The resummed transverse momentum distribution of the Higgs in gluon fusion

Hendrik Mantler

Theory Division, CERN

in collaboration with Emanuele Bagnaschi, Robert Harlander, Stefan Liebler, Alessandro Vicini and Marius Wiesemann

Radcor-Loopfest

at the

University of California,

Los Angeles

June 15-19, 2015

Different models

- SM
- 2HDM
- MSSM
- NMSSM

The resummation of logarithms $\log(p_T/m_{\Phi})$ is necessary to obtain reliable result for small p_T

Different approaches

- Analytic resummation
- MC@NLO
- POWHEG

Different processes

- Gluon fusion
- (Bottom quark annihilation)

<ロ> (日) (日) (日) (日) (日)

Resummed p_T distribution

- with exact quark mass dependence [Bagnaschi, Degrassi, Slavich, Vicini '12; HM, Wiesemann '12; Grazzini, Sargsyan '13; Banfi, Monni, Zanderighi '13]
- and with squark contributions in the MSSM [Bagnaschi, Degrassi, Slavich, Vicini '12; HM, Wiesemann '12]

Real emission:

 Quark known analytically

[Spira, Djouadi, Graudenz, Zerwas '95]

・ロト ・回ト ・ヨト ・ヨト

 Squark known analytically

[Mühlleitner, Spira '06; Bonciani, Degrassi, Vicini '07]

Gluon fusion / virtual corrections

- Quark-gluon known analytically (at higher orders)
 [Spira, Djouadi, Graudenz, Zerwas '95; Harlander, Kant '05]
- Squark-gluon/squark known analytically

[Anastasiou, Beerli, Bucherer, Daleo, Kunszt '06; Aglietti, Bonciani, Degrassi, Vicini '06; Mühlleitner, Spira '06]

 Quark-squark-gluino semi-analytically known, but no public code

[Anastasiou, Beerli, Daleo '08; Mühlleitner, Rzehak, Spira '10]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Taylor expansion in the Higgs mass: $m_{\phi} \ll m_q, m_{\tilde{q}_1}, m_{\tilde{q}_2}, m_{\tilde{g}}$ [Harlander, Steinhauser '03 '04 + Hofmann '05; Degrassi, Slavich '08] \rightarrow top-stop-gluino
- Expansion in SUSY masses: $m_{\phi}, m_{q} \ll m_{\tilde{q}_{1}}, m_{\tilde{q}_{2}}, m_{\tilde{g}}$ [Harlander, Hofmann, HM '10; Degrassi, Slavich '10 + Di Vita '11 '12]
 - \longrightarrow bottom-sbottom-gluino
 - \longrightarrow top-stop-gluino

POWHEG

Implementations in POWHEG-BOX:

gg_H_quark-mass-effects, gg_H_2HDM, gg_H_MSSM [1111.2854, Bagnaschi, Degrassi, Slavich, Vicini '12] powhegbox.mib.infn.it

POWHEG-SusHi [HM unpublished]

Amplitudes from SusHi [1212.3249; Harlander, Liebler, HM '12]

MC@NLO

aMCSusHi [1504.06625, HM, Wiesemann '15] cp3.irmp.ucl.ac.be/projects/madgraph/wiki/aMCSusHi Script for MadGraph5_aMC@NLO, link to SusHi

Analytic resummation

MoRe-SusHi [1409.0531, Harlander, HM, Wiesemann '14] Analytically resummed p_T distribution at NLO+NLL sushi.hepforge.org/moresushi

 \checkmark = published, \checkmark = only private code

 $\equiv \mathbf{b}$

POWHEG	matching scale	
Implementations in POWHEG-BOX: gg_H_quark-mass-effects, gg_H_2HDM, gg_H_MSSM [1111.2854, Bagnaschi, Degrassi, Slavich, Vicini '12] powhegbox.mib.infn.it	hfact	
POWHEG-SusHi [HM unpublished] Amplitudes from SusHi [1212.3249; Harlander, Liebler, HM '12]		
MC@NLO		
aMCSusHi [1504.06625, HM, Wiesemann '15] cp3.irmp.ucl.ac.be/projects/madgraph/wiki/aMCSusHi Script for MadGraph5_aMC@NLO, link to SusHi	shower scale	
Analytic resummation		
MoRe-SusHi [1409.0531, Harlander, HM, Wiesemann '14] Analytically resummed p_T distribution at NLO+NLL sushi.hepforge.org/moresushi	resummation scale	

・ロト・「中・・中・・日・・日・

Scale determination

BV method

[Bagnaschi, Vicini]

HMW method [Harlander, HM, Wiesemann]

Restrict resummation to region in which the collinear approximation is valid \rightarrow deviation between matrix element and collinear approximation should be smaller than 10%

 p_T distribution can be negative!

Too large *Q* overemphasizes the Sudakov contribution

 \Rightarrow large cross section at small p_T

unitarity constraint:

$$\int \left(\frac{d\sigma}{dp_{T}}\right)^{NLO+NLL} dp_{T} = \sigma^{NLO}$$

 \Rightarrow compensation at large p_T

Scale determination

BV method

[Bagnaschi, Vicini]

HMW method [Harlander, HM, Wiesemann]

bottom

2 Q_{res} = 23 GeV Qres = 42 GeV (ldp/qp) / (Ldp/sa/pp) Q.... = 44 GeV 1.5 Qres = 46 GeV Qres = 48 GeV Q_{res} = 50 GeV 0.5 100 150 200 250 300 p_T [GeV]

top bottom interference

<ロ> (日) (日) (日) (日) (日)

Restrict resummation to region in which the collinear approximation is valid \rightarrow deviation between matrix element and collinear approximation should be smaller than 10%

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

BV vs. HMW

Preliminary

Both methods do not dependent on the scenario! Only dependence: Higgs mass m_{Φ}

Тор

- Large threshold effect for BV, much less pronounced for HMW
- Agreement up to a factor of two

Bottom

- Differences are below 20%
- Bottom scales smaller than the top scales, but larger than *m*_b

Interference

Large differences

3 different matching scales \Rightarrow 5 runs of the code:

$$\sigma_t(Q_t) + \sigma_b(Q_b) + [\sigma_{b+t}(Q_{int}) - \sigma_t(Q_{int}) - \sigma_b(Q_{int})]$$

SusHi-related codes: Input file in the SLHA format, similar to a SusHi input file:

```
Block MORESUSHI
        50000
                 # Number of integrations
Block DISTRIB2
       1.d0
                 # Minimal Higgs pT in GeV
      100.d0
                 # Maximal Higgs pT in GeV
  5
        1.d0
                 # Stepsize of Higgs pT in GeV
Block MORESUSHIKEYS
                 # gluon-gluon channel: 0=off, 1=on
  1
        1
                 # gluon-guark channel: 0=off, 1=on
                 # guark-guark channel: 0=off, 1=on
  3
 11
                 # heavy-top approximation: 0=off, 1=on
Block SCALES
        68 d0
                 # Resummation scale Ores in GeV
  4
Block SUSHT
        0
                 # Chosen model: 0=SM, 1=MSSM, 2=2HDM
  2
      11
                 # 11=scalar, 21=pseudo-scalar
  3
                 # Particle collider: 0=pp, 1=ppbar
        0
      13000.d0 # center-of-mass energy in GeV
  4
```

Comparison in the SM

Preliminary

Top contribution is dominant

Approach	Method
POWHEG	HMW
MC@NLO	HMW
analytic resummation	HMW

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison in the 2HDM

Preliminary

Approach	Method
POWHEG	HMW
MC@NLO	HMW
analytic resummation	HMW

・ロト ・回ト ・ヨト ・ヨト

Comparison in the 2HDM

Preliminary

Scenario with a large interference term

Approach	Method
POWHEG	HMW
MC@NLO	HMW
analytic resummation	HMW

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison in the NMSSM

Preliminary

HMW-scales for all approaches

Parameters:

 $\begin{array}{l} \tan\beta=2,\,A_{\kappa}=-20~{\rm GeV},\,\lambda=0.62,\,\mu=200~{\rm GeV},\,m_{H\pm}=400~{\rm GeV},\\ m_{\tilde{t}_1}=544.7~{\rm GeV},\,m_{\tilde{t}_1}=941.2~{\rm GeV},\,m_{\tilde{b}_1}=749.4~{\rm GeV},\,m_{\tilde{b}_1}=757.4~{\rm GeV},\\ M_3=1.5~{\rm TeV},\,\kappa=0.5,\,m_{H_2}=297.5~{\rm GeV},\,m_{A_1}=166.5~{\rm GeV} \end{array}$

- Codes for three different approaches (POWHEG, MC@NLO and analytic resummation)
- Two independent methods (BV and HMW) to determine the matching scales
- Study of the 2HDM including a comparison between the different approaches and methods ongoing
- New codes for the NMSSM will be available soon
- What about the squark contributions?

- Codes for three different approaches (POWHEG, MC@NLO and analytic resummation)
- Two independent methods (BV and HMW) to determine the matching scales
- Study of the 2HDM including a comparison between the different approaches and methods ongoing
- New codes for the NMSSM will be available soon
- What about the squark contributions?

Thanks for your attention!

Backup

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

Model (page)	<i>m</i> _Φ [GeV]	HMW [GeV]		GeV] BV [GeV]		V]	
woder (page)		Q_t	Qb	Q _{int}	w _t	W b	W _{int}
SM (10)	125	45	21	31	48	18	9
2HDM (11+17)	300	59	39	47	111	38	23
2HDM (12+18)	270	57	37	44	110	35	22
NMSSM (13,left)	297.5	59	39	47	-	-	-
NMSSM (13,right)	166.5	49	27	35	-	-	-

Comparison in the 2HDM

Preliminary

Top contribution is dominant

Approach	Method
POWHEG	HMW
MC@NLO	HMW
analytic resummation	HMW

Comparison in the 2HDM

Preliminary

Scenario with a large interference term

Approach	Method
POWHEG	BV
MC@NLO	BV
analytic resummation	BV

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・回 ト ・ヨト ・ヨト

(ロ) (部) (E) (E) (E)

$$\left(\frac{d\sigma}{d\rho_{\tau}}\right)^{NLO+NLL} = \frac{d\sigma^{\text{NLO}}}{d\rho_{\tau}} - \left[\frac{d\sigma^{\text{logs}}}{d\rho_{\tau}}\right]_{NLO} + \left[\frac{d\sigma^{\text{res}}}{d\rho_{\tau}}\right]_{NLL}$$

19/13

unitarity constraint:

$$\int \left(\frac{d\sigma}{dp_{T}}\right)^{NLO+NLL} dp_{T} = \sigma^{NLO}$$

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

$$\left(\frac{d\sigma}{d\rho_{\tau}}\right)^{NLO+NLL} = \frac{d\sigma^{\text{NLO}}}{d\rho_{\tau}} - \left[\frac{d\sigma^{\text{logs}}}{d\rho_{\tau}}\right]_{NLO} + \left[\frac{d\sigma^{\text{res}}}{d\rho_{\tau}}\right]_{NLL}$$

19/13

unitarity constraint:

$$\int \left(\frac{d\sigma}{d\rho_T}\right)^{NLO+NLL} d\rho_T = \sigma^{NLO}$$

new unphysical scale:

resummation scale Q

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

Suppression of the error bands for large p_T :

$$d(p_T) = \{1 + \exp [\alpha (p_T - m_{\Phi})]\}^{-1}, \quad \alpha = 0.1 \,\text{GeV}^{-1}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < � >

20/13

$$\left(\frac{d\sigma}{dO}\right)_{\text{MC@NLO}} = \int d\Phi_n \left[B + V + \int d\Phi_1^{\text{MC}} K^{\text{MC}}\right] \mathcal{I}_B^{\text{MC}}(O)$$
$$+ \int \left[d\Phi_{n+1}R - d\Phi_{n+1}^{\text{MC}} K^{\text{MC}}\right] \mathcal{I}^{\text{MC}}(O)$$

21/13

$$\begin{split} B &\equiv \text{Born} \\ V &\equiv \text{virtual corrections} \\ R &\equiv \text{real emission} \\ \mathcal{K}^{\text{MC}} &\equiv \text{subtraction term} \\ \mathcal{I}^{\text{MC}}_{(B)}(O) &\equiv \text{shower} \end{split}$$

Shower scale corresponds to the starting scale of the shower choosen event by event from a distribution

$$d\sigma = \bar{B}^{s}\left(\Phi_{B}\right)d\Phi_{B}\left\{\Delta_{t_{0}}^{s} + \Delta_{t}^{s}\frac{R^{s}\left(\Phi\right)}{B\left(\Phi_{B}\right)}d\Phi_{r}\right\} + R^{f}d\Phi + R_{reg}d\Phi$$

$$ar{B}^s(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int d\Phi_r \, R^s(\Phi_r)$$

 $B \equiv Born$

 $V \equiv$ virtual corrections

 $R = R_{reg} + R_{div} \equiv real emission$

The real emission can be split into channels that are regular (R_{reg}) and divergent (R_{div}) in the limit of collinear emission

 $R_{div} = R^s + R^f$

 $R^{s} \equiv$ singular part of R_{div} $R^{f} \equiv$ finite part of R_{div} Damping factor $D(h) = \frac{h^2}{h^2 + \rho_T^2}$ $R^s = D \cdot R_{div}, \quad R^f = (1 - D) \cdot R_{div}$

Results for analytic resummation

pp @ 13 TeV

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

3

Results for analytic resummation

[1409.0531, Harlander, HM, Wiesemann '14]

Scenario(M_A , tan β)

$$R_{\mathcal{S}}(p_{\mathcal{T}}) = rac{\mathrm{d}\sigma_{\mathcal{S}}/\mathrm{d}p_{\mathcal{T}}}{\mathrm{d}\sigma_{\mathrm{SM}}/\mathrm{d}p_{\mathcal{T}}}$$

pp @ 13 TeV

Hendrik Mantler, Radcor-Loopfest 2015, UCLA, June 15-19, 2015

Shapes

The p_{T} -shape for the bottom-quark (red, solid) and the top-bottom interference contribution (green, dotted), normalized to the top-contribution (black, dash-double dotted):

pp @ 13 TeV

-

・ロト ・日下・ ・ ヨト