Automated NLO EW corrections with OpenLoops

and

precise predictions for vector boson plus multijet production

Jonas M. Lindert

work in collaboration with:

S. Kallweit, P. Maierhöfer, S. Pozzorini, M. Schönherr [arXiv:1412.5157 , arXiv:1505.05704]

> Radcor-Loopfest 2015 UCLA, LA, 16th June 2015

Why NLO EW automation?

Formally suppressed by α/α_s with respect to QCD and numerically $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow \text{NLO EW} \sim \text{NNLO QCD}$ (reflected in 2013 Les Houches Wishlist)

Possible large (negative) enhancement due to universal virtual Sudakov logs at high energies (i.e. in the tails of the distributions): NLO EW $\sim -\alpha \log^2 \left(\frac{M_V^2}{\hat{s}}\right)$

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

- NLO EW known for most (some) $2 \rightarrow 2(3)$ processes
 - ...missing for a multitude of $2 \rightarrow 3(4)$ processes (and with decays and/or PS matching)

Automation of NLO QCD

Automation of NLO QCD+EW

[Bellm, Gieseke, Grellscheid, Papaefstathiou, Plätzer, Richardson, Seymour, Siodmok et al.]

Whizard

[Kilian, Ohl, Reuter et. al.]

The OpenLoops program

[F. Cascioli, JML, P. Maierhöfer, S. Pozzorini, '14]

FAST and flexible implementation of the Open Loops algorithm [F. Cascioli, P. Maierhöfer, S. Pozzorini, '12]: a process- and model-independent numerical recursion for the calculation of one-loop amplitudes

- Publicly available at http://openloops.hepforge.org
- Amplitudes for any 2 → 4(5) NLO QCD process in the SM available: tree & (renormalized) virtual amplitudes, color correlations, spin correlations
- Installation (Requirements: gfortran \geq 4.6, Python 2.x, $\times \geq$ 4):

\$ cd ./OpenLoops && ./scons

🗸 see talk by P. Maierhöfer

- Interfaces to reduction/scalar integral libraries:
 - CutTools [Ossola, Papadopolous, Pittau; '07] + OneLOop [van Hameren], COLLIER [Denner, Dittmaier, Hofer],
 Samurai [Mastrolia, Ossola, Reiter, Tramontano; '10]

The OpenLoops process library

- ▶ Public library includes > 100 LHC processes including tT+0,1,2 j, tTV+0,1 j, tTh+0,1 j, HV+0,1,2 j ...
- List of available process will grow continuously

Install (for example for Z+1,2,3 production) :

./openloops libinstall ppzj ppzjj ppzjj

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

Illustrative example: $q\overline{q} \rightarrow q\overline{q}$

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

$$\cdots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW"

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

Illustrative example:
$$q\overline{q} \rightarrow q\overline{q}$$

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD"

subleading Born contributions LO $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW"

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW"

Automation requires universal power counting and bookkeeping in α and α_s including different interference effects for all contributions: virtual, real, subtraction.

Input:

- I. Born process and desired order $\alpha_s^n \alpha^m$
- 2. type of correction, i.e. "NLO QCD" $\equiv \alpha_s^{n+1} \alpha^m$ or "NLO EW" $\equiv \alpha_s^n \alpha^{m+1}$

Decays of heavy particles

Leptonic decays of gauge bosons are trivial at NLO QCD. At NLO EW corrections in production, decay
and non-factorizable contributions have to be considered.

- Scheme of choice: complex-mass-scheme [Denner, Dittmaier]
 - gauge invariant and exact NLO
 - **computationally very expensive**: one extra leg per two-body decay
- Pragmatic choice: Narrow-width-approximation (NWA)
 - gauge invariant in strict on-shell limit of NWA
 - allows to capture all Sudakov effects (not present in decay)
 - allows to go to higher jet multiplicities
 - not applicable to all processes at all perturbative orders

Treatment of Photons

- QED IR subtraction [Catani,Dittmaier,Seymour,Trocsanyi; Frixione, Kunszt, Signer]
- Problem of IR safeness in presence of FS QCD partons and photons:
 - Democratic jet-algorithm approach (jets = photons)

collinear $q \rightarrow q\gamma$ singularities cancelled clustering q, g, γ on same footing γsoft gluon singularities ↔ hard photons inside jets: cancelled in jet-production (NLO EW) + γ-production (NLO QCD)

- Separation of jets from photons through E γ /Ejet < z_{thr} inside jets
 - rigorous approach: absorb $q \rightarrow q\gamma$ singularity into fragmentation function
 - approximation: cancel singularity via q**Y** recombination in small cone $\Delta R_{q\gamma_{0.01}}$ difference < 1% for typical z_{thr}!
- QED factorisation for IS photons and PDF evolution [MRST2004, NNPDF2.3]
- Y-induced processes → possible TeV scale enhancements (However large uncertainties!)

Technical implementation of NLO $\operatorname{\mathsf{EW}}$

Virtuals with OpenLoops:

- Fast numerical routines for all tree+loop vertices in the full SM
- $\mathcal{O}(\alpha)$ renormalization [Denner, '92]. Available schemes: on-shell, G_µ and α (mZ)
- R₂ rational terms
- Treatment of unstable particles: complex-mass-scheme

Real radiation, subtraction, subprocess bookkeeping

✓ Sherpa [Höche, Schönherr, in preperation]

- ✓ MUNICH: MUlti-chaNnel Integrator at swiss (CH) precision [Kallweit, in preparation]
- Based on the well established NLO QCD dipole subtraction frameworks with replacements for $QCD \rightarrow QED$

$$\begin{aligned} \alpha_s &\longrightarrow \alpha, \qquad C_F &\longrightarrow Q_f^2, \qquad T_R &\longrightarrow N_{c,f} Q_f^2, \qquad T_R N_f &\longrightarrow \sum_f N_{c,f} Q_f^2, \qquad C_A &\longrightarrow 0 \\ \frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} &\longrightarrow \begin{cases} \frac{Q_{ij} Q_k}{Q_{ij}^2} & \text{if the emitter } ij \text{ is a (anti)fermion} \\ \kappa_{ij,k} & \text{if the emitter } ij \text{ is a photon}, \end{cases} \end{aligned}$$

Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders $I \propto \sum_{\gamma, Z} \int_{1} V_{\text{QED}} \otimes \sqrt{20000} + \int_{1} V_{\text{QCD}} \otimes \sqrt{20000} + \int_{1} V_{\text{QCD}} \otimes \sqrt{20000} + \int_{\gamma, Z} V_{\gamma, Z} \otimes \sqrt{2$

NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production

NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production

Performance of NLO EW OpenLoops amplitudes

Performance study for $pp \rightarrow t\bar{t} + n$ jets with n=0,1,2

	$n_{ m loop \ diag}$		$t_{\rm compile}\left[{\sf s} ight]$		size [MB]		$t_{\rm run}$ [ms/point]	
$t\overline{t}+0,1,2j$	QCD	ΕŴ	QCD	ĒŴ	QCD	ĒŴ	QCD	EW
$d\bar{d} \to t\bar{t}$	11	33	2.1	3.5	0.1	0.2	0.27	0.69
$gg \to t\bar{t}$	44	70	3.6	3.7	0.2	0.3	1.6	2.8
$d\bar{d} \to t\bar{t}g$	114	360	3.5	5.9	0.4	0.9	4.8	13
$gg \to t\bar{t}g$	585	660	8.2	8.8	1.4	1.6	40	56
$d\bar{d} \to t\bar{t}u\bar{u}$	236	1274	5.3	16	0.8	2.8	12	48
$d\bar{d} \to t\bar{t}d\bar{d}$	472	2140	9.5	56	1.4	1.4	30	99
$d\bar{d} \to t\bar{t}gg$	1507	4487	20	47	3.5	8.2	133	327
$gg \to t\bar{t}gg$	8739	7614	105	79	18	16	1458	1557

Timings on i7-3770K with gcc 4.8 –O0 dynamic and unpolarised t \overline{t} (significantly faster with decays!) using **COLLIER** for reduction

- I-loop EW similarly fast as highly competitive I-loop QCD timings up to $t \bar{t} + 2$ jets
- code size, compilation- & runtime reflect a moderate increase of complexity w.r.t. QCD
- ▶ 2 → 4 NLO QCD+EW feasible!

Motivation: V + multijet production

Standard Model Production Cross Section Measurements Status: July 2014

Large cross-sections and clean leptonic signatures

Precision QCD at LHC

Playground to probe different aspects of higher-order calculations
 (LO+PS, NLO+PS, NLO-Merging, NLO EW,...)

- CREEKED CREATER CREATE
- Important/dominant background for various
 BSM searches (lepton + jets + missing E_T)
- Dominant background for monojet **DM searches**
- Dominant background for **top physics**
- Important background for **Higgs physics**, e.g. $VH(\rightarrow bb)$

W + multijet production

Combination of NLO QCD and EW & Setup

Two alternatives:

$$\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$$
$$\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}}\right) = \sigma_{\rm EW}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm QCD}^{\rm NLO}}{\sigma^{\rm LO}}\right)$$

Difference between the two approaches indicates uncertainties due to missing two-loop EW-QCD corrections of $\mathcal{O}(\alpha\alpha_s)$

Relative corrections w.r.t. NLO QCD:

$$\frac{\sigma_{\rm QCD+EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}} = \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}}\right) \qquad \text{suppressed by large NLO QCD corrections}$$
$$\frac{\sigma_{\rm QCD\times EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}} = \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma_{\rm LO}^{\rm NLO}}\right) \qquad \text{``usual'' NLO EW w.r.t. LO}$$

•
$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right)$$
 in G_{μ} -scheme with $G_{\mu} = 1.16637 \times 10^{-5} \, {\rm GeV}^{-2}$

▶ PDFs: NNPDF 2.3QED with $\alpha_{\rm S}(M_{\rm Z}) = 0.118$ for LO and NLO QCD/EW

W⁺ + I jet: inclusive

inclusive

≈ 1% EW corrections

p⊤ of W-boson

- +100 % QCD corrections in the tail
- large negative EW corrections due to Sudakov behaviour:
 -20–35% corrections at 1-4 TeV
- sizeable difference between QCD+EW and QCDxEW !

p⊤ of jet

- factor-10 NLO QCD corrections in the tail!
- dominated by dijet configurations (effectively LO)
- positive 10-50% EW corrections from quark bremsstrahlung

Setup:

 $\sqrt{S} = 13 \text{ TeV}$

 $p_{\rm T,j} > 30 \,\,{\rm GeV}, \quad |\eta_{\rm j}| < 4.5$

 $\mu_0 = \hat{H}_T/2$ (+ 7-pt. variation)

$$\mathcal{N}^+$$
 + 1 jet: exclusive

 $\Delta \phi_{j1j2} < 3\pi/4$ (veto on dijet configurations)

Setup:

$$\sqrt{S} = 13 \text{ TeV}$$

 $p_{T,j} > 30 \text{ GeV}, |\eta_j| < 4.5$
 $\mu_0 = \hat{H}_T/2 (+ 7\text{-pt. variation})$

QCD corrections

mostly moderate and stable QCD corrections

EW corrections

- Sudakov behaviour in both tails: -20–50% EW corrections at I-4 TeV
- EW corrections larger than QCD uncertainties for $p_{T,W+} > 300 \text{ GeV}$

\implies exclusive W+1 jet ok!

 \Rightarrow inclusive W+1 jet requires W+2 jets at NLO QCD+EW!

Technical note: pseudo-singularities for W+2,3 jets

gluonic channels

fermionic channels

- At the considered order only effects QCD-EW interferences
- Complex-mass-scheme can not^{ui} be used with on-shell/stable wish
 NWA: finite width reg. in potentially s-channel propagators for W, Z ,t ,H
- Smooth gauge-invariant limit and negligible numerical dependence for $\Gamma_{\rm reg.} \to 0$

 $\Rightarrow \frac{Q^2 - M^2}{(Q^2 - M^2)^2 + \Gamma_{\rm row}^2 M^2}$

Goal:

- Investigation of technical performance at highest possible jet multiplicity
- Investigate dependence of EW corrections on number of jets

W + 2 jets @ sub-LO: QCD-EW interplay


```
Setup:

\sqrt{S} = 13 \text{ TeV}

p_{T,j} > 30 \text{ GeV}, |\eta_j| < 4.5

\mu_0 = \hat{H}_T/2 (+ 7\text{-pt. variation})
```

Inclusive

Subleading contributions highly suppressed

$O(\alpha_S \alpha^2)$ mixed QCD-EW contribution

▶ large impact at large jet-pT (10-50% at 1-4 TeV)!

${\cal O}(a^3)$ pure EW contribution

- ▶ includes contributions from WW, WZ, VBF, single-top
- ▶ 10-20% at 1-4 TeV

Zon

LO γ -induced W+1,2,3 jet production

As large as 5 - 100% at p_{T,W+}=1-4 TeV
However: giant **γ**-PDF uncertainties at large x!

 $H_{T,tot}$ for $W^+ + 1, 2, 3$ jets

QCD corrections

- ▶ for W+2j: large QCD corrections (80-100%)
- ► starting to be stable only for W+3 jets

EW corrections

- ▶ moderate EW corrections: -20 % in the tail
- \Rightarrow calls for NLO QCD+EW multi-jet merging!

W⁺ + 3 jets: topology of EW corrections

NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production

jet invariant mass in W^+ + 2,3 jets

m_{j1j2}

- large negative QCD corrections in the tail with huge uncertainties (\Rightarrow resummation needed)
- ▶ negligible EW corrections

$\sqrt{S} = 8 \text{ TeV}$ $p_{\mathrm{T,j}} > 110 \text{ GeV}, \quad |\eta_j| < 2.4$ $\mu_0 = \hat{H}_T/2 \ (+ \text{ 7-pt. variation})$ $\Delta \phi_{j|j2} < 2.5$

Frixione-Isolation with dR=0.3

QCD corrections

- mostly moderate and stable QCD corrections
- (almost) identical QCD corrections in the tail, sizeable differences for small pT

EW corrections

- correction in $pT(Z) > correction in pT(\mathbf{y})$
- \blacktriangleright -20/-8% EW for Z/y at I TeV
- EW corrections > QCD uncertainties for $p_{T,Z}$ > 350 GeV

$Z/\gamma + I$ jet: pT-ratio

Overall

mild dependence on the boson pT

QCD corrections

≤ 10% above 300 GeV

EW corrections

- result in an almost constant shift between LO and NLO QCD+EW of ~15%
- sizeable difference between QCD+EW & QCDxEW

Note: fiducial regions not identical!

Conclusions

- ► Automation of NLO QCD+EW:
 - OpenLoops with NLO QCD publicly available at

http://openloops.hepforge.org

- NLO corrections in the full SM (QCD & EW) are implemented in OpenLoops together with Sherpa and MUNICH (will be included in upcoming public releases)
- V + multijets at QCD+EW :
 - 2 \rightarrow 4 NLO EW feasible!
 - inclusion of EW corrections *crucial* at the TeV scale (up to 50%)
 - multi-jet final states genuinely different from W+I jet
 - non-trivial interplay between QCD and EW
- Outlook:
 - many more phenomenology & processes
 - PS matching & multi-jet merging

Backup slides

Origin of electroweak Sudakov logarithms

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

Universality and factorisation similar as in QCD [Denner, Pozzorini; '01]

$$\delta_{\mathrm{LL+NLL}}^{1-\mathrm{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{s_{kl}}{M^{2}} + \gamma^{\mathrm{ew}}(k) \ln \frac{s}{M^{2}} \right\}$$

- o process-independent and simple structure
- tedious implementation (ALPGEN [Chiesa et al. '13]) due to nontrivial $SU(2) \times U(1)$ features (P-violation, mixing, soft SU(2) correlations, Goldstone modes, ...)
- 2-loop extension and resummation partially available

The Onen Loons algorithm.

From tree recursion to loop diagrams

ני. כטטכוטוו, ו . ואוטוכורוטןכו, ט. ו טבבטווווו, ו בן

Recursive construction of tree wave functions

- start from wave functions W^{\Box} of external legs.
- connect wave functions with vertices $X^{\beta}_{\gamma\delta}$ and propagators to recursively build "sub-trees".
- recycle identical structures
- wave functions of sub-trees are 4-tuples of complex numbers (for the spinor/Lorentz index).

Factorize one-loop amplitude into colour factors, tensor coefficients and tensor integrals

$$p_{1} \rightarrow p_{4} \rightarrow p_{4} = \mathcal{C} \cdot \sum_{r=0}^{R} \mathcal{N}_{r}^{\mu_{1}...\mu_{r}} \cdot \int d^{d}q \frac{q_{\mu_{1}}...q_{\mu_{r}}}{D_{0} D_{1} \dots D_{N-1}}$$

The Open Loops algorithm: From tree recursion to loop diagrams

[F. Cascioli, P. Maierhöfer, S. Pozzorini; '12]

Freat one-loop diagram as ordered set of sub-trees $\mathcal{I}_n = \{i_1, \ldots, i_n\}$ connected by propagators

Build numerator connecting subtrees along the loop

IF Casciali P Maierhöfer (Pazzarini: 177

- Recursively build "open loops" polynomials $\mathcal{N}^{\beta}_{\mu_{1}...\mu_{r};\alpha}$
 - disentangle loop momentum q from the coefficients

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_n; q) = \sum_{r=0}^{n} \mathcal{N}^{\beta}_{\mu_1 \dots \mu_r; \alpha}(\mathcal{I}_n) q^{\mu_1} \dots q^{\mu_r}$$

$$X_{\gamma\delta}^{\beta} = Y_{\gamma\delta}^{\beta} + q^{\nu} Z_{\nu;\gamma\delta}^{\beta}$$

• recursion in d=4

$$\mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) = \left[Y^{\beta}_{\gamma\delta} \mathcal{N}^{\gamma}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_{1};\gamma\delta} \mathcal{N}^{\gamma}_{\mu_{2}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1})\right] w^{\delta}(i_{n})$$

- model and process independent algorithm
- numerical implementation requires only universal building blocks, derived from the Feynma rules of the theory (full SM implemented; also HEFT; more BSM/EFT to come)
- \bullet **\epsilon**-dimensional part of the numerator x poles of the tensor integrals yield R₂ rational terms

$$R_2 = ([\mathcal{N}]_{d=4-2\epsilon} - [\mathcal{N}]_{d=4}) \cdot [TI]_{UV}$$

• numerical recursion in D=4 \rightarrow restore R₂ via process independent counter terms

[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09, '10; Shao, Zhang, Chao '11]

The Open Loops algorithm: one loop amplitudes

[F. Cascioli, P. Maierhöfer, S. Pozzorini; '12]

Tensorial coefficients $\mathcal{N}^{\alpha}_{\mu_{1}...\mu_{r};\alpha}$ can directly be used with tensor integral libraries avoiding numerical instabilities (Gram-determinant expansion) [Denner, Dittmaier; '05]

Fast evaluation of $\mathcal{N}(q) = \sum_{\mu_1 \dots \mu_r} q^{\mu_1} \dots q^{\mu_r}$ at multiple q-values, required in OPP reduction methods [Ossola, Papadopolous, Pittau; '07]

The Open Loops algorithm: recycle loop structures

OpenLoops recycling:

Lower-point open-loops can be shared between diagram if

- cut is put appropriately
- direction chosen to maximise recyclability

Illustration:

Complicated diagrams require only "last missing piece"

NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production

Jonas M. Lindert

The Open Loops program:

performance

process	diags	size/MB	time/ms
$u \overline{u} ightarrow t \overline{t}$	11	0.1	0.27(0.16)
$u ar{u} ightarrow W^+ W^-$	12	0.1	0.14
$u ar{d} o W^+ g$	11	0.1	0.24
$u ar{u} o Zg$	34		0.75
$gg ightarrow t \overline{t}$	44	0.2	1.6(0.7)
u ar u o t ar t g	114	0.4	4.8(2.4)
$u ar{u} o W^+ W^- g$	198	0.4	3.4
$uar{d} o W^+ gg$	144	0.5	4.0
$u ar{u} o Zgg$	408		17
$gg ightarrow t \overline{t} g$	585	1.2	40(14)
$uar{u} o tar{t}gg$	1507	3.6	134(101)
$u ar{u} ightarrow W^+ W^- g g$	2129	2.5	89
$uar{d} o W^+ ggg$	1935	4.2	120
$uar{u} o Zggg$	5274		524
$gg ightarrow t \overline{t} gg$	8739	16	1460(530)

- timings for complete one-loop amplitude
- colour and helicity summed
- using COLLIER for reduction
- CutTools similarly fast for $2 \rightarrow 4$
- W/Z production includes leptonic decays of gauge bosons and non-resonant contributions
- numbers for tt production for massless decays in brackets
- runtime can be significantly increased when quad-precision rescue is used

Timings on i7-3770K with gfortran 4.8 –O0 dynamic (ifort static ~30% faster)

NLO EW Virtuals with OpenLoops

- Universal power counting in α and α_s including different interference contributions. Input:
 - I. Born process and desired order $\alpha_s^n \alpha^m$
 - 2. type of correction, i.e. ''NLO QCD'' $\equiv \alpha_s^{n+1} \alpha^m$ or ''NLO EW'' $\equiv \alpha_s^n \alpha^{m+1}$
- Fast numerical routines for all tree+loop vertices in the full SU(3)xSU(2)xU(1) SM
- On-shell NLO EW renormalization along the lines of [Denner, '92]
- Renormalization of α in on-shell or G_{μ} -scheme
- Complex-mass-scheme fully implemented [Denner, Dittmaier, Roth, '04]
- Fixed-width-scheme for on-shell massive particles
- NLO EW R₂ contributions via process independent counterterms (for all possible one-particle irreducible Green functions of the SM with up to four external legs) [Garzelli, Malamos, Pittau '10; Shao, Zhang, Chao, '11]
- All ingredients carefully validated against independent automated in-house tool based on algebraic techniques in D=4-2ε [Pozzorini]

Sherpa & MUNICH

- ► NLO EW subtraction based on the well established NLO QCD dipole subtraction [Catani, Seymour, '96] frameworks in Sherpa & MUNICH with replacements for QCD → QED
- Independent implementation in the two MC programs allows for powerful cross checks

- Sherpa [Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter et. al.]
 - ♦ widely used shower Monte-Carlo
 - ♦ used for pioneering W + \leq 5 jets NLO QCD calculations (in conjunction with BlackHat)
 - ✦ Advanced multi-jet merging available: MEPS@NLO
- MUNICH: MUlti-chaNnel Integrator at swiss (CH) precision [Kallweit, in preparation]
 - ♦ fast and flexible fixed-order multi-channel Monte-Carlo
 - ← used for example in pp → W⁺W⁻bb @ NLO QCD, pp → W⁺W⁻ @ NNLO QCD

Bremsstrahlung and subtraction with Sherpa & MUNICH

 $\blacktriangleright \quad \text{Replacement } \mathsf{QCD} \rightarrow \mathsf{QED}$

$$\alpha_s \longrightarrow \alpha, \qquad C_F \longrightarrow Q_f^2, \qquad T_R \longrightarrow N_{c,f} Q_f^2, \qquad T_R N_f \longrightarrow \sum_f N_{c,f} Q_f^2, \qquad C_A \longrightarrow 0$$

$$\underbrace{\mathbf{T}_{ij} \cdot \mathbf{T}_k}_{Q_{ij}^2} \longrightarrow \begin{cases} \frac{Q_{ij} Q_k}{Q_{ij}^2} & \text{if the emitter } ij \text{ is a (anti)fermion} \end{cases}$$

 \mathbf{T}_{ij}^2 if the emitter ij is a photon,

- For external on-shell W[±] we use heavy fermion splitting functions [Catani, Dittmaier, Seymour, Trocsanyi '02]
- Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders

$$I \propto \sum_{\gamma, Z} \int_{1} V_{\text{QED}} \otimes$$

Independent implementation in the two MC programs allows for powerful cross checks

References: W + multijet production

NLO QCD:

- W(→ In) + I jet [Arnold, Reno, '89; Arnold, Ellis, Reno, '89]
- W(→ In) + 2 jets [Campbell, Ellis, '02; Febres Cordero, Reina, Wackeroth, '06; Campbell, Ellis, Febres Cordero, Maltoni, Reina, '09]
- \blacktriangleright W(\rightarrow In) + 3 jets [Ellis, Melnikov, Zanderighi, '09]
- \blacktriangleright W(\rightarrow ln) + 3,4,5 jets [Blackhat Collaboration, '09, '11, '13]

NNLO QCD:

W+ | jet [Boughezal, Focke, Liu, Petriello '15]

NLO EW:

- W + I jet [Kühn, Kulesza, Pozzorini, Schulze, '07; Hollik, Kasprzik, Kniehl, '07; Kühn, Kulesza, Pozzorini, Schulze, '09] [this talk]
- W(→ln) + I jet [Denner, Dittmaier, Kasprzik, Mück, '09]
- W + 2,3 jets [this talk!]

Contributing orders to W+n-jet production

	$pp \rightarrow W + n$ jets @LO				$pp \rightarrow W + n$ jets @NLO					
	$\alpha_s^n \alpha$	$\alpha_s^{n-1} \alpha^2$	$\alpha_s^{n-2}\alpha^3$	$\alpha_s^{n-3} \alpha^4$	$\alpha_s^{n+1}\alpha$	$\alpha_s^n \alpha^2$	$\alpha_s^{n-1} \alpha^3$	$\alpha_s^{n-2} \alpha^4$	$\alpha_s^{n-3}\alpha^5$	
$u_i \bar{d}_i \to W + ng$	×	-	-	-	×	×	-	-	-	
$u_i \bar{d}_i \to W + q\bar{q} + (n-2)g$	\times	×	×	-	×	×	×	×	-	
$\gamma u_i \to d_i W + (n-1)g$	-	×	-	-	-	-	-	-	-	
$\underline{\gamma u_i} \rightarrow d_i W + q \bar{q} + (n-3)g$	-	×	×	×	-	-	-	-	-	
$\gamma\gamma \rightarrow \bar{u}_i d_i W + (n-2)g$	-	-	×	-	-	-	-	-	-	
$u_i \bar{d}_i \to W + (n+1)g$	-	-	-	-	×	-	-	-	-	
$u_i \bar{d}_i \to W + q \bar{q} + (n-1)g$	-	-	-	-	×	×	×	-	-	
$u_i \bar{d}_i \to W + q \bar{q} q' \bar{q}' + (n-3)g$	-	-	-	-	×	×	×	×	×	
$\overline{ u_i \bar{d}_i \to W + ng + \gamma }$	_	_	_	_	_	×	_	_	_	
$u_i \bar{d}_i \rightarrow W + q \bar{q} + (n-2)g + \gamma$	-	-	-	-	-	×	×	X	×	

 \times (\times) = (not) included in 1412.5156

NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production

Setup and Observables

- $M_{\rm Z} = 91.1876 \text{ GeV}, \quad M_{\rm W} = 80.385 \text{ GeV}, \quad M_{\rm H} = 126 \text{ GeV}, \quad m_{\rm t} = 173.2 \text{ GeV}.$ $\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\rm W}^2 \left(1 \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right) \text{ in } \mathbf{G}_{\mu} \text{ -scheme with } G_{\mu} = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$
- ▶ PDFs: NNPDF 2.3QED with $\alpha_{\rm S}(M_{\rm Z}) = 0.118$ for LO and NLO QCD/EW
-) Jet definition: anti-k_T with R=0.4 , $p_{\rm T,j}>30\,{
 m GeV},$ $|\eta_{\rm j}|<4.5$
- Photon recombination for R_{\gamma,q} < 0.1 and democratic jet clustering with E_{\gamma}/E_j = 0.5
 LHC with \sqrt{S} = 13 \text{ TeV}
- Scale choice: $\mu_{R,F} = \xi_{R,F}\mu_0$, $\mu_0 = \hat{H}_T/2 = \frac{1}{2}\sum_{\text{partons}} E_T$ with 7-point variation

W⁺ + 1,2,3 jets: large EW corrections

- up to 50% EW corrections in multi-TeV range due to Sudakov logs
- nontrivial dependence on number of jets and interplay with NLO QCD!

▶ up to -25% EW corrections

