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ETH Zürich

Loopfest/RADCOR 2015
University of California, Los Angeles

June 17, 2015

(with Simon Caron-Huot, Henrik Johansson and David Kosower)
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Motivation and approaches

Two motivations for studying two-loop amplitudes:

Precision LHC phenomenology
Quantitative estimates of QCD background: needed for
precision measurements, uncertainty estimates of NLO
calculations, and reducing renormalization scale dependence.

Geometric understanding of scattering amplitudes
Fascinating connection to algebraic geometry and
multivariate complex analysis.

Our aim is to extend generalized unitarity to two loops and express
the two-loop amplitude in an integral basis directly.

Other approaches:

Integrand reduction [Mastrolia, Mirabella, Ossola, Peraro], 2011

and [Badger, Frellesvig, Zhang], 2012 −→ Giovanni Ossola’s talk

Spinor integration techniques [Feng, Zhen, Huang, Zhou], 2014

Iterated cuts [Abreu, Britto, Duhr, Gardi], 2014
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The modern unitarity approach: basic unitarity (1/2)

Any one-loop amplitude can be decomposed into a basis of
one-loop integrals [Passarino, Veltman 1979]

thanks to integrand reductions, e.g. (using ` · k4 = 1
2

(
(`+ k4)

2 − `2
)
)

To determine ci −→ apply (iterated) cuts to compute Disc in a
specific channel. [Bern, Dixon, Dunbar, Kosower 1995]
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The modern unitarity approach: generalized unitarity (1/2)

The coefficients ci in the basis decomposition

can be determined more efficiently by taking generalized cuts.

Determine c1 by applying quadruple cuts [Britto, Cachazo, Feng, 2004]:
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The modern unitarity approach: generalized unitarity (2/2)

A triple cut will leave 4− 3 = 1 free complex parameter z .
Parametrizing the loop momentum,

`µ = α1K
[µ
1 + α2K

[µ
2 + z

2〈K
[−
1 |γµ|K

[−
2 〉+ α4(z)

2 〈K
[−
2 |γµ|K

[−
1 〉

one obtains a formula for the triangle coefficient [Forde, 2007]
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute c1(ε) and c2(ε) according to

The machinery: contour integrals
∮

Γj
(· · · )

The philosophy: basis integral Ij ←→ unique Γj producing cj
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The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo] and [Kosower, KJL]), setting χ ≡ t
s ,

∫
d4pd4q

7∏
i=1

1

`2
i

−→
∫
d4pd4q

7∏
i=1

δC(`2
i ) =

∮
Γ

dz

z(z + χ)
,

a contour integral in the complex plane.

Jacobian poles z = 0 and z = −χ: composite leading singularities

encircle z = 0 and z = −χ with Γ = ω1Cε(0) + ω2Cε(−χ)
−→ freeze z (“8th cut”)
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Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing generalized cuts.

This ensures that

I1 = I2 =⇒ cut(I1) = cut(I2) .

Origin of terms with vanishing RD × RD integration:
reduction of Feynman diagram expansion to a basis of integrals
(including use of integration-by-parts identities [Chetyrkin and Tkachov],

1981).
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Contour constraints, part 1/2

There are two classes of constraints on Γ’s:

1) Levi-Civita integrals. For example,

2) integration-by-parts (IBP) identities must be preserved. For
example,
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Contour constraints, part 2/2

The constraints in the case of four massless external momenta:

leaving 8− 4− 2 = 2 free winding numbers.
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Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Exploit free parameters −→ ∃ contours with

P1 :
(
cut(I1), cut(I2)

)
= (1, 0)

P2 :
(
cut(I1), cut(I2)

)
= (0, 1) .

We call such Pi master contours (or projectors).
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Master contours: results

With four massless external states,

c1 =
iχ

8

∮
P1

dz

z(z + χ)

6∏
j=1

Atree
j (z) c2 =− i

4s12

∮
P2

dz

z(z + χ)

6∏
j=1

Atree
j (z)

With our choice of basis integrals, the Pi are
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Double-box master contours at arbitrary multiplicity

Limits µi → m =⇒ chiral branchings: torus
µ3→m−→

Each torus-pinching: new IR-pole + new residue thm
=⇒ # of independent poles same in all cases

In all cases: # of master Γ’s = # of basis integrals
=⇒ all linear relations are preserved
=⇒ perfect analogy with one-loop generalized unitarity
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Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

27 independent cycles (11 parity-conjugate pairs + 5 self-conjugate)

Multivariate residues depend on the contour of integration; e.g.,

f (zi ) = z1

z2(a1z1+a2z2)(b1z1+b2z2) has two distinct cycles based at (0, 0):

=⇒ ∃ maximal-cut contours that cannot be obtained from fewer cuts

=⇒ subtraction approach necessary
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Conclusions and outlook

Maximal unitarity is a program aimed at automated computation
of two-loop QCD amplitudes.

One-to-one correspondence between two-loop master integrals
and master contours

Integration-by-parts identities “built into” contours

2→ 2 scattering needs O(100) residues to construct all
integral coefficients; mild growth with multiplicity;
produces compact expressions

Ongoing and future work:

D-dimensional cuts

Integrals with fewer propagators
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