety implies that 
!
!
!
!
!
!
!
!

• We limit ourselves to continuously global observables*, i.e. the 
transverse momentum dependence is the same everywhere (it 
ensures the absence of non-global logarithms)
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V ({p̃},i(⇣i)) = ⇣i ; i(⇣) ! {ia,ib}(⇣, µ) , µ2 = (ia + ib)
2/2

ti

lim
⇣m+1!0

V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m))

lim
µ!0

V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

=
1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m))

*Not a real limitation, although currently NNLL structure of non-global logarithms unknown 
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Requirements on the observable

• Parametrisation for single emission and collinear splitting 
!
!
!

• Impose the following conditions, known as recursive IRC (rIRC) 
safety
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lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (1)

lim
⇣m+1!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (2.a)

lim
µ!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m)) (2.b)

!
• The above limit must be well defined and non-zero (except possibly in a phase 

space region of zero measure) 
!

• Condition (1) simply requires the observable to scale in the same fashion for 
multiple emissions as for a single emission (IRC divergences have an 
exponential form) 
!

• It is enough to ensure the exponentiation of double logarithms to all orders
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2/2

ti



[Banfi, Salam, Zanderighi]

Requirements on the observable

• Parametrisation for single emission and collinear splitting 
!
!
!

• Impose the following conditions, known as recursive IRC (rIRC) 
safety

30

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (1)

lim
⇣m+1!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (2.a)

lim
µ!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m)) (2.b)
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1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (1)

lim
⇣m+1!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (2.a)

lim
µ!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

= lim
v̄!0

1

v̄
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lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (1)

lim
⇣m+1!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m)) (2.a)

lim
µ!0

lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

= lim
v̄!0

1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m)) (2.b)

• Conditions (2.a) and (2.b), in addition to plain IRC safety, require that for 
sufficiently small    there exists some   that can be chosen independently 
of   such that we can neglect any  emissions at scales  
!

• The order with which one takes the limit is different in fixed-order and 
resummed calculations, and the final result must not change 

v̄ ✏
⇠ ✏v̄
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ti

v̄


