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Motivation and approaches

Two motivations for studying two-loop amplitudes:

@ Precision LHC phenomenology
Quantitative estimates of QCD background: needed for
precision measurements, uncertainty estimates of NLO
calculations, and reducing renormalization scale dependence.

@ Geometric understanding of scattering amplitudes
Fascinating connection to algebraic geometry and
multivariate complex analysis.

Our aim is to extend generalized unitarity to two loops and express
the two-loop amplitude in an integral basis directly.

Other approaches:
@ Integrand reduction [Mastrolia, Mirabella, Ossola, Peraro], 2011
and [Badger, Frellesvig, Zhang], 2012 — Giovanni Ossola’s talk
@ Spinor integration techniques [Feng, Zhen, Huang, Zhou], 2014
@ lterated cuts [Abreu, Britto, Duhr, Gardi], 2014
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The modern unitarity approach: basic unitarity (1/2)

Any one-loop amplitude can be decomposed into a basis of
one-loop integrals [Passarino, Veltman 1979]
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thanks to mtegrand reductions, e.g. (using £- ks = 1 ((¢+ ki)® — %))
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The modern unitarity approach: basic unitarity (1/2)

Any one-loop amplitude can be decomposed into a basis of
one-loop integrals [Passarino, Veltman 1979]

rational
TG é + terms

thanks to integrand reductions, e.g. (using ¢-ks = 3 ((€ + ks)> — £%))
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To determine ¢; — apply (iterated) cuts to compute Disc in a

specific channel. [Bern, Dixon, Dunbar, Kosower 1995]
J2 Jatl :
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The modern unitarity approach: generalized unitarity (1/2)

The coefficients ¢; in the basis decomposition

rational
Tt é + terms

can be determined more efficiently by taking generalized cuts.

AN — o1
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The modern unitarity approach: generalized unitarity (1/2)

The coefficients ¢; in the basis decomposition

rational
Tt é + terms

can be determined more efficiently by taking generalized cuts.

AN — o1

Determine ¢; by applying quadruple cuts [Britto, Cachazo, Feng, 2004]:

Yt

)
c1 T + = ¢ = % Z HAB'WQ

'J: | :E : kin sols j=1
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The modern unitarity approach: generalized unitarity (2/2)

A triple cut will leave 4 — 3 = 1 free complex parameter z.
Parametrizing the loop momentum,

0 = an Ky + 0o kGP + 5(KI n KST) + 2 (KG y|K))

one obtains a formula for the triangle coefficient [Forde, 2007]

CAn =

VAN
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props

‘4i—lnop = ¢ ((> + (32(5)

+ rational terms
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props

A4i~lo()p — Cl((> + (72(() )
+ rational terms

Compute c;(€) and c(€) according to

input:

tput:

[[a= —>| MACHINE —— o
J

i

ci1(e) and ca(€)
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props

A4i~lo()p — (71(() + (72(()

+ rational terms

Compute c;(€) and c(€) according to

input: output:

e —— MACHINE |—>— oil(e) ol e ()
9

The machinery: contour integrals ¢ (---)
]

The philosophy: basis integral /; <— unique I'; producing c;
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The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

ES
-

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting xy = é,

7 7
dz
d*pd*q = — /d4pd4q 6C(? _f,
Jeeeall L5 = {50

i=1

a contour integral in the complex plane.
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The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

ES
-

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting x = £
4 ! 4 4 ! C/ g2 dz
/d pd*q 1‘[1’2 — /d pd q’l;[lé () = ]’[}z(z+x)
a contour integral in the complex plane.
Jacobian poles z =0 and z = —yx: composite leading singularities

encircle z =0 and z = —x with ' = w1 C(0) + w2 C(—X)
— freeze z ("8 cut”)
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Principle for selecting contours

To fix the contours, insist that
vanishing Feynman integrals must have vanishing generalized cuts.
This ensures that
L=L = cut(li)=cut(lz).
Origin of terms with vanishing RP x RP integration:
reduction of Feynman diagram expansion to a basis of integrals

(including use of integration-by-parts identities [Chetyrkin and Tkachov],
1981).
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Contour constraints, part 1/2

There are two classes of constraints on ['s:

1) Levi-Civita integrals. For example,

2 3 2

p q
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Contour constraints, part 1/2

There are two classes of constraints on ['s:

1) Levi-Civita integrals. For example,

2 3 2 3
[(p,1,2,4)] = 0 = [t 1,2,4)] =0
V4 q
1 1 1 4

2) integration-by-parts (IBP) identities must be preserved. For
example,
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Contour constraints, part 2/2

The constraints in the case of four massless external momenta:

S(. % 52 e 0
7 e = =0
ws —we =0
Wy — Wy = 0

000 000
00e A 0®0 ws tws—ws —weg =0
84 85 UJ1+W2—(4)5—UJ(5+W7+UJ3:O

@00
Ss (o 1)

leaving 8 — 4 — 2 = 2 free winding numbers.
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Master contours: the concept

Going back to the two-loop basis expansion

; + ints with fewer props
‘4j—l()op — Cl((> + (/,2(() prop

+ rational terms

and applying a heptacut one finds

o] - a0 L o0 I
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Master contours: the concept

Going back to the two-loop basis expansion

+ ints with fewer props

‘4i—l()op — Cl((> + (/.2(()

+ rational terms

and applying a heptacut one finds

Exploit free parameters — 3 contours with

Pi: (cut(Il), CUt(Ig)) = (1,0)
P : (CUt(Il), cut (12)) (07 1)

We call such P; master contours (or projectors).
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Master contours: results

With four massless external states,

6 6

IX dZ tree I dZ tree
== I A z Ch=—— _— A V4
5 e L@ e ma s LA

j=1 Jj=1

With our choice of basis integrals, the P; are

Sl (el 1

@00

n = winding number
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Double-box master contours at arbitrary multiplicity

Limits 4j — m == chiral branchings: torus "2
51888
S“ &
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Each torus-pinching: new IR-pole + new residue thm
— # of independent poles same in all cases

In all cases:  # of master ['s = # of basis integrals
= all linear relations are preserved
— perfect analogy with one-loop generalized unitarity
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Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

S Sy
t oe 00
@0 T 1e)
—>
oe 00
' 00 00
Sy Ss

27 independent cycles (11 parity-conjugate pairs + 5 self-conjugate)

Multivariate residues depend on the contour of integration; e.g.,

(i) = SmTa by Nas two distinct cycles based at (0, 0):

(o) Q

— o maximal-cut contours that cannot be obtained from fewer cuts
—> subtraction approach necessary

Kasper J. Larsen ETH Ziirich Two-loop Amplitudes from Maximal Unitarity 14 /15



Conclusions and outlook

Maximal unitarity is a program aimed at automated computation
of two-loop QCD amplitudes.

@ One-to-one correspondence between two-loop master integrals
and master contours

@ Integration-by-parts identities “built into” contours

@ 2 — 2 scattering needs O(100) residues to construct all
integral coefficients; mild growth with multiplicity;
produces compact expressions

Ongoing and future work:

@ D-dimensional cuts

@ Integrals with fewer propagators
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