Fine-tuning the Laporta approach

Thomas Luthe

Bielefeld University

in collaboration with York Schröder

Radcor-Loopfest 2015

Motivation

- **•** Previous talk: many applications for tadpole integrals
- Push computational limits to 5 loops, starting with fully massive tadpoles
- Low maintenance approach, one method for a complete set of integrals with little human input needed

Outline

- Short review of difference equation and factorial series
- \bullet Improvements
- Results \bullet

Difference equations and factorial series [Laporta '01]

\n- \n
$$
I(x) = \int \frac{1}{D_1^x D_2^{b_2} \cdots D_n^{b_n}}
$$
, here all D_i massive with $m = 1$ \n
\n- \n
$$
\sum_{k=0}^{R} q_k(x)I(x+k) = \sum_{i} \sum_{k=0}^{R_i-1} p_{ik}(x)J_i(x+k)
$$
, $J_i \in \text{subsectors}$ \n
\n- \n
$$
I(x) = \sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+s+d/2+1)} a_s
$$
\n
\n- \n
$$
\sum_{k=0}^{R'} q'_k(s) a_{s+k} = \sum_{i} \sum_{k=0}^{R'_i-1} p'_{ik}(s) a_{i,s+k}
$$
\n
\n- \n
$$
a_0 \text{ from large-}x \text{ behaviour in terms of lower loop integrals}
$$
\n
\n

rec. rel. S_{max} $\Gamma(v + 1)$ $\det C = \pm \infty$

$$
\bullet \quad a_0 \stackrel{\text{rec. rel.}}{\longrightarrow} a_{s_{\text{max}}}, \sum_{s=0} \frac{1 \cdot (\text{max} + 1)}{\Gamma(x_{\text{max}} + s + d/2 + 1)} a_s, \ I(x_{\text{max}}) \stackrel{\text{dill. eq.}}{\longrightarrow} I(1)
$$

Difference equations and factorial series [Laporta '01]

Advantages

- Everything can be automated
- Works well also with divergent integrals and does not depend on a special class of functions
- \bullet High precision results for arbitrarily many orders in ϵ
- Can expand around any dimension
- \bullet Cross-checks by putting x on different propagators

Typical problems and limitations

- Usually only numeric results \rightarrow limited use for integrals with multiple scales
- Complexity of the coefficients in high order equations
- High orders of the recurrence relation
- Divergence of the factorial series in numerical evaluation

Coupled vs decoupled equations

Typically generate equations via IBP: $0 =$ [Chetyrkin, Tkachov '81]

- simple solve algorithm
- need to solve only one integral numerically
- coeffs. grow large very quickly with R

Coupled equations

- more involved solve algorithm
- \bullet need to solve R integrals simultaneously
- \bullet coeffs. grow less quickly with R
- **o** can choose master integral basis

Thomas Luthe (Bielefeld University) [Fine-tuning the Laporta approach](#page-0-0) Radcor-Loopfest 2015 5 / 11

Coupled vs decoupled equations

Example: Difference eq. 29703#3 Propagators: 7 Order: 8 Integrals: $1396 + \text{sub-topologies}$ Input equations: 1400

Coupled vs decoupled equations

Scaling of the homogeneous part of equations with order R :

Recurrence relations

$$
\bullet \ \sum_{i} \sum_{k=0}^{R'} q'_{ik}(s)a_{i,s+k} = 0
$$

• Can be reduced with the same algorithms as the difference equations!

- **•** Translation from difference equations: order R , x-degree $N \rightarrow$ order R' with $N \leq R' \leq N + R$ \Rightarrow Translation loses information with every order of x
- Need input equations with $R&N$ minimal.
- IBP: $R < 2$, $N < 1$, but not good enough. \bullet \Rightarrow Reduce IBP-equations without multiplying or dividing by x & try to factor out $(x + \alpha)$.

Divergence factors and precision

• The numerical error grows by a factor F_D (F_R) with each iteration of the difference equations (recurrence relations).

\n- \n
$$
D_{\text{end}} \approx \log_{10} \left[\left(\frac{x_{\text{max}} + s_{\text{max}}}{s_{\text{max}}} \right) F_D^{-x_{\text{max}}} \right]
$$
\n
\n- \n
$$
D_{\text{start}} \approx \log_{10} \left[\left(\frac{x_{\text{max}} + s_{\text{max}}}{s_{\text{max}}} \right) F_R^{-x_{\text{max}}} \right]
$$
\n
\n- \n
$$
D_{\text{start}} \approx \log_{10} \left[\left(\frac{x_{\text{max}} + s_{\text{max}}}{s_{\text{max}}} \right) F_R^{-x_{\text{max}}} \right]
$$
\n
\n

Results $(d = 4)$

See also *zig-zag conjecture* [Broadhurst, Kreimer '95][Brown, Schnetz '12]

Conclusions

- Improvements:
	- \triangleright Choose coupled over decoupled eqs. to simplify coefficients
	- \blacktriangleright Reduction of recurrence relations
	- ► Avoid divergence in factorial series by increased precision
- Everything implemented in C⁺⁺, except polynomial algebra (Fermat [Lewis]), all time-critical code parallelised
- At the 5-loop level have produced difference equations up to order 20, recurrence relations up to order $28 + i$ nhomogeneous parts
- • Solved all fully massive master integrals for 37 out of 48 vacuum 5-loop diagrams with \sim 300 digits precision, \geq 10 orders in ϵ around $d = 4 - 2\epsilon$, $d = 3 - 2\epsilon$

Divergence factors

•
$$
I^{(hom)}(x) = \sum_{m=1}^{n} \mu_m^x \sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+s-K_m+1)} a_{m,s}
$$

 \bullet μ_m are roots of the characteristic polynomial $p(\mu)$.

• For decoupled eq.
$$
\sum_{i=0}^{N} \sum_{k=0}^{R} p_{ik} x^{i} I(x+k) = 0:
$$

$$
p(\mu) = \sum_{k=0}^{N} p_{N k} \mu^{k}
$$

\n• $F_P^{(m)} = \max_{i} \left| \frac{\mu_m}{\mu_i} \right|$
\n• $F_R^{(m)} = \max \left\{ 1, \max_{\substack{i \\ \mu_i \neq \mu_m}} \left| \frac{\mu_m}{\mu_m - \mu_i} \right| \right\}$