Fine-tuning the Laporta approach

Thomas Luthe

Bielefeld University

in collaboration with York Schröder

Radcor-Loopfest 2015

Motivation

- Previous talk: many applications for tadpole integrals
- Push computational limits to 5 loops, starting with fully massive tadpoles
- Low maintenance approach, one method for a complete set of integrals with little human input needed

Outline

- Short review of difference equation and factorial series
- Improvements
- Results

Difference equations and factorial series [Laporta '01]

•
$$I(x) = \int \frac{1}{D_1^x D_2^{b_2} \cdots D_n^{b_n}}$$
, here all D_i massive with $m = 1$
• $\sum_{k=0}^R q_k(x)I(x+k) = \sum_i \sum_{k=0}^{R_i-1} p_{ik}(x)J_i(x+k)$, $J_i \in$ subsectors
• $I(x) = \sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+s+d/2+1)} a_s$
• $\sum_{k=0}^{R'} q'_k(s)a_{s+k} = \sum_i \sum_{k=0}^{R'_i-1} p'_{ik}(s)a_{i,s+k}$
• a_0 from large-x behaviour in terms of lower loop integrals

•
$$a_0 \xrightarrow{\text{rec. rel.}} a_{s_{\max}}, \sum_{s=0}^{s_{\max}} \frac{\Gamma(x_{\max}+1)}{\Gamma(x_{\max}+s+d/2+1)} a_s, I(x_{\max}) \xrightarrow{\text{diff. eq. }} I(1)$$

Difference equations and factorial series [Laporta '01]

Advantages

- Everything can be automated
- Works well also with divergent integrals and does not depend on a special class of functions
- High precision results for arbitrarily many orders in ϵ
- Can expand around any dimension
- Cross-checks by putting x on different propagators

Typical problems and limitations

- \bullet Usually only numeric results \rightarrow limited use for integrals with multiple scales
- Complexity of the coefficients in high order equations
- High orders of the recurrence relation
- Divergence of the factorial series in numerical evaluation

Coupled vs decoupled equations

Typically generate equations via IBP: $0 = \frac{1}{[Chetyrkin, Tkachov '81]}$

- simple solve algorithm
- need to solve only one integral numerically
- coeffs. grow large very quickly with *R*

Coupled equations

- more involved solve algorithm
- need to solve *R* integrals simultaneously
- coeffs. grow less quickly with R
- can choose master integral basis

Thomas Luthe (Bielefeld University)

5 / 11

Coupled vs decoupled equations

Example: Difference eq. 29703#3 Propagators: 7 Order: 8 Integrals: 1396 + sub-topologies Input equations: 1400

	decoupled	coupled	coupled eqs. $+$
	equations	equations	opt. basis
$\langle \deg_x \rangle / \operatorname{coeff.}$	33.54	5.63	4.65
$\langle \deg_d \rangle / \operatorname{coeff.}$	31.59	6.51	4.51
$\langle {\sf size} \; {\sf as} \; {\sf string} angle \; / \; {\sf eq}.$	$5.3\cdot10^5$	$7.0\cdot 10^3$	$3.9\cdot10^3$
$\langle \# \text{ coefficients} \rangle / eq.$	17.97	17.44	16.06
# steps to solve	$6.1\cdot 10^4$	$5.9\cdot 10^4$	$5.6\cdot 10^4$
time to solve	${\sim}2d$	68s	48s

Coupled vs decoupled equations

Scaling of the homogeneous part of equations with order R:

Recurrence relations

•
$$\sum_{i} \sum_{k=0}^{R'} q'_{ik}(s) a_{i,s+k} = 0$$

• Can be reduced with the same algorithms as the difference equations!

- Translation from difference equations: order *R*, *x*-degree *N* → order *R'* with *N* ≤ *R'* ≤ *N* + *R* ⇒ Translation loses information with every order of *x*
- Need input equations with *R*&*N* minimal.
- IBP: R ≤ 2, N ≤ 1, but not good enough.
 ⇒ Reduce IBP-equations without multiplying or dividing by x & try to factor out (x + α).

Divergence factors and precision

• The numerical error grows by a factor $F_D(F_R)$ with each iteration of the difference equations (recurrence relations).

•
$$D_{end} \approx \log_{10} \left[\begin{pmatrix} x_{max} + s_{max} \\ s_{max} \end{pmatrix} F_D^{-x_{max}} \right]$$
 (precision of $I(1)$)
• $D_{start} \approx \log_{10} \left[\begin{pmatrix} x_{max} + s_{max} \\ s_{max} \end{pmatrix} F_R^{s_{max}} \right]$ (precision of a_0)

Loops	F_D	F_R	x_{\max}	s _{max}	D_{end}
1	1	1	300000	1000000	300000
2	3	1	300000	870000	145000
3	8	1	110000	900000	45000
4	15	1.125	21500	1000000	20000
5	24	12.928	700	18000	300

Results (d = 4)

See also zig-zag conjecture [Broadhurst, Kreimer '95][Brown, Schnetz '12]

Conclusions

- Improvements:
 - Choose coupled over decoupled eqs. to simplify coefficients
 - Reduction of recurrence relations
 - Avoid divergence in factorial series by increased precision
- Everything implemented in C++ , except polynomial algebra (Fermat [Lewis]), all time-critical code parallelised
- At the 5-loop level have produced difference equations up to order 20, recurrence relations up to order 28 + inhomogeneous parts
- Solved all fully massive master integrals for 37 out of 48 vacuum 5-loop diagrams with \sim 300 digits precision, \geq 10 orders in ϵ around $d = 4 2\epsilon$, $d = 3 2\epsilon$

Divergence factors

•
$$I^{(hom)}(x) = \sum_{m=1}^{n} \mu_m^x \sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+s-K_m+1)} a_{m,s}$$

• μ_m are roots of the characteristic polynomial $p(\mu)$.

• For decoupled eq.
$$\sum_{i=0}^{N} \sum_{k=0}^{R} p_{ik} x^{i} I(x+k) = 0$$
$$p(\mu) = \sum_{k=0}^{R} p_{Nk} \mu^{k}$$
$$F_{P}^{(m)} = \max_{i} \left| \frac{\mu_{m}}{\mu_{i}} \right|$$
$$= (m) \qquad \left(\left| \frac{\mu_{m}}{\mu_{i}} \right| \right)$$

•
$$F_R^{(m)} = \max\left\{1, \max_{\substack{i\\\mu_i \neq \mu_m}} \left|\frac{\mu_m}{\mu_m - \mu_i}\right|\right\}$$

: