HIGGS PRODUCTION: CALCULATING AT N3LO

Bernhard Mistlberger ETH Zurich

The N3LO Team: Babis Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Franz Herzog, Thomas Gehrmann, Achilleas Lazopoulos, BM

HIGGS PRODUCTION

HIGGS PRODUCTION

Calculate from perturbative QFT+PDF

$$\sigma_{PP \to H+X} = \int dx_1 dx_2 f_1(x_1) f_2(x_2) \hat{\sigma}(x_1 x_2)$$

QCD dominates at the LHC

Gluon-Fusion

Heavy Top Approximation

GLUON FUSION

FEYNMAN DIAGRAMS

FEYNMAN DIAGRAMS

THE INTEGRAND

RVV Integrand

THE INTEGRAND

No loop left!

$$I = \int \frac{d^{d}p_{h}}{(2\pi)^{d}} \frac{d^{d}p_{4}}{(2\pi)^{d}} \frac{d^{d}p_{5}}{(2\pi)^{d}} \frac{d^{d}p_{6}}{(2\pi)^{d}} \delta_{+}(p_{h}^{2} - m_{h}^{2}) \delta^{d}(p_{1} + p_{2} - p_{h} - p_{4} - p_{5} - p_{6})$$

$$\times |\mathcal{M}(p_{i})|^{2} \times \delta_{+}(p_{4}^{2}) \times \delta_{+}(p_{5}^{2}) \times \delta_{+}(p_{6}^{2})$$
RRR Integrand

THE INTEGRAND

REDUCING COMPLEXITY

REVERSE UNITARITY

Cutkosky's Rule

$$\delta^+(p^2) \rightarrow \left[\frac{1}{p^2}\right]_c \sim \frac{1}{p^2 + i\epsilon} - \frac{1}{p^2 - i\epsilon}$$

Treat cuts almost as ordinary propagators!

REDUCING COMPLEXITY

Use "Integration-By-Part" (IBP) Identities

$$\int \frac{d^d p_4}{(2\pi)^d} \frac{\partial}{\partial p_4^{\mu}} \left(p_4^{\mu} \left[\frac{1}{p_4^2} \right]_c \left| \mathcal{M}(p_4, \dots) \right|^2 \dots \right) = 0$$

THRESHOLD EXPANSION

Expand around the production threshold of the Higgs

Method #1: Momentum Space Expansion

Rescale final state momenta

$$p_f \to (1-z)p_f$$

Expand integrand and measure

Ready to compute RRR!

Method #1: Momentum Space Expansion

Not so easy with loops: RRV

Loop momentum not constrained

Split in regions

Method #1: Momentum Space Expansion

parametrize loop momentum

$$p_l \to p_1 \alpha + p_2 \beta + p_{l,\perp}$$

 $\begin{array}{lll} \mbox{Hard} & \alpha \rightarrow \alpha, & \beta \rightarrow \beta, & p_{l,\perp}^2 \rightarrow p_{l,\perp}^2 \\ \mbox{Coll 1} & \alpha \rightarrow \alpha, & \beta \rightarrow (1-z)\beta, & p_{l,\perp}^2 \rightarrow (1-z)p_{l,\perp}^2 \\ \mbox{Coll 2} & \alpha \rightarrow (1-z)\alpha, & \beta \rightarrow \beta, & p_{l,\perp}^2 \rightarrow (1-z)p_{l,\perp}^2 \\ \mbox{Soft} & \alpha \rightarrow (1-z)\alpha, & \beta \rightarrow (1-z)\beta, & p_{l,\perp}^2 \rightarrow (1-z)p_{l,\perp}^2 \end{array}$

Method #2: Differential Equations

Only two variables: s and z

$$z = \frac{m_h^2}{s}$$

Dependence on s trivial: "Energy - dimension"

Integrand depends on z only via Higgs on-shell constraint

$$\frac{\partial}{\partial z}\delta(p_h^2 - sz) \to s\left(\frac{1}{p_h^2 - sz}\right)_c^2$$

Relate the differential with IBP identities to Master-Integrals

$$\frac{\partial}{\partial z}\vec{M} = A(z)\vec{M}$$

Method #2: Differential Equations

$$\frac{\partial}{\partial z}\vec{M} = A(\epsilon, z)\vec{M}$$

- System of coupled differential equations
- Coefficient Matrix A is not constant

One solution:

Find a way to decouple order by order in ϵ

$$\frac{\partial}{\partial z}\vec{M} = \epsilon A(\epsilon, z)\vec{M}$$

Solve
$$\frac{\partial}{\partial z}\vec{M} = A(\epsilon,z)\vec{M}$$

with a generalised power series Ansatz

$$M_{i} = \sum_{j} \sum_{k=2}^{0} c_{ijk} (1-z)^{(j-k\epsilon)}$$

78

1028 Differential Equations need 1028 Boundary Conditions!

Combine with Expansion-by-Regions

1028

THE METHODS

- Technology to handle hundreds of thousands of Feynman diagrams
- Improved algorithms to reduce the complexity of integrands to a manageable size
- Techniques to perform integrand and integral expansions
- Novel methods of computing Feynman Integrals

Ready to predict at N3LO!

CONCLUSIONS

First complete calculation of an observable at N3L0

30 orders in the threshold expansion for Gluon Fusion

Drastic reduction of scale dependence

Direct impact on LHC phenomenology

This is the dawn of the age of N3L0 precision

PARTON LUMINOSITY

$$\mathcal{L}_{12}(z) = \int_{\tau/z}^{1} dx_1 f_1(x_1) f_2(\frac{\tau}{zx_1})$$

