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INCEPTION



  Multi-scale problems in renormalizable quantum field theories have perturbative 
     corrections of the form                            , which may spoil the reliability of the 
     perturbative expansion. However, they carry important physical information.

• Renormalization and factorization logs:

• High-energy logs:

• Sudakov logs:

 Logarithms encode process-independent features of perturbation theory. For Sudakov
    logs: the structure of infrared and collinear divergences. 

• For inclusive observables: analytic resummation to high logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory.

• Non-perturbative contributions to QCD cross sections can be estimated.

• Links to the strong coupling regime can be established for special gauge theories.
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•  Threshold logarithms are associated with kinematic variables ξ that vanish at Born level   
   and get corrections that are enhanced because phase space for real radiation is restricted 
   near partonic threshold:  examples are  1- T,   1- M2/ŝ,  1 - xBJ.      

•  At leading power in the threshold variable ξ logarithms are directly related to soft and 
   collinear divergences: real radiation is proportional to factors of

•  Beyond the leading power,  1/ξ , the perturbative cross section takes the form

•  The structure of NLP threshold logarithms may be understood to all orders.
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LEADING POWER



Electroweak annihilation

The original factorization near threshold

We will focus on processes involving parton annihilation into electroweak final states 
(Drell-Yan, Higgs, di-boson final states): very well understood at LP, simpler at NLP. 

• LP threshold resummation is based on factorization: 
   the Mellin-space partonic cross section reads

• Collinear poles can be subtracted with suitable   
   parton distributions,

• Each factor in ω obeys evolution equations near   
   threshold, leading to exponentiation.

• Real and virtual contributions can 
   be treated separately.



The perturbative exponent
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A classic way to organize Sudakov logarithms is in terms of the Mellin (Laplace) transform 
of the momentum space cross section (Catani et al. 93),

This displays the main features of Sudakov resummation

 Predictive: a k-loop calculation determines gk and thus a whole tower of logarithms to    
                    all orders in perturbation theory.

 Effective:  ● the range of applicability of perturbation theory is extended 
                     (finite order: αs log2N small.  NLL resummed: αs small);
                  ● the renormalization scale dependence is naturally reduced. 

 Theoretically interesting: resummation ambiguities related to the Landau pole give 
                                        access to non-perturbative power-suppressed corrections.

 Well understood: ● NLL Sudakov resummations exist for most inclusive observables at 
                                 hadron colliders, NNLL and approximate N3LL in simple cases.



Color singlet hard scattering
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A well-established formalism exists for distributions in processes that are electroweak at 
tree level (Gardi, Grunberg 07).  For an observable r vanishing in the two-jet limit 

The Mellin (Laplace) transform,

exhibits log N singularities that can be organized in exponential form

where the exponent of the `Sudakov factor’ is in turn a Mellin transform

and the general form of the kernel is 

where A is the cusp anomalous dimension, and B and D have distinct physical characters.



Non-logarithms
Delta-function terms arise from virtual corrections and phase space integration. They yield 
constants in Mellin space (“π2”) which can be controlled and  “exponentiate”  for simple 
processes (Parisi 80; Sterman 87; Eynck, Laenen, LM 03;  Ahrens, Becher, Neubert, Yang 08),

• For EW annihilation, virtual terms
   reconstruct the full form factor.
• In dimensional regularization, each
   term exponentiates with no prefactor.

• Real and virtual factors
   are separately finite.

• An improved resummation
  formula can be written for   
  DY, DIS and Higgs total rates:   
  all constants are defined in  
  the exponent.

Less predictive than conventional resummation: the exponent receives corrections order by
order.  Empirically, exponentiated lower-order constants provide much of the exact result.



GATHERING EVIDENCE



The LBKD Theorem

Low’s original expression for the radiative matrix element
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A radiative matrix element

The earliest evidence that infrared effects can be controlled at NLP is Low’s theorem (Low 58)
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The LBKD Theorem

Low’s original expression for the radiative matrix element

µ

p1 p01

p02p2

k

A radiative matrix element

The earliest evidence that infrared effects can be controlled at NLP is Low’s theorem (Low 58)

The radiative matrix element for the emission of a (next-to-) soft photon is determined by 
the Born amplitude T and its first derivative w.r.t. external momenta.

  Low’s result established for a single charged scalar particle, follows from gauge invariance.
  It generalizes the well known properties of soft emissions in the eikonal approximation.
  The theorem was extended by (Burnett, Kroll 68) to particles with spin.
  The LBK theorem applies to massive particles and uses the mass as a collinear cutoff.
  It was extended to massless particles by (Del Duca 90), as discussed below.

     

Eikonal approximation

Next-to-eikonal contribution



Modified DGLAP
An important source of known NLP logarithms is the DGLAP anomalous dimension.
Non-trivial connections between LP and NLP logarithms in DGLAP were uncovered 
(Moch, Vermaseren, Vogt 08) and made systematic (Dokshitzer, Marchesini, Salam 08).

Conventional DGLAP for a quark distribution reads

The large-N behavior of the anomalous 
dimension is single-logarithmic in the MS 
scheme. NLP terms suppressed by N are 
related to LP

MVV relations

These relation extend to the function D,  and recursively to all orders: modified splitting 
functions can be defined which vanish at large x beyond one loop.



Modified DGLAP
DMS, with refinements implied by (Basso, Korchemsky 06) propose to modify DGLAP as

applying to both PDF’s and fragmentation, with σ = ±1 respectively, and the same kernel 
(Gribov-Lipatov reciprocity).   The resulting kernel  P and is claimed to vanish as z → 1 
beyond one loop in the “physical” MC scheme where αs = γcusp.  Therefore

The modified equation cannot be diagonalized by Mellin transform: it must be solved by
iteration, using a formal translation operator

In practice, this procedure constructs a 
modified kernel where high-order terms 
are generated by shifts of lower-orders



An educated guess

2

1� z
�! 2 z

1� z

Available NLP information can be combined in an ansatz for generalized threshold 
resummation applicable to EW annihilation processes and DIS (Laenen, LM, Stavenga 08).

Exponentiation of constants

Refinement of phase space

DMS kernel

This expression, and similar ones for DIS and Higgs production via gluon fusion, incorporate

  The exponentiation of N-independent terms.

  A treatment of phase space consistent up to O(1-z), including running coupling effects.

  The DMS modification of the DGLAP kernel, including the NLP term in the LO kernel.

  Note:  DMS brings to the exponent a CF2 contribution crucial to fit two-loop NLP logs.



An educated guess:  Drell-Yan

  Only one-loop NLP and DMS input has been used in the resummation formula.
  Leading NLP logarithms are reproduced exactly for all color structures at two loops.
  NLL and NNLL NLP logarithms are well approximated but not exact.
  Similar results hold for three-loop DIS, using two-loop information in the exponent.

Parametrizing  DY with



Towards systematics

The problem of NLP threshold logarithms has been of interest for a long time, and several 
different approaches have been proposed. Recent years have seen a resurgence of interest, 
both from a theoretical point of view and for phenomenology.

  Early attempts include a study of the impact of NLP logs on the Higgs cross section 
     by Kraemer, Laenen, Spira (98); work on FL by Akhoury and Sterman (99) (logs without 
     plus distributions are however leading) and work by Grunberg et al. (07-09) on DIS.

  Important results can be obtained by using physical kernels (Vogt et al.  09-14) which 
     are conjectured to be single-logarithmic at large z, which poses constraints on their 
     factorized expression. Note in particular a recent application to Higgs production by
     De Florian, Mazzitelli, Moch, Vogt (14).

  Useful approximations can be obtained by combining constraints from large N with 
     high-energy constraints for N∼1 and analiticity (Ball, Bonvini, Forte, Marzani, Ridolfi, 13),
     together with phase space refinements.     

  SCET techniques can be applied and indeed may be well-suited to the problem: a 
     thorough one-loop analysis was given in (Larkoski, Neill, Stewart,15). 

  A lot of recent formal work on the behavior of gauge and gravity scattering amplitudes 
     beyond the eikonal limit was triggered by a link to asymptotic symmetries of the S 
     matrix (many authors from A(ndy Strominger) to Z(vi Bern), 14-15).



NEXT-TO-SOFT APPROXIMATION



On the eikonal approximation

•  Taking the soft approximation at leading power on   
   emissions from an energetic (or very massive) 
   particle yields a set of simplified Feynman rules.

•  These rules correspond to emissions from a 
    Wilson line oriented along the trajectory of the
    energetic particle, in the same color irrep.

•  The results do not depend on the energy and 
    spin of the emitter, only on its direction and color 
    charge.

•  Physically, we are neglecting the recoil of the 
    emitter: the only effect of interaction with soft 
    radiation is that the emitter acquires a phase.

•  The soft limit of a multi-particle amplitude is a 
    correlator of Wilson lines
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A fast particle emitting soft photons

Eikonal Feynman rule



Infrared exponentiation
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All correlators of  Wilson lines, regardless of shape, resum in exponential form.   

Diagrammatic rules exist to compute directly the logarithm of the correlators. 

! 2,QED =

! 2,QCD =

Only connected photon 
subdiagrams contribute to 
the logarithm.

Only gluon subdiagrams 
which are two-eikonal 
irreducible contribute to 
the logarithm. They have
modified color factors.

For eikonal form factors, these diagrams are called webs (Gatheral; Frenkel, Taylor; Sterman).



The concept of web generalizes non-trivially to the case of multiple Wilson lines.  
(Gardi, Smillie, White, et al).

A web is a set of diagrams which differ only by the order of the gluon attachments on each 
Wilson line. They are weighted by modified color factors.

Writing each diagram as the product of its natural color factor and a kinematic factor

a web W can be expressed as a sum of diagrams in terms of a web mixing matrix R

The non-abelian exponentiation theorem holds: each web has the color factor of a fully 
connected gluon subdiagram (Gardi, Smillie, White).

Multiparticle webs

W =
X

D

eC(D)F(D) =
X

D,D0

C(D0)R(D0, D)F(D)

D = C(D)F(D)



• A class of factorizable contributions exponentiate via NE webs

• Feynman rules exist for the NE exponent, including “seagull” vertices.

• Non-factorizable contributions involve single gluon emission from 
   inside the hard function, and must be studied usin LBDK’s theorem.

Beyond the eikonal
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The soft expansion can be organized beyond leading power using either path integral 
techniques (Laenen, Stavenga, White 08) or diagrammatic techniques (Laenen, LM, Stavenga, 
White 10).  The basic idea is simple, but the combinatorics cumbersome.  For spinors

Spin-dependent Spin-independentEikonal

A next-to-eikonal web



Double real two-loop Drell-Yan

Multiple real emission contributions to EW annihilation processes involve only factorizable 
contributions. NE Feynman rules can be tested this level.

            Defining the Drell-Yan K-factor as 

As a test, we (re)computed the CF2 part of K 
at NNLO from ordinary Feynman diagrams, and 
then using NE Feynman rules, finding complete 
agreement.  As expected, plus distributions arise 
from the eikonal approximation.

The abelian part of the NNLO K-factor from real emission, omitting constants

Real emission Feynman diagrams for the abelian 
part of the NNLO K-factor.

Next-to-eikonal terms arise 
from single-gluon corrections: 
seagull-type contributions 
vanish for the inclusive cross 
section.



HARD COLLINEAR EMISSION



A collinear problem

A Feynman diagram containing a collinear enhancement

Non-factorizable contributions start at NNLO.  For massive particles they can be traced to 
the original LBK theorem.  For massless particles a new contribution to NLP logs emerges.

• Gluon k2 is always (next-to) soft for 
   EW annihilation near threshold.

•  When k1 is (next-to) soft all logs are
   captured by NE rules.

• Contributions with k1 hard and collinear
   are missed by the soft expansion.

•  The collinear pole interferes with soft
   emission and generates NLP logs.

•  The problem first arises at NNLO

•  These contributions are missed by the LBK theorem: it applies to an expansion in Ek/m. 

•  They can be analized using the method of regions: the relevant factor is  (p⋅k2)-ε/ε .
•  They cause the breakdown of next-to-soft theorems for amplitudes beyond tree level.

➡ the soft expansion and the limit ε→0 do not commute.

•  They require an extension of LBK to m2/Q < Ek < m. It was provided by Del Duca (90).



LP factorization: pictorial

A pictorial representation of soft-collinear factorization for fixed-angle scattering amplitudes



Beyond Low’s theorem
A slightly modified version of Del Duca’s result gives the radiative amplitude in terms of the
non-radiative one, its derivatives, and two “jet” functions.

The tensors Gμν project out the eikonal contribution present in the first term.

The jet of ordinary IR factorization.

The radiative jet.

• At tree level the radiative jet displays the 
  expected dependence on spin.
• Dependence on the gauge vector nμ starts
  at loop level: simplifications arise for n2 = 0.



LOOKING TO THE FUTURE



A Perspective

  Perturbation theory continues to display new and unexplored structures.

  Leading power threshold resummation is highly developed and provides some of the most 

     precise predictions in perturbative QCD.

  Mellin-space constants naturally reside in the exponent for simple processes.

  Low’s theorem is the first of many hints that NLP logs can be understood and organized.

  Different approaches catch a number of towers of NLP logs in simple processes.

  The next-to-soft approximation is well understood, using both diagrammatic and path 

     integral approaches, even for multi-parton processes.

  Hard collinear emissions spoil Low’s theorem: a new radiative jet function emerges.

  A complete treatment of NLP threshold logs is at hand.

  Much work to do to organize a true resummation formula, even for EW annihilation: we 

     have a more intricate  “factorization”, we must make sure to control double countings.

  In order to achieve complete generality, we will need to include final state jets.
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