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‣ Formally suppressed by             with respect to QCD and numerically   
                                NLO EW ~ NNLO QCD    (reflected in 2013 Les Houches Wishlist)

‣ Possible large (negative) enhancement due to universal virtual Sudakov logs at high 
energies (i.e. in the tails of the distributions):  NLO EW ~                           

‣   NLO EW known for most (some) 2→2(3) processes

‣   …missing for a multitude of 2→3(4) processes (and with decays and/or PS matching) 

[Ciafaloni, Comelli,’98; 
Lipatov, Fadin, Martin, Melles, '99; 
Kuehen, Penin, Smirnov, ’99;  
Denner, Pozzorini, '00]
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Figure 5: Transverse-momentum distribution for W -boson production at the LHC.
(a) LO distribution for pp→W+j and pp→W−j. (b) Relative NLO (dotted), NLL
(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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Figure 5: Transverse-momentum distribution for W -boson production at the LHC.
(a) LO distribution for pp→W+j and pp→W−j. (b) Relative NLO (dotted), NLL
(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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pp → W++j

[Kühn et. al.; 2007]
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Why NLO EW automation?
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Automation of NLO QCD

�NLO =

Z
d�B (B + V + I) +

Z
d�R (R� S)

3

OpenLoops 

[JML, Maierhöfer, Pozzorini]

Sherpa 
[Gleisberg, Höche, Krauss, Schönherr, Schumann, 

                     Siegert, Winter et. al.]

MUNICH
                 [Kallweit]

POWHEG-BOX 
        [Alioli, Nason, Oleari, Re, et. al.]
Herwig++/Matchbox 

[Bellm, Gieseke, Grellscheid, Papaefstathiou,  
Plätzer, Richardson, Seymour, Siodmok et al.] 

     Whizard
[Kilian, Ohl, Reuter et. al. ]
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Automation of NLO QCD+EW

4

OpenLoops 

[JML, Maierhöfer, Pozzorini]

Sherpa 
[Gleisberg, Höche, Krauss, Schönherr, Schumann, 

                     Siegert, Winter et. al.]

MUNICH
 [Kallweit]

POWHEG-BOX 
        [Alioli, Nason, Oleari, Re, et. al.]
Herwig++/Matchbox 

[Bellm, Gieseke, Grellscheid, Papaefstathiou,  
Plätzer, Richardson, Seymour, Siodmok et al.] 

     Whizard
[Kilian, Ohl, Reuter et. al. ]

�NLO =

Z
d�B(B+V + I) +

Z
d�R(R� S)
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[F. Cascioli, JML, P. Maierhöfer, S. Pozzorini, ‘14]

‣   FAST and flexible implementation of the Open Loops algorithm [F. Cascioli, P. Maierhöfer, S. Pozzorini, ’12]:  
a process- and model-independent numerical recursion for the calculation of one-loop amplitudes 
 
 

‣   Publicly available at   http://openloops.hepforge.org

‣   Amplitudes for any 2 → 4(5)  NLO QCD process in the SM available:   
tree & (renormalized) virtual amplitudes, color correlations, spin correlations

‣  Installation (Requirements: gfortran ≥ 4.6, Python 2.x, x ≥ 4):

‣   Interfaces to reduction/scalar integral libraries:

•   CutTools [Ossola, Papadopolous, Pittau; ’07] + OneLOop [van Hameren], COLLIER [Denner, Dittmaier, Hofer], 

Samurai [Mastrolia, Ossola, Reiter, Tramontano; ’10]

The OpenLoops program

$ cd ./OpenLoops && ./scons

5

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

cut one loop propagator 

1-loop amplitudes with OpenLoops [Cascioli, Maierhöfer, S.P. ’12]

NLO QCD amplitudes for any 2 ! 4 (5) SM process

since September ’14 publicly available at openloops.hepforge.org

fast and generic numerical recursion for “loop-momentum dependent” trees

Complete NLO automation through interface with Monte Carlo Tools

Sherpa2.1 [Hoeche, Hoeth, Krauss, Schoenherr, Schumann, Siegert, Zapp]

) S–MC@NLO matching to Sherpa shower and MEPS@NLO multi-jet merging

parton-level Monte Carlo by S. Kallweit
) very fast integration for NLO and NNLO (qT subtraction)

BLHA interfaces to Herwig’s MatchBox and other MC tools

S. Pozzorini (Zurich University) Top Physics Top2014 7 / 36

✓see talk by P. Maierhöfer
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‣   Public library includes > 100 LHC processes including tt+0,1,2 j, ttV+0,1 j, tth+0,1 j, HV+0,1,2 j … 

‣   List of available process will grow continuously

http://openloops.hepforge.org

The OpenLoops process library

‣   Install (for example for Z+1,2,3 production) :  

6

./openloops libinstall ppzj ppzjj ppzjjj

✓see talk by P. Maierhöfer

http://openloops.hepforge.org
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Perturbative power counting

7

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

LO subleading Born contributions
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Perturbative power counting

8

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

LO subleading Born contributions

      γ, Z      γ, Z       Illustrative example: qq̅ → qq̅
γ, Z
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Perturbative power counting

9

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

LO subleading Born contributions

“NLO QCD” “NLO EW”



      V+multijet at NLO QCD+EW as backgrounds for monojet and BSM searches                                      Jonas M. Lindert 

Perturbative power counting

10

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

LO subleading Born contributions

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

“NLO QCD” “NLO EW”

O(↵s) O(↵)

“subleading one-loop contributions”
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Perturbative power counting
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      γ, Z      γ, Z      

Perturbative power counting
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d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2
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LO subleading Born contributions
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s ↵m+3) + . . .

γ, Z

“NLO QCD”

 Illustrative example: qq̅ → qq̅
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      γ, Z      γ, Z      

Perturbative power counting
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d� = d�(↵n
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m) + d�(↵n�1
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LO subleading Born contributions
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“NLO QCD” “NLO EW”
γ, Z

γ γ

 Illustrative example: qq̅ → qq̅
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Perturbative power counting
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      γ, Z      γ, Z      

Perturbative power counting
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d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

LO subleading Born contributions

· · ·+ �(↵n+1
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γ, Z

γ, Z

γ, Z

γ γ

O(↵s)O(↵)

Note:          
• No diagrammatic separation in NLO QCD and EW
• An IR finite & gauge invariant result is only obtained 

including all virtual and real contributions of a given 
perturbative order. 

“subleading one-loop contributions”

 Illustrative example: qq̅ → qq̅
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Perturbative power counting
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d� = d�(↵n
s↵

m) + d�(↵n�1
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LO subleading Born contributions
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s ↵m+3) + . . .

“NLO QCD” “NLO EW” “subleading one-loop contributions”

✓ Automation requires universal power counting and bookkeeping in     and       including different  
interference effects for all contributions: virtual, real, subtraction. 
 
Input: 

1.   Born process and desired order              
2.   type of correction, i.e. “NLO QCD”                       or  “NLO EW” ↵n+1

s ↵m ↵n
s↵

m+1⌘ ⌘
↵n
s↵

m

↵ ↵s

O(↵s) O(↵)
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‣   Leptonic decays of gauge bosons are trivial at NLO QCD.  At NLO EW corrections in production, decay 
and non-factorizable contributions have to be considered.

‣   Scheme of choice: complex-mass-scheme [Denner, Dittmaier]

•  gauge invariant and exact NLO 

•  computationally very expensive: one extra leg per two-body decay 

‣   Pragmatic choice: Narrow-width-approximation (NWA)
• gauge invariant in strict on-shell limit of NWA

• allows to capture all Sudakov effects (not present in decay)

• allows to go to higher jet multiplicities

• not applicable to all processes at all perturbative orders

Decays of heavy particles
Decays of Z/W bosons

Leptonic Z and W decays are notrivial at NLO EW (in contrast to NLO QCD)

NLO EW corrections to production⇥resonance⇥decay + non-fact corrections

W+

p

p

⌫

`+
W+

p

p

⌫

`+
W±p

p

⌫

`+

Option A: complex mass scheme [Denner, Dittmaier]

exact NLO description (always desirable)

high complexity corresponding to total number of particles after decays

Option B: narrow-width approximation (production⇥decay)

simpler but applicability to V+multijets limited to certain O �
↵n
S↵

m+1
�
(see later)

captures all large ln(ŝ/M2
W ) e↵ects (present only in production sub-process)

typical uncertainty <⇠ 1–3% (apart form �⇤/Z⇤ ! `+`� at small m``)

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 8 / 28
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Photons

Cancellation of IS Photon singularities

requires QED factorisation and PDF evolution [MRST2004, NNPDF2.3]

�-induced processes ) possible TeV-scale enhancements but large PDF uncertainty

�
�

Cancellation of FS photon singularities

requires IR subtraction method [Catani,Dittmaier,Seymour,

Trocsanyi; Frixione, Kunszt, Signer]

photon emission o↵ quarks renders IR safe jet definition
nontrivial at NLO EW

�

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 3 / 28

‣   QED IR subtraction [Catani,Dittmaier,Seymour, Trocsanyi; Frixione, Kunszt, Signer]

‣   Problem of IR safeness in presence of FS QCD partons and photons:

‣  Democratic jet-algorithm approach (jets ≡ photons)  
 
 
 
 

‣   Separation of jets from photons through Eγ/Ejet < zthr inside jets

•  rigorous approach: absorb q → qγ singularity into fragmentation function

•  approximation: cancel singularity via qγ recombination in small cone  

‣  QED factorisation for IS photons and PDF evolution [MRST2004, NNPDF2.3]

‣   γ-induced processes → possible TeV scale enhancements  
(However large uncertainties!)

Treatment of Photons

18

Photons

Cancellation of IS Photon singularities

requires QED factorisation and PDF evolution [MRST2004, NNPDF2.3]

�-induced processes ) possible TeV-scale enhancements but large PDF uncertainty

�
�

Cancellation of FS photon singularities

requires IR subtraction method [Catani,Dittmaier,Seymour,

Trocsanyi; Frixione, Kunszt, Signer]

photon emission o↵ quarks renders IR safe jet definition
nontrivial at NLO EW

�

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 3 / 28

Treatment of photons inside jets at NLO EW

Option A: Democratic jet-algorithm approach (jets ⌘ photons)

�q
collinear q ! q� singularities
cancelled clustering q, g, � on
same footing

�

g

soft gluon singularities $ hard
photons inside jets: cancelled in
jet-production (NLO EW) +
�-production (NLO QCD)

Option B: Separation of jets from photons through E�/Ejet < zthr inside jets

rigorous approach: absorb q ! q� singularity into
fragmentation function [1411.0916]

approximation: cancel singularity via q� recombination
in small cone �Rq� < 0.1 [1412.5156]

) di↵erence ⌧ 1% for typical zthr choices
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S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 4 / 28

�Rq� < 0.1

difference < 1% for typical zthr!

collinear q → qγ singularities 
cancelled clustering q, g, γ on 
same footing 

Treatment of photons inside jets at NLO EW

Option A: Democratic jet-algorithm approach (jets ⌘ photons)

�q
collinear q ! q� singularities
cancelled clustering q, g, � on
same footing

�

g

soft gluon singularities $ hard
photons inside jets: cancelled in
jet-production (NLO EW) +
�-production (NLO QCD)

Option B: Separation of jets from photons through E�/Ejet < zthr inside jets

rigorous approach: absorb q ! q� singularity into
fragmentation function [1411.0916]

approximation: cancel singularity via q� recombination
in small cone �Rq� < 0.1 [1412.5156]
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soft gluon singularities ↔ hard photons 
inside jets: cancelled in jet-production 
(NLO EW) + γ-production (NLO QCD) 
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Technical implementation of NLO EW
✓  Virtuals with OpenLoops:

‣   Fast numerical routines for all tree+loop vertices in the full SM 

‣              renormalization              .  Available schemes: on-shell, Gμ and α(mZ)

‣   R2 rational terms

‣   Treatment of unstable particles: complex-mass-scheme  

✓  Real radiation, subtraction, subprocess bookkeeping

✓ Sherpa [Höche, Schönherr, in preperation]

✓ MUNICH: MUlti-chaNnel Integrator at swiss (CH) precision  
[Kallweit, in preparation]

‣   Based on the well established NLO QCD dipole subtraction frameworks with replacements for 
QCD → QED    
 
 
 

‣    Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders  
 
 

19

O(↵)

γ, Z
I /

X Z

1
VQED ⌦ +

Z

1
VQCD ⌦

 [Denner, ‘92]

blocks, i.e. splitting kernels and I +K + P operators, have been extended to NLO QCD+QED.6

In particular, all contributions associated with f ! f�, f̄ ! f̄�, and � ! ff̄ QED splittings can
be obtained from the related QCD contributions by applying the substitutions

↵s �! ↵, CF �! Q2
f , TR �! Nc,fQ

2
f , TRNf �!

X

f

Nc,fQ
2
f , CA �! 0 , (3.12)

and the following additional replacements for the colour-correlation operators associated with an
emitter ij and a spectator k,

Tij ·Tk

T2
ij

�!
(

QijQk

Q2
ij

if the emitter ij is a (anti)fermion
ij,k if the emitter ij is a photon ,

with
X

k 6=ij

ij,k = �1 . (3.13)

In practice, for the case of a photon emitter, one can restrict oneself to a single spectator particle eij
different from the fermion–antifermion emitter ij, i.e. ij,k = ��eij ,k. Alternatively any sum over
spectators different from ij can be chosen as long as the last constraint in (3.13) is fullfilled. While
the colour-insertion operators are reduced to multiplicative scalars in (3.13), the spin correlators of
the real-subtraction terms associated with � ! ff̄ splittings preserve the same form as for g ! qq̄

splittings in QCD.
Besides singularities of pure QED type, processes with external on-shell W bosons involve

additional singularities associated with W ! W� splittings. In this case, due to the large W -
boson mass, no collinear singularity or logarithmic enhancement is present, and only the soft-
photon singularity has to be subtracted. Exploiting the universal nature of soft singularities, in this
publication this is achieved by using the heavy-fermion or heavy-scalar splitting function of [60],
and, after the replacements of (3.12), identifying the heavy particle with the external W boson.

As discussed in Section 2.1, NLO QCD and EW corrections have to be understood, respectively,
as the full set of O(↵S) and O(↵) corrections relative to a certain tree-level order ↵n

S↵
m. More-

over, in general, NLO QCD and EW corrections are not uniquely associated with the emission of
corresponding (strongly or electroweakly interacting) particles. Actually, given a certain correction
order, ↵n+1

S ↵m or ↵n
S↵

m+1, each of the contributing real-emission processes can comprise various
types of unresolved massless particles (gluons, photons, quark or lepton pairs) and IR singularities.
In particular, NLO QCD (EW) corrections can involve singularities associated with both order ↵S

(↵) splittings times order ↵n
S↵

m Born terms, and with order ↵ (↵S) splittings times order ↵n+1
S ↵m�1

(↵n�1
S ↵m+1) Born terms. Therefore, Munich and Sherpa implement a fully general bookkeeping

of perturbative orders and singularities. The relevant dipole terms, to account for all possible QCD
and QED splittings in a generic real-correction process, are selected in a fully automated way. In-
evitably, the associated reduced Born matrix elements are allowed to be at a different order than the
original Born configuration. For the integrated subtraction terms, a similarly general bookkeeping
is applied, where all relevant QED and QCD contributions to the I + K + P operators are com-
bined with factorised Born matrix elements at the appropriate orders in ↵ and ↵S. This requires
nontrivial combinations of charge/colour insertion operators and interferences of Born amplitudes
at different orders, similarly as in (3.8)–(3.9).

For phase-space integration, both Munich and Sherpa employ adaptive multi-channel tech-
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Technical implementation of NLO EW
✓  Virtuals with OpenLoops:

‣   Fast numerical routines for all tree+loop vertices in the full SM 

‣              renormalization               

‣   R2 rational terms

‣   Treatment of unstable particles: complex-mass-scheme  

✓  Real radiation, subtraction, subprocess bookkeeping

✓ Sherpa [Höche, Schönherr, in preperation]

✓ MUNICH: MUlti-chaNnel Integrator at swiss (CH) precision  
[Kallweit, in preparation]

‣   Based on the well established NLO QCD dipole subtraction frameworks with replacements for 
QCD → QED    
 
 
 

‣    Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders  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All ingredients care
fully vali

dated:

✓ OpenLoops vs. p
rivate

 code by S. Pozzorini 

✓ MUNICH vs. Sherpa 
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‣  Performance study for pp → t t ̅+ n jets with n=0,1,2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

‣   1-loop EW similarly fast as highly competitive 1-loop QCD timings up to t t ̅+ 2 jets

‣   code size, compilation- & runtime reflect a moderate increase of complexity w.r.t. QCD

‣   2 → 4 NLO QCD+EW feasible!

Timings on i7-3770K with gcc 4.8 –O0 dynamic and unpolarised t t ̅(significantly faster with decays!) using COLLIER for reduction

NLO EW automation in OpenLoops

NLO EW completely automated in OpenLoops
OpenLoops [Lindert,Maierhöfer,S.P.] +Sherpa [Schönherr] and in-house
MC [Kallweit]

validation well advanced (based on 2 fully independent in-house generators)

Technical performance of 1-loop EW for tt̄+ jets
code size, compilation&runtime reflect moderate increase of complexity wrt QCD

1-loop EW similarly fast as highly competitive 1-loop QCD timings up to t¯t+ 2 jets

n
loop diag

t
compile

[s] size [MB] t
run

[ms/point]
t¯t + 0, 1, 2 j QCD EW QCD EW QCD EW QCD EW

d ¯d ! t¯t 11 33 2.1 3.5 0.1 0.2 0.27 0.69
gg ! t¯t 44 70 3.6 3.7 0.2 0.3 1.6 2.8

d ¯d ! t¯tg 114 360 3.5 5.9 0.4 0.9 4.8 13
gg ! t¯tg 585 660 8.2 8.8 1.4 1.6 40 56

d ¯d ! t¯tuū 236 1274 5.3 16 0.8 2.8 12 48
d ¯d ! t¯td ¯d 472 2140 9.5 56 1.4 1.4 30 99
d ¯d ! t¯tgg 1507 4487 20 47 3.5 8.2 133 327
gg ! t¯tgg 8739 7614 105 79 18 16 1458 1557

Timings on i7-3770K with gcc 4.8 –O0 dynamic and unpolarised t¯t (significantly faster with decays!)

Opens the door to multi-leg NLO EW computations!
S. Pozzorini (Zurich University) Top Physics Top2014 20 / 36

Performance of NLO EW OpenLoops amplitudes
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 Motivation:  V + multijet production

pp

total

80 µb−1

Jets
R=0.4

|y |<3.0

0.1 < pT < 2 TeV

Dijets
R=0.4

|y |<3.0
y ∗<3.0

0.3 < mjj < 5 TeV

W

fiducial

35 pb−1
njet ≥ 0

njet ≥ 1

njet ≥ 2

njet ≥ 3

njet ≥ 4

njet ≥ 5

njet ≥ 6

njet ≥ 7

Z

fiducial

35 pb−1
njet ≥ 0

njet ≥ 1

njet ≥ 2

njet ≥ 3

njet ≥ 4

njet ≥ 5

njet ≥ 6

njet ≥ 7

t̄t

total

njet ≥ 0

njet ≥ 4

njet ≥ 5

njet ≥ 6

njet ≥ 7

njet ≥ 8

tt−chan

total

WW+
WZ
total

WW

total

γγ

fiducial

4.9 fb−1

Wt

total

2.0 fb−1

WZ

total

13.0 fb−1

ZZ

total

t̄tγ

fiducial

1.0 fb−1

Wγ

fiducial
njet=0

Zγ

fiducial
njet=0

t̄tW

total

t̄tZ

total

95% CL
upper

limit

Zjj
EWK

fiducial

H→γγ
fiducial

W±W±jj
EWK

fiducial

ts−chan

total

95% CL
upper

limit

0.7 fb−1

σ
[p
b]

10−3

10−2

10−1

1

101

102

103

104

105

106

1011

LHC pp
√
s = 7 TeV

Theory

Data 4.5 − 4.7 fb−1

LHC pp
√
s = 8 TeV

Theory

Data 20.3 fb−1

Standard Model Production Cross Section Measurements Status: July 2014

ATLAS Preliminary Run 1
√
s = 7, 8 TeV

22

‣ Large cross-sections and clean leptonic signatures   

‣ Precision QCD at LHC   

‣ Playground to probe different aspects of higher-order    
calculations  
(LO+PS, NLO+PS, NLO-Merging, NLO  EW,…)  
 
 
 
 
 
 

‣   Important/dominant background for various  
BSM searches (lepton + jets + missing ET)

‣   Dominant background for monojet DM searches

‣   Dominant background for top physics

‣  Important background for Higgs physics, e.g. VH(→bb) 
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Figure 5: The differential cross section measurement for HT for inclusive jet multiplicities 1–4,
compared to the predictions of MADGRAPH 5.1.1 + PYTHIA 6.426, SHERPA 1.4.0, and BLACK-
HAT+SHERPA (corrected for hadronisation and multiple-parton interactions). Black circular
markers with the grey hatched band represent the unfolded data measurement and its uncer-
tainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.).
The BLACKHAT+SHERPA uncertainty also contains theoretical systematic uncertainties (Theory
syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded
data.

CMS-SMP-12-023

pp → W+2j

• W+2j production badly described by LO+PS (merged)
• HT  @ NLO QCD small uncertainties (~10 %)

High precision in perturbative QCD

V + 1, 2, 3, 4, (5) jets at NLO
[BlackHat+Sherpa ’09–’13]
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) O (10%) scale uncertainties

W + 1 jet at NNLO
[Boughezal,Focke,Liu,Petriello ’15]

) O (1%) scale uncertainty

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 9 / 28

• pT (jet)  @ NNLO QCD has tiny uncertainties (~1 %)

[Boughezal,Focke,Liu,Petriello ’15] 

pp → W+1j

 W + multijet production
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Combination of NLO QCD and EW & Setup
Two alternatives:

Difference between the two approaches indicates uncertainties due to missing two-loop  
EW-QCD corrections of O(↵↵s)

Here j1 denotes the first jet, while the total transverse energy Htot
T is defined in terms of the jet

and W -boson transverse momenta12 as

Htot
T = pT,W +

X

k

pT,jk , (6.3)

where all jets that satisfy (6.1) are included.
Our default NLO results are obtained by combining QCD and EW predictions,

�NLO
QCD = �LO + ��NLO

QCD, �NLO
EW = �LO + ��NLO

EW , (6.4)

with a standard additive prescription

�NLO
QCD+EW = �LO + ��NLO

QCD + ��NLO
EW , (6.5)

where ��NLO
QCD and ��NLO

EW correspond to pp ! W + n-jet contributions of O(↵n+1
S ↵) and O(↵n

S↵
2),

respectively. As LO contributions, in Sections 6.1–6.3 only the leading-QCD terms of O(↵n
S↵) will

be included, while LO EW–QCD mixed and photon-induced terms of O(↵n�1
S ↵2) will be discussed

in Section 6.4. In order to identify potentially large effects due to the interplay of EW and QCD
corrections beyond NLO, we will also consider the following factorised combination of EW and
QCD corrections,

�NLO
QCD⇥EW = �NLO
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If this approach can be justified by a clear separation of scales—such as in situations where QCD
corrections are dominated by soft interactions well below the EW scale—the factorised formula
(6.6) can be regarded as an improved prediction. Otherwise, the difference between (6.5) and (6.6)
should be considered as an estimate of unknown higher-order corrections.
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Note that the QCD⇥EW ratio (6.8) corresponds to the usual NLO EW correction relative to LO,
which is free from NLO QCD effects, while the QCD+EW ratio (6.7) depends on �NLO

QCD. In particu-
lar, for observables that receive large NLO QCD corrections, the relative QCD+EW correction can
be drastically suppressed as compared to the QCD⇥EW one. This feature is typically encountered
in observables that receive huge QCD corrections of real-emission type. In such situations, NLO
QCD+EW predictions for pp ! W +n jets are dominated by tree-level contributions with one extra
jet, and the inclusion of NLO QCD+EW corrections for pp ! W +(n+1) jets becomes mandatory.

6.1 W+ + 1 jet

Among the various W+(multi)jet production processes, the inclusive production of a W boson
in association with (at least) one jet is the one that features the strongest sensitivity to NLO
QCD radiation. This is clearly illustrated by the results shown in Figures 13–14 and Table 2. In
particular, large NLO QCD effects arise in the tails of the inclusive distributions in the W -boson and

12Note that at variance with the definition (5.3) of ˆHT, here we use transverse momenta and not transverse energies.
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Relative corrections w.r.t. NLO QCD:
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“usual” NLO EW w.r.t. LO

suppressed by large NLO QCD corrections

24

‣                                         in Gμ -scheme with   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Figure 7. Virtual NLO EW sample diagrams for W+ + 2-jet production to the subprocces (from left to
right) u

i

d̄
i

! W+dd̄.

4.2 On-shell approximation

In our calculation the W+ is produced as a stable final state particle on its mass shell. In this way
the highest jet multiplicities (n = 3) can be achieved and the calculation can easily be extended to
include W decays in the NWA.

For n � 2 in the NLO EW contributions of O(↵2↵n
S) potentially resonant diagrams can ap-

pear, both, in the virtual and in the gluon bremsstrahlung contributions - but not in the photon
bremsstrahlung. Example diagrams with potentially resonant W and Z gauge bosons are shown in
Fig ??. Similar resonances can arise from top (in b-quark initiated processes) and Higgs (attached
to massive quark loops) propagators. In the virtual contributions resonant propagators can either
appear as EW insertions in a one-loop amplitude in interference with a QCD Born amplitude or in
an EW Born amplitude in interference with a pure QCD one-loop amplitude. Here we want to note
that at the considered order of perturbation theory such resonant diagrams can only enter via inter-
ferences with non-resonant ones. Therefore, no physical Breit-Wigner–like resonance but rather an
integrable pseudo singularity emerges that has to be regularized for numerical convergence. To this
end, for the particular process under consideration, we cannot consistently apply the complex mass
scheme due to the stable W in the final state. A finite W -width would alter the IR structure and
would require a cumbersome redefinition of the QED subtraction. Instead, we opt for a regulator
approach introducing a finite width �

reg

in all potentially resonant propagators while keeping the
EW mixing angle real, as defined in the on-shell scheme. In the virtual contributions this regulator
width has to be introduced with care to not spoil the IR structure of the diagrams. In particular no
width should be introduced in W propagators which are directly coupled to a photon. The obtained
result is independent of �

reg

in the smooth limit �
reg

! 0 where any gauge-dependence vanishes.
Furthermore, for a finite width any gauge-dependent contributions due to a regulated propagator
of a massive particle i are suppressed at least by O(�

reg

/Mi).

5 Setup of the simulation

In the following we present a series of NLO QCD+EW simulations for W+ production in association
with one, two, and three jets in proton–proton collisions at 13TeV. As input parameters for the
gauge boson, Higgs boson and top quark masses we use

MZ = 91.1876 GeV, MW = 80.385 GeV, MH = 126 GeV, mt = 173.2 GeV. (5.1)

The corresponding Lagrangian parameters are kept strictly real since we treat all heavy particles as
stable. The electroweak couplings are derived from the gauge boson masses and the Fermi constant,
Gµ = 1.16637⇥10�5 GeV�2, in the so-called Gµ-scheme, where the fine structure constant is given
by

↵ =

p
2

⇡
GµM

2
W

✓
1� M2

W

M2
Z

◆
, (5.2)

and the cosine of the weak mixing angle reads cos ✓w = MW /MZ . The CKM matrix is assumed to
be diagonal, while colour effects and related interferences are included throughout, without applying
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any large-Nc expansion. For the regularisation of spikes that can result from the interference of
singular propagators with non-resonant NLO EW contributions, if not stated otherwise we use a
technical width parameter �

reg

= 1GeV, as explained in Section 4.2.
For the calculation of hadron-level cross sections we employ the NNPDF2.3 QED parton distri-

butions [61], which includes NLO QCD and LO QED effects, and we use the PDF set corresponding
to ↵S(MZ) = 0.118.4 Matrix elements are evaluated using the running strong coupling supported by
the PDFs and, consistently with the variable flavour number scheme implemented in the NNPDFs,
at the top threshold we switch from five to six active quark flavours in the renormalisation of ↵S.
All light quarks, including bottom quarks, are treated as massless particles. The NLO PDF set is
used throughout, i.e. for LO as well as for NLO QCD and NLO EW predictions. Using the same
PDFs for LO and NLO predictions exposes matrix element correction effects in a more transparent
way. In particular, it guarantees that NLO EW K-factors remain free from QCD effects related to
the difference between LO and NLO PDFs.

The renormalization scale µR and factorization scale µF are set to

µR,F = ⇠R,Fµ0 with µ0 = ĤT/2, (5.3)

where ĤT is the scalar sum of the transverse energy of all partonic final state particles,

ĤT =
X

partons

ET =
X

i

ET,ji + ET,� +
q

p2T,W +M2
W . (5.4)

Our default scale choice corresponds to ⇠R = ⇠F = 1, and theoretical uncertainties are assessed by
applying the scale variations (⇠R, ⇠F) = (2, 2), (2, 1), (1, 2), (1, 1), (1, 0.5), (0.5, 1), (0.5, 0.5). As
shown in [14–19] the scale choice (5.3) guarantees a good perturbative convergence for W+multijet
production over a wide range of observables and energy scales.

For the definition of jets we employ the anti-kT algorithm [89] with R = 0.4. More precisely,
in order to guarantee IR safeness in presence of NLO QCD and EW corrections, we adop the
democratic clustering approach introduced in Section 2.4. To separate QCD jets from photons we
impose an upper bound zthr = 0.5 to the photon energy fraction inside jets, and the recombination
of collinear (anti)quark–photon pairs is applied within a cone of radius Rrec

�q = 0.1. We perform three
separate parton level NLO simulations of pp ! W + n jets, with 1  n  3. Events are categorised
according to the number of jets in the transverse momentum and pseudo-rapidity region defined by

pT,j > 30GeV, |⌘j| < 4.5, (5.5)

and for each W+n jet sample we present an inclusive analysis, where we do not impose any selection
cut apart from requiring the presence of n (or more) jets. In addition, to study the high-energy
behaviour of EW corrections, we also consider cross sections and distributions in presence of one of
the following cuts:

pT,W > 1TeV , pT,j1 > 1TeV , H jet
T > 2TeV , or Htot

T > 2TeV . (5.6)

Here j1 denotes the first jet, while the transverse energies H jet
T and Htot

T are defined in terms of the
jet and W boson transverse momenta5 as

H jet
T =

X

i

pT,ji , Htot
T = H jet

T + pT,W, (5.7)

where all jets with |⌘j| < 4.5 are included. In practice, for each W + n-jet sample, the first n jets
that contribute to H jet

T and Htot
T must satisisfy the pT cut in (5.5), while the contribution from the

extra jet at NLO can be arbitrarily soft.
4To be precise we use the NNPDF23_nlo_as_0118_qed set interfaced through the LHAPDF library 5.8.9.
5Note that at variance with the definition of ˆHT (5.4), here we use transverse momenta and not transverse energies.
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W+ + 1 jet: inclusive
inclusive

   ≲ 1%  EW corrections  
 
pT of W-boson
‣  +100 % QCD corrections in the tail

‣   large negative EW corrections due to Sudakov behaviour:  
    -20–35% corrections at 1-4 TeV 

‣   sizeable difference between QCD+EW and QCDxEW ! 
 
 
pT of jet

‣  factor-10 NLO QCD corrections in the tail!

‣  dominated by dijet configurations (effectively LO)

‣  positive 10-50% EW corrections from quark bremsstrahlung  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EW corrections

Very large EW corrections to pp ! Z/W + 1 jet

NLO (electro)weak [Maina, Ross, Moretti ’04;Kühn,

Kulesza, S.P.,Schulze ’04–’07]

EW Sudakov logs beyond NLO [Kühn, Kulesza,

S.P.,Schulze ’04–’07; Becher, Garcia i Tormo ’13]

NLO QCD+EW with o↵-shell Z/W decays
[Denner,Dittmaier,Kasprzik,Muck ’09–’11]
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Strong motivations for V+multijets at NLO EW

multi-jet case: EW Sudakov poorly explored and crucial
for BSM searches

huge di-jet contributions at high jet pT ) V +1 jet NLO
EW insu�cient!!

overlap with EW processes (VBF,V V 0,tj, tW , t¯t) and
interference with QCD

soft W/Z

q

g

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 10 / 28

W+ + 1 jet: inclusive
inclusive

   ≲ 1%  EW corrections  
 
pT of W-boson
‣  +100 % QCD corrections in the tail

‣   large negative EW corrections due to Sudakov behaviour:  
    -20–35% corrections at 1-4 TeV 

‣   sizeable difference between QCD+EW and QCDxEW ! 
 
 
pT of jet

‣  factor-10 NLO QCD corrections in the tail!

‣  dominated by dijet configurations (effectively LO)

‣  positive 10-50% EW corrections from quark bremsstrahlung  
 
 
 
 

      ⟹ pathologic with large uncertainties!
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Setup:      p
S = 13 TeV

µ0 =

ˆHT /2 (+ 7-pt. variation)

pT,j > 30 GeV, |⌘j| < 4.5
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W+ + 1 jet: exclusive
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QCD corrections

‣  mostly moderate and stable QCD corrections

EW corrections

‣  Sudakov behaviour in both tails: 
   -20–50% EW corrections at 1-4 TeV 

‣  EW corrections larger than QCD uncertainties for pT,W+ > 300 GeV

      ⟹ exclusive W+1jet ok! 
 
    ⟹ inclusive W+1jet requires W+2 jets at NLO QCD+EW!

Δ𝜙j1j2 < 3π/4
(veto on dijet configurations)
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Setup:      p
S = 13 TeV

µ0 =

ˆHT /2 (+ 7-pt. variation)

pT,j > 30 GeV, |⌘j| < 4.5
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Technical aspects

Number of diagrams in pp ! W + 1, 2, 3 jets (in parenthesis: q = ui, di case)

Channel QCD trees EW trees QCD 1-loop EW 1-loop
ui

¯di ! W+g 2 - 11 32
ui

¯di ! W+qq̄ 2 (4) 7 (14) 33 (66) 105 (210)
ui

¯di ! W+gg 8 - 150 266
ui

¯di ! W+qq̄g 12 (24) 33 (66) 352 (704) 1042 (2084)
ui

¯di ! W+ggg 54 - 2043 2616

moderate growth of complexity wrt NLO QCD (up to 3⇥more loop diagrams)

1-loop QCD and EW similarly fast ) 0.1% stat precision for W + 1, 2, 3 jets at
NLO QCD+EW costs 13,210,6300 CPU h (dominated by NLO QCD!)

On-shell external W and “pseudo resonances”
external W stable (�W = 0) but small �reg ! 0 for s-channel t,W,Z,H
propagators in QCD⇥EW interf (IR EW singularities tricky. . . )

W

ui

d̄i

W+

q

q̄

�, Z,W

ui q

W+

d̄i q̄

W+

W H

ui

d̄i

⇥QCDBorn ) Q2 �M2

(Q2 �M2
)

2
+ �

2
regM2

can be extended to W ! `⌫ decays in NWA but not to full NLO SM

IR safe jet definition at NLO EW
E�/Ejet < 0.5 and q� recombination for DeltaRq� < 0.1 to avoid QCD and QED
IR sing.

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 20 / 28

Technical note: pseudo-singularities for W+2,3 jets

gluonic channels fermionic channels

•  At the considered order only effects QCD-EW interferences
•  Complex-mass-scheme can not be used with on-shell/stable W’s
•  NWA: finite width         in potentially s-channel propagators for W, Z ,t ,H
•  Smooth gauge-invariant limit and negligible numerical dependence for

ui

d̄i

W+

W+

W Z

ui

d̄i

X

W+ui

d̄i

q

q̄

γ, Z

W+ui

d̄i

q

q̄

X

�reg.

�reg. ! 0
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Goal:          
• Investigation of technical performance at 

highest possible jet multiplicity
• Investigate dependence of EW corrections 

on number of jets 
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W+ + 2 jets: large EW corrections
inclusive

QCD corrections 

‣  small and very stable

‣  ≲ 10% scale uncertainties 
 
 
EW corrections

‣  Sudakov behaviour in all pT tails:   

•  -30–60% for W-boson at 1-4 TeV
• -15–25% for 1st and 2nd jet at 1-4 TeV

‣ Might need resummation of leading EW Sudakov logs
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different!
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W + 2 jets @ sub-LO: QCD-EW interplay 

Inclusive 

‣  Subleading contributions highly suppressed  

                   mixed QCD-EW contribution

‣  large impact at large jet-pT (10-50% at 1-4 TeV)!

 
            pure EW contribution
‣  includes contributions from WW, WZ, VBF, single-top

‣  10-20% at 1-4 TeV  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Setup:      p
S = 13 TeV

µ0 =

ˆHT /2 (+ 7-pt. variation)

pT,j > 30 GeV, |⌘j| < 4.5
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LO �-induced contributions in pp ! W+ + 1, 2, 3 jets
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Single-� contributions

from O �
10

�3
�
in �int to 5–100% at pT,W =1–4TeV!

driven by �-PDF (NNPDF2.3QED) at large x (huge �-PDF uncertainty. . . )

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 22 / 28

LO ɣ-induced W+1,2,3 jet production  

W+

j1

31

‣ As large as 5 - 100% at pT,W+=1-4 TeV
‣ However: giant ɣ-PDF uncertainties at large x!
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QCD corrections 

‣  for W+2j: large QCD corrections (80-100%) 

‣  starting to be stable only for  W+3 jets

      ⟹ calls for NLO QCD+EW multi-jet merging! 

HT,tot  for  W+ + 1, 2,3 jets

32
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EW corrections 

‣  moderate EW corrections: -20 % in the tail
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W+ + 3 jets: topology of EW corrections

‣  stable QCD corrections

‣  up to -25% EW corrections
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mj1j2 

‣  large negative QCD corrections in the tail with huge uncertainties (⟹ resummation needed)

‣ negligible EW corrections
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pT [GeV]

Z/ɣ + 1 jet: exclusive

Z+1j

QCD corrections

‣  mostly moderate and stable QCD corrections

‣  (almost) identical QCD corrections in the tail,  
    sizeable differences for small pT

35

ɣ+1j

EW corrections

‣ correction in pT(Z) > correction in pT(ɣ)
‣  -20/-8% EW for Z/ɣ at 1 TeV 

‣  EW corrections > QCD uncertainties for pT,Z > 350 GeV

Setup:      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Z/ɣ + 1 jet: pT-ratio
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Overall

‣   mild dependence on the boson pT

QCD corrections

‣   ≲ 10% above 300 GeV

EW corrections

‣    result in an almost constant shift between LO and  
      NLO QCD+EW of ~15%

‣    sizeable difference between QCD+EW & QCDxEW
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18 7 Results

bulk. However, we know that the former underestimates the theoretical uncertainty due to
renormalization and factorization scales, and the latter overestimates it. The estimation of this
uncertainty has been discussed in the literature, and has been examined by comparing different
theoretical computational estimations ([9] and [30]). Both of the previously mentioned methods
misrepresent the actual uncertainty due to the renormalization and factorization scales. We
therefore choose the larger relative scale uncertainty band from each process as an estimate of
the uncertainty on the final ratio. Using the NLO cross sections, BLACKHAT predicts the Rdilep
ratio with a value of RBH = 0.03794, which is higher than that observed in data by a factor of
1.18 ± 0.14 (stat + syst).
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Figure 6: Differential cross section ratio of averaged Z ! (e+e� + µ+µ�) over g as a function
of the total transverse-momentum cross section and for central bosons (|yV | < 1.4) at different
kinematic selections in detector-corrected data. Top left: inclusive (njets � 1); top right: HT �
300 GeV, njets � 1. The black error bars reflect the statistical uncertainty in the ratio, the hatched
(gray) band represents the total uncertainty in the measurement. The shaded band around the
MADGRAPH+PYTHIA6 simulation to data ratio represents the statistical uncertainty in the MC
estimation. The bottom plots give the ratio of the various theoretical estimations to the data in
the njets � 1 case (bottom left) and HT � 300 GeV case (bottom right).

Z/ɣ + 1 jet: pT-ratio
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Note: fiducial regions not identical! 
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‣  Automation of NLO QCD+EW: 
• OpenLoops with NLO QCD publicly available at

http://openloops.hepforge.org

• NLO corrections in the full SM (QCD & EW) are implemented in OpenLoops 
together with Sherpa and MUNICH (will be included in upcoming public releases)  

‣  V + multijets at QCD+EW :
• 2 → 4 NLO EW feasible!

• inclusion of EW corrections crucial at the TeV scale (up to 50%)

• multi-jet final states genuinely different from W+1jet

• non-trivial interplay between QCD and EW 

‣  Outlook:
• many more phenomenology & processes 

• PS matching & multi-jet merging  

Conclusions
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Backup slides
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EW Sudakov logarithms II

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

�,Z,W± �,Z,W± �,Z,W±, H, t, . . .

Universality and factorisation [Denner,S.P. ’01] similarly as in QCD

�1�loop
LL+NLL =

↵

4⇡

nX

k=1

8
<

:
1

2

X

l 6=k

X

a=�,Z,W±

Ia(k)I ā(l) ln2 skl
M2

+ �ew
(k) ln

s

M2

9
=

;

process-independent and simple structure

tedious implementation (ALPGEN [Chiesa et al. ’13]) due to nontrivial SU(2)⇥U(1)

features (P-violation, mixing, soft SU(2) correlations, Goldstone modes, . . . )

2-loop extension and resummation partially available

S. Pozzorini (Zurich University) Top Physics Top2014 10 / 36

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

Universality and factorisation similar as in QCD    [Denner, Pozzorini; ’01] 

Origin of electroweak Sudakov logarithms
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The Open Loops algorithm:
From tree recursion to loop diagrams

[F. Cascioli, P. Maierhöfer, S. Pozzorini;  ‘12]

‣  Recursive construction of tree wave functions
•  start from wave functions         of external legs.

•  connect wave functions with vertices          and propagators to recursively build “sub-trees”. 

•  recycle identical structures

•  wave functions of sub-trees are 4-tuples of complex numbers (for the spinor/Lorentz index).

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.
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(external lines not shown)

‣  Factorize one-loop amplitude into colour factors, tensor coefficients and  tensor integrals 
 

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From loop amplitudes to scalar integrals

To calculate a one-loop amplitude, we start from Feynman diagrams,
factorised into colour factors, tensor coefficients, and tensor integrals.
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The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Numerator recursion

Connect sub-trees along the loop to build the numerator

β

α
In =

β

α

in

In−1 N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

For fixed loop momentum q, the numerator N (q) = Nα
α (q) can be

evaluated by a “conventional” tree generator and used as input for
OPP reduction. [Ossola, Papadopoulos, Pittau]

Done by “old” MadLoop (diagrammatic), or HELAC (current recursion).

By the nature of loop integrals, the functional dependence
on the loop momentum is needed. OPP reduction instead uses
expensive multiple evaluations of N (q) for loop momenta
which satisfy cut conditions Di = Dj = · · · = 0.

OpenLoops:
Nµ1...µr

r encodes the functional dependence on q:
N (q) =

∑

r Nµ1

r . . . qµr
qµ1...µr
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The Open Loops algorithm:
From tree recursion to loop diagrams

[F. Cascioli, P. Maierhöfer, S. Pozzorini;  ‘12]

‣  Treat one-loop diagram as ordered set of sub-trees                               connected by 
propagators 
 
 
 
 
 

‣  Build numerator connecting subtrees along the loop                  
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cut one loop propagator 
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γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In
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Numerator recursion

Connect sub-trees along the loop to build the numerator

β

α
In =

β

α

in

In−1 N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

For fixed loop momentum q, the numerator N (q) = Nα
α (q) can be

evaluated by a “conventional” tree generator and used as input for
OPP reduction. [Ossola, Papadopoulos, Pittau]

Done by “old” MadLoop (diagrammatic), or HELAC (current recursion).

By the nature of loop integrals, the functional dependence
on the loop momentum is needed. OPP reduction instead uses
expensive multiple evaluations of N (q) for loop momenta
which satisfy cut conditions Di = Dj = · · · = 0.

OpenLoops:
Nµ1...µr

r encodes the functional dependence on q:
N (q) =

∑

r Nµ1

r . . . qµr
qµ1...µr
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‣   Recursively build “open loops” polynomials                   
•  disentangle loop momentum q from the coefficients  

 
 

•  recursion in d=4  

 
 

•  model and process independent algorithm

•  numerical implementation requires only universal building blocks, derived from the  
Feynma rules of the theory (full SM implemented; also HEFT; more BSM/EFT to come)

‣    ε-dimensional part of the numerator x poles of the tensor integrals yield R2 rational terms

•  numerical recursion in D=4 ➞ restore R2  via process independent counter terms
    [Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09, ‘10; Shao, Zhang, Chao ‘11]

 

The Open Loops algorithm:
one-loop recursion

[F. Cascioli, P. Maierhöfer, S. Pozzorini;  ‘12]

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =
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∑
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N β
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[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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‣   Tensorial coefficients                   can directly be used with tensor integral libraries avoiding numerical 
instabilities (Gram-determinant expansion)   [Denner, Dittmaier ; ‘05]

‣   Fast evaluation of                                                    at multiple q-values,  required in OPP reduction 
methods [Ossola, Papadopolous, Pittau; ’07]             

 

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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The Open Loops algorithm:
one loop amplitudes
[F. Cascioli, P. Maierhöfer, S. Pozzorini;  ‘12]

N (q) =
X

Nµ1...µrq
µ1 . . . qµr

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In
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Complicated diagrams require only 
“last missing piece”

Illustration:

The Open Loops algorithm:
recycle loop structures

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2
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Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2
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OpenLoops recycling:
Lower-point open-loops can be 
shared between diagram if 

• cut is put appropriately

• direction chosen to maximise 
recyclability



      NLO QCD+EW simulations with OpenLoops and predictions for W+multijet production                                      Jonas M. Lindert 

‣   Include challenging NLO QCD, S-MC@NLO, MEPS@NLO, 
NNLO QCD and NLO QCD+EW calculations

 
NLO QCD for pp → W+W−bb̅ with mb > 0, [arXiv:1312.0546]

S–MC@NLO for pp → t t̅bb̅ with mb > 0, [arXiv:1309.5912]

MEPS@NLO for llνν+0,1 jets, [arXiv:1309.0500] 

NLO merging for pp → HH+0,1 jets, [arXiv:1401.0007] 

MEPS@NLO for t t̅ + 0,1,2 jets, [arXiv:1402.6293] 

MEPS@NLO for WWW+0,1 jets, [arXiv:1403.7516] 

NNLO for pp → γZ, [arXiv:1309.7000]

NNLO for qq̅ → t t̅, [arXiv:1404.6493]

NNLO for pp → ZZ, [arXiv:1405.2219]

NNLO for pp → W+W−, [arXiv:1408.524]

NLO QCD+EW for pp → W++1,2,3 jet, [arXiv:1412.5157]

Recent applications of OpenLoops

3

√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in

σ/σNLO
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-

pp ! tt̄+X
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FIG. 1. Light-flavor jet multiplicity distribution (including c- but not b-jets) for transverse momentum thresholds of 40, 60 and
80 GeV (a) and transverse momentum spectra of the three leading light-flavor jets (b). Solid (red) lines indicate MEPS@NLO
predictions, and the full (orange) band shows the corresponding total theoretical uncertainty. Dashed lines indicate MEPS@LO
predictions, with the corresponding uncertainties shown as hatched (blue) bands. S–MC@NLO predictions are shown as dotted
histograms. Statistical uncertainties for each calculation are indicated by error bars.
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FIG. 2. Transverse momentum of the reconstructed top quark (a) and total transverse energy (b), see Fig. 1 for details.
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The Open Loops program:
performance

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Performance
process diags size/MB time/ms
uū → tt̄ 11 0.1 0.27(0.16)
uū → W +W− 12 0.1 0.14
ud̄ → W +g 11 0.1 0.24
uū → Zg 34 0.75
gg → tt̄ 44 0.2 1.6(0.7)
uū → tt̄g 114 0.4 4.8(2.4)
uū → W +W−g 198 0.4 3.4
ud̄ → W +gg 144 0.5 4.0
uū → Zgg 408 17
gg → tt̄g 585 1.2 40(14)
uū → tt̄gg 1507 3.6 134(101)
uū → W +W−gg 2129 2.5 89
ud̄ → W +ggg 1935 4.2 120
uū → Zggg 5274 524
gg → tt̄gg 8739 16 1460(530)

Measured on an i7-3770K
(single thread) with
gfortran 4.8 -O0, dynamic
(ifort static ∼30% faster),
tensor integral reduction
with Collier.

Colour and helicity
summed.

W /Z production includes
leptonic decays and non-
resonant contributions.

tt̄ production numbers
in brackets are for
massless decays.

CutTools provides similar performance for 2 → 4, but is slower for lower
multiplicities. In complicated processes, the quad precision evaluations
can affect the average runtime significantly.

OpenLoops • Philipp Maierhöfer IPPP Seminar

Timings on i7-3770K with gfortran 4.8 –O0 dynamic (ifort static ~30% faster) 

‣  timings for complete one-loop amplitude

‣  colour and helicity summed

‣  using COLLIER for reduction

‣  CutTools similarly fast for 2 ➞ 4 

‣  W/Z production includes leptonic 
    decays of gauge bosons and  
    non-resonant contributions

‣  numbers for t t ̅production for massless 
    decays in brackets

‣  runtime can be significantly increased 
    when quad-precision rescue is used  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NLO EW Virtuals with OpenLoops

‣ Universal power counting in     and       including different interference contributions.     
Input: 

1.   Born process and desired order              
2.   type of correction, i.e. “NLO QCD”                      or  “NLO EW” 

‣   Fast numerical routines for all tree+loop vertices in the full SU(3)xSU(2)xU(1) SM 

‣   On-shell NLO EW renormalization along the lines of  [Denner, ‘92]

‣ Renormalization of     in on-shell or Gμ -scheme   

‣   Complex-mass-scheme fully implemented [Denner, Dittmaier, Roth, ’04]

‣   Fixed-width-scheme for on-shell massive particles

‣   NLO EW R2 contributions via process independent counterterms (for all possible one-particle 
irreducible Green functions of the SM with up to four external legs)  
[Garzelli, Malamos, Pittau ‘10; Shao, Zhang, Chao, ’11] 

‣   All ingredients carefully validated against independent automated in-house tool based on algebraic 
techniques in D=4-2ε  [Pozzorini]

↵ ↵s

↵

↵n
s↵

m

↵n+1
s ↵m ↵n

s↵
m+1⌘ ⌘
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‣   NLO EW subtraction based on the well established NLO QCD dipole subtraction [Catani, Seymour, ’96]  
frameworks in  Sherpa & MUNICH with replacements for QCD → QED

‣   Independent implementation in the two MC programs allows for powerful cross checks

‣ Sherpa [Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter et. al.]   
✦  widely used shower Monte-Carlo

✦  used for pioneering W + ≤5 jets NLO QCD calculations (in conjunction with BlackHat)
✦  Advanced multi-jet merging available: MEPS@NLO 

‣   MUNICH: MUlti-chaNnel Integrator at swiss (CH) precision  [Kallweit, in preparation]

✦  fast and flexible fixed-order multi-channel Monte-Carlo 

✦  used for example in pp → W+W−bb @ NLO QCD, pp → W+W− @ NNLO QCD  

Sherpa & MUNICH
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‣   Replacement QCD → QED  
 
 
 
 
 
 

‣    For external on-shell W± we use heavy fermion splitting functions [Catani, Dittmaier, Seymour, Trocsanyi ’02]

‣    Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders  
 
 
 
 

‣    Independent implementation in the two MC programs allows for powerful cross checks

Bremsstrahlung and subtraction with Sherpa & MUNICH
blocks, i.e. splitting kernels and I +K + P operators, have been extended to NLO QCD+QED.6

In particular, all contributions associated with f ! f�, f̄ ! f̄�, and � ! ff̄ QED splittings can
be obtained from the related QCD contributions by applying the substitutions

↵s �! ↵, CF �! Q2
f , TR �! Nc,fQ

2
f , TRNf �!

X

f

Nc,fQ
2
f , CA �! 0 , (3.12)

and the following additional replacements for the colour-correlation operators associated with an
emitter ij and a spectator k,

Tij ·Tk

T2
ij

�!
(

QijQk

Q2
ij

if the emitter ij is a (anti)fermion
ij,k if the emitter ij is a photon ,

with
X

k 6=ij

ij,k = �1 . (3.13)

In practice, for the case of a photon emitter, one can restrict oneself to a single spectator particle eij
different from the fermion–antifermion emitter ij, i.e. ij,k = ��eij ,k. Alternatively any sum over
spectators different from ij can be chosen as long as the last constraint in (3.13) is fullfilled. While
the colour-insertion operators are reduced to multiplicative scalars in (3.13), the spin correlators of
the real-subtraction terms associated with � ! ff̄ splittings preserve the same form as for g ! qq̄

splittings in QCD.
Besides singularities of pure QED type, processes with external on-shell W bosons involve

additional singularities associated with W ! W� splittings. In this case, due to the large W -
boson mass, no collinear singularity or logarithmic enhancement is present, and only the soft-
photon singularity has to be subtracted. Exploiting the universal nature of soft singularities, in this
publication this is achieved by using the heavy-fermion or heavy-scalar splitting function of [60],
and, after the replacements of (3.12), identifying the heavy particle with the external W boson.

As discussed in Section 2.1, NLO QCD and EW corrections have to be understood, respectively,
as the full set of O(↵S) and O(↵) corrections relative to a certain tree-level order ↵n

S↵
m. More-

over, in general, NLO QCD and EW corrections are not uniquely associated with the emission of
corresponding (strongly or electroweakly interacting) particles. Actually, given a certain correction
order, ↵n+1

S ↵m or ↵n
S↵

m+1, each of the contributing real-emission processes can comprise various
types of unresolved massless particles (gluons, photons, quark or lepton pairs) and IR singularities.
In particular, NLO QCD (EW) corrections can involve singularities associated with both order ↵S

(↵) splittings times order ↵n
S↵

m Born terms, and with order ↵ (↵S) splittings times order ↵n+1
S ↵m�1

(↵n�1
S ↵m+1) Born terms. Therefore, Munich and Sherpa implement a fully general bookkeeping

of perturbative orders and singularities. The relevant dipole terms, to account for all possible QCD
and QED splittings in a generic real-correction process, are selected in a fully automated way. In-
evitably, the associated reduced Born matrix elements are allowed to be at a different order than the
original Born configuration. For the integrated subtraction terms, a similarly general bookkeeping
is applied, where all relevant QED and QCD contributions to the I + K + P operators are com-
bined with factorised Born matrix elements at the appropriate orders in ↵ and ↵S. This requires
nontrivial combinations of charge/colour insertion operators and interferences of Born amplitudes
at different orders, similarly as in (3.8)–(3.9).

For phase-space integration, both Munich and Sherpa employ adaptive multi-channel tech-
niques. In Sherpa, dipole subtraction terms can be restricted by means of the so-called ↵-dipole
parameter [99–104], while Munich constructs extra phase-space mappings based on the dipole
kinematics, and automatically adds them to the generic set of the real-emission based phase-space
parametrisations used in the multi-channel approach.

The Sherpa and Munich implementations have been validated with standard self-consistency
checks, such as the local cancellation of singularities in the real-emission phase space, the cancel-

6The construction of QED dipole-subtraction terms has been discussed in Refs. [95–97].
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 References:  W + multijet production

NLO QCD: 

‣ W(→ ln) + 1 jet [Arnold, Reno, ’89; Arnold, Ellis, Reno, ’89] 

‣ W(→ ln) + 2 jets [Campbell, Ellis, ’02; Febres Cordero, Reina, 
Wackeroth, ’06; Campbell, Ellis, Febres Cordero, Maltoni, Reina, ’09] 

‣ W(→ ln) + 3 jets [Ellis, Melnikov, Zanderighi, ’09]

‣ W(→ ln) + 3,4,5 jets [Blackhat Collaboration, ’09, ’11, ’13]

NNLO QCD: 

‣ W+ 1 jet [Boughezal, Focke, Liu, Petriello ’15]

51

NLO EW:

‣ W + 1 jet [Kühn, Kulesza, Pozzorini, Schulze, ’07; 
Hollik, Kasprzik, Kniehl, ‘07; Kühn, Kulesza, 
Pozzorini, Schulze, ’09] [this talk]

‣ W(→ln) + 1 jet [Denner, Dittmaier, Kasprzik, 
Mück, ’09] 

‣ W + 2,3 jets [this talk!]
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Contributing orders to W+n-jet production

52

Generic partonic channels for pp ! W+ + n jets (n  3)

pp ! W + n jets @LO pp ! W + n jets @NLO
↵n
s ↵ ↵n�1

s ↵2 ↵n�2
s ↵3 ↵n�3

s ↵4 ↵n+1
s ↵ ↵n

s ↵2 ↵n�1
s ↵3 ↵n�2

s ↵4 ↵n�3
s ↵5

uid̄i ! W + ng ⇥ - - - ⇥ ⇥ - - -
uid̄i ! W + qq̄ + (n � 2)g ⇥ ⇥ ⇥ - ⇥ ⇥ ⇥ ⇥ -
�ui ! diW + (n � 1)g - ⇥ - - - - - - -
�ui ! diW + qq̄ + (n � 3)g - ⇥ ⇥ ⇥ - - - - -
�� ! ūidiW + (n � 2)g - - ⇥ - - - - - -

uid̄i ! W + (n + 1)g - - - - ⇥ - - - -
uid̄i ! W + qq̄ + (n � 1)g - - - - ⇥ ⇥ ⇥ - -
uid̄i ! W + qq̄q0 q̄0 + (n � 3)g - - - - ⇥ ⇥ ⇥ ⇥ ⇥
uid̄i ! W + ng + � - - - - - ⇥ - - -
uid̄i ! W + qq̄ + (n � 2)g + � - - - - - ⇥ ⇥ ⇥ ⇥

⇥ (⇥) = (not) included in 1412.5156

Automated bookkeeping crucial

many crossings and flavour combinations (ui, di, q, q
0 2 {u, d, c, s, b})

LO contributions from 2q, 4q, �- and ��-induced channels

2q: QCD

4q: QCD, EW � VBF, WV (jj), t(Wb)j, Wt(jjj) and QCD-EW interf.

NLO contributions of order ↵n+1
S ↵ and ↵n

S↵
2

O (↵S) corrections to LO QCD

O (↵) corrections to LO QCD ⌘ O (↵S) corrections to LO EW–QCD interf.

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 19 / 28
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‣   

‣                                         in Gμ -scheme with   

‣ PDFs: NNPDF 2.3QED  with                              for LO and NLO QCD/EW

‣ Jet definition: anti-kT with                ,

‣ Photon recombination for                     and democratic jet clustering with

‣ LHC with 

‣ Scale choice:                                                                         with 7-point variation  

Setup and Observables

ui

d̄i

Z/� W+

di

d̄i

ui

d̄i

Z/� W+

di

d̄i

Figure 7. Virtual NLO EW sample diagrams for W+ + 2-jet production to the subprocces (from left to
right) u

i

d̄
i

! W+dd̄.

4.2 On-shell approximation

In our calculation the W+ is produced as a stable final state particle on its mass shell. In this way
the highest jet multiplicities (n = 3) can be achieved and the calculation can easily be extended to
include W decays in the NWA.

For n � 2 in the NLO EW contributions of O(↵2↵n
S) potentially resonant diagrams can ap-

pear, both, in the virtual and in the gluon bremsstrahlung contributions - but not in the photon
bremsstrahlung. Example diagrams with potentially resonant W and Z gauge bosons are shown in
Fig ??. Similar resonances can arise from top (in b-quark initiated processes) and Higgs (attached
to massive quark loops) propagators. In the virtual contributions resonant propagators can either
appear as EW insertions in a one-loop amplitude in interference with a QCD Born amplitude or in
an EW Born amplitude in interference with a pure QCD one-loop amplitude. Here we want to note
that at the considered order of perturbation theory such resonant diagrams can only enter via inter-
ferences with non-resonant ones. Therefore, no physical Breit-Wigner–like resonance but rather an
integrable pseudo singularity emerges that has to be regularized for numerical convergence. To this
end, for the particular process under consideration, we cannot consistently apply the complex mass
scheme due to the stable W in the final state. A finite W -width would alter the IR structure and
would require a cumbersome redefinition of the QED subtraction. Instead, we opt for a regulator
approach introducing a finite width �

reg

in all potentially resonant propagators while keeping the
EW mixing angle real, as defined in the on-shell scheme. In the virtual contributions this regulator
width has to be introduced with care to not spoil the IR structure of the diagrams. In particular no
width should be introduced in W propagators which are directly coupled to a photon. The obtained
result is independent of �

reg

in the smooth limit �
reg

! 0 where any gauge-dependence vanishes.
Furthermore, for a finite width any gauge-dependent contributions due to a regulated propagator
of a massive particle i are suppressed at least by O(�

reg

/Mi).

5 Setup of the simulation

In the following we present a series of NLO QCD+EW simulations for W+ production in association
with one, two, and three jets in proton–proton collisions at 13TeV. As input parameters for the
gauge boson, Higgs boson and top quark masses we use

MZ = 91.1876 GeV, MW = 80.385 GeV, MH = 126 GeV, mt = 173.2 GeV. (5.1)

The corresponding Lagrangian parameters are kept strictly real since we treat all heavy particles as
stable. The electroweak couplings are derived from the gauge boson masses and the Fermi constant,
Gµ = 1.16637⇥10�5 GeV�2, in the so-called Gµ-scheme, where the fine structure constant is given
by

↵ =

p
2

⇡
GµM

2
W

✓
1� M2

W

M2
Z

◆
, (5.2)

and the cosine of the weak mixing angle reads cos ✓w = MW /MZ . The CKM matrix is assumed to
be diagonal, while colour effects and related interferences are included throughout, without applying
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any large-Nc expansion. For the regularisation of spikes that can result from the interference of
singular propagators with non-resonant NLO EW contributions, if not stated otherwise we use a
technical width parameter �

reg

= 1GeV, as explained in Section 4.2.
For the calculation of hadron-level cross sections we employ the NNPDF2.3 QED parton distri-

butions [61], which includes NLO QCD and LO QED effects, and we use the PDF set corresponding
to ↵S(MZ) = 0.118.4 Matrix elements are evaluated using the running strong coupling supported by
the PDFs and, consistently with the variable flavour number scheme implemented in the NNPDFs,
at the top threshold we switch from five to six active quark flavours in the renormalisation of ↵S.
All light quarks, including bottom quarks, are treated as massless particles. The NLO PDF set is
used throughout, i.e. for LO as well as for NLO QCD and NLO EW predictions. Using the same
PDFs for LO and NLO predictions exposes matrix element correction effects in a more transparent
way. In particular, it guarantees that NLO EW K-factors remain free from QCD effects related to
the difference between LO and NLO PDFs.

The renormalization scale µR and factorization scale µF are set to

µR,F = ⇠R,Fµ0 with µ0 = ĤT/2, (5.3)

where ĤT is the scalar sum of the transverse energy of all partonic final state particles,

ĤT =
X

partons

ET =
X

i

ET,ji + ET,� +
q

p2T,W +M2
W . (5.4)

Our default scale choice corresponds to ⇠R = ⇠F = 1, and theoretical uncertainties are assessed by
applying the scale variations (⇠R, ⇠F) = (2, 2), (2, 1), (1, 2), (1, 1), (1, 0.5), (0.5, 1), (0.5, 0.5). As
shown in [14–19] the scale choice (5.3) guarantees a good perturbative convergence for W+multijet
production over a wide range of observables and energy scales.

For the definition of jets we employ the anti-kT algorithm [89] with R = 0.4. More precisely,
in order to guarantee IR safeness in presence of NLO QCD and EW corrections, we adop the
democratic clustering approach introduced in Section 2.4. To separate QCD jets from photons we
impose an upper bound zthr = 0.5 to the photon energy fraction inside jets, and the recombination
of collinear (anti)quark–photon pairs is applied within a cone of radius Rrec

�q = 0.1. We perform three
separate parton level NLO simulations of pp ! W + n jets, with 1  n  3. Events are categorised
according to the number of jets in the transverse momentum and pseudo-rapidity region defined by

pT,j > 30GeV, |⌘j| < 4.5, (5.5)

and for each W+n jet sample we present an inclusive analysis, where we do not impose any selection
cut apart from requiring the presence of n (or more) jets. In addition, to study the high-energy
behaviour of EW corrections, we also consider cross sections and distributions in presence of one of
the following cuts:

pT,W > 1TeV , pT,j1 > 1TeV , H jet
T > 2TeV , or Htot

T > 2TeV . (5.6)

Here j1 denotes the first jet, while the transverse energies H jet
T and Htot

T are defined in terms of the
jet and W boson transverse momenta5 as

H jet
T =

X

i

pT,ji , Htot
T = H jet

T + pT,W, (5.7)

where all jets with |⌘j| < 4.5 are included. In practice, for each W + n-jet sample, the first n jets
that contribute to H jet

T and Htot
T must satisisfy the pT cut in (5.5), while the contribution from the

extra jet at NLO can be arbitrarily soft.
4To be precise we use the NNPDF23_nlo_as_0118_qed set interfaced through the LHAPDF library 5.8.9.
5Note that at variance with the definition of ˆHT (5.4), here we use transverse momenta and not transverse energies.
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p
S = 13 TeV

R�,q < 0.1

µ
R,F = ⇠

R,Fµ0

, µ
0

= Ĥ
T

/2 =
1

2

X

partons

E
T

E�/Ej = 0.5
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W+ + 1,2,3 jets: large EW corrections
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• up to 50% EW corrections in multi-TeV range due to Sudakov logs

• nontrivial dependence on number of jets and interplay with NLO QCD!
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Results:  W + 2 jets

‣ QCD corrections vanish for 

‣ small EW corrections

‣ QCD corrections strongly increase  
   for 

‣ sizeable difference between QCD+EW 
  and QCDxEW 

‣ up to -25% EW corrections
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Figure 4: NNPDF2.3 NLO γ PDF at Q2 = 104 GeV as a function of x. The 100 replicas,

the 68% confidence level and the MRST2004QED γ PDF are also shown. Plot taken from

Ref. [2].
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