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Motivation

Previous talk: many applications for tadpole integrals

Push computational limits to 5 loops, starting with fully massive
tadpoles

Low maintenance approach, one method for a complete set of
integrals with little human input needed

Outline

Short review of difference equation and factorial series

Improvements

Results

Thomas Luthe (Bielefeld University) Fine-tuning the Laporta approach Radcor-Loopfest 2015 2 / 11



Difference equations and factorial series [Laporta ’01]
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Difference equations and factorial series [Laporta ’01]

Advantages

Everything can be automated

Works well also with divergent integrals and does not depend on a
special class of functions

High precision results for arbitrarily many orders in ǫ

Can expand around any dimension

Cross-checks by putting x on different propagators

Typical problems and limitations

Usually only numeric results → limited use for integrals with multiple
scales

Complexity of the coefficients in high order equations

High orders of the recurrence relation

Divergence of the factorial series in numerical evaluation
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Coupled vs decoupled equations

Typically generate equations via IBP: 0 =
[Chetyrkin, Tkachov ’81]

Ij(x + k)

j

k

Decoupled equations

simple solve algorithm

need to solve only one integral
numerically

coeffs. grow large very quickly
with R

Coupled equations

more involved solve algorithm

need to solve R integrals
simultaneously

coeffs. grow less quickly with R

can choose master integral basis
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Coupled vs decoupled equations

Example: Difference eq. 29703#3
Propagators: 7
Order: 8
Integrals: 1396 + sub-topologies
Input equations: 1400

decoupled
equations

coupled
equations

coupled eqs. +
opt. basis

〈degx〉 / coeff. 33.54 5.63 4.65
〈degd 〉 / coeff. 31.59 6.51 4.51

〈size as string〉 / eq. 5.3 · 105 7.0 · 103 3.9 · 103

〈# coefficients〉 / eq. 17.97 17.44 16.06
# steps to solve 6.1 · 104 5.9 · 104 5.6 · 104

time to solve ∼2d 68s 48s
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Coupled vs decoupled equations

Scaling of the homogeneous part of equations with order R :
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Recurrence relations

∑

i

R′

∑

k=0

q′ik(s)ai ,s+k = 0

Can be reduced with the same algorithms as the difference equations!

Translation from difference equations:
order R , x-degree N → order R ′ with N ≤ R ′ ≤ N + R

⇒ Translation loses information with every order of x

Need input equations with R&N minimal.

IBP: R ≤ 2, N ≤ 1, but not good enough.
⇒ Reduce IBP-equations without multiplying or dividing by x & try
to factor out (x + α).
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Divergence factors and precision

The numerical error grows by a factor FD (FR) with each iteration of
the difference equations (recurrence relations).

Dend ≈ log10

[(

xmax + smax
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)
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D

]

(precision of I (1))

Dstart ≈ log10

[(

xmax + smax

smax

)

F smax
R

]

(precision of a0)

Loops FD FR xmax smax Dend

1 1 1 300000 1000000 300000
2 3 1 300000 870000 145000
3 8 1 110000 900000 45000
4 15 1.125 21500 1000000 20000
5 24 12.928 700 18000 300
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Results (d = 4)

5 =−
441

40
ζ(7)ǫ4 [Kazakov ’83]

+ 181.782239286123408207907882360186 . . . ǫ5

− 1725.99961374035208059516739924421 . . . ǫ6

+ 12797.9998737268240466855516903376 . . . ǫ7

− 82986.8526925813821605590471473909 . . . ǫ8

+ 496710.272856148328215231508903586 . . . ǫ9

+ · · ·

See also zig-zag conjecture [Broadhurst, Kreimer ’95][Brown, Schnetz ’12]
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Conclusions

Improvements:
◮ Choose coupled over decoupled eqs. to simplify coefficients
◮ Reduction of recurrence relations
◮ Avoid divergence in factorial series by increased precision

Everything implemented in C++ , except polynomial algebra
(Fermat [Lewis ]), all time-critical code parallelised

At the 5-loop level have produced difference equations up to order 20,
recurrence relations up to order 28 + inhomogeneous parts

Solved all fully massive master integrals for 37 out of 48 vacuum
5-loop diagrams with ∼ 300 digits precision, ≥ 10 orders in ǫ around
d = 4− 2ǫ, d = 3− 2ǫ
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Divergence factors
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For decoupled eq.
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