Jet production in the colorful NNLO framework

Adam Kardos

University of Debrecen, MTA-DE Particle Physics Research Group and NCSR "Demokritos", Athens

QCD matters

- High precision experiments demand high precision predictions.
- Relatively large coupling \Rightarrow final state is QCD dominated.
- Key processes have irreducible QCD background and/or QCD corrections.

Road to high precision predictions

How to increase precision?

Go one step further in the perturbative expansion:

$$\sigma = \sigma^{\rm LO} + \sigma^{\rm NLO} \not \leftarrow \sigma^{\rm NNLO} \not \rightarrow \dots$$

The aim: numerical calculation \rightarrow kinematical singularities due to soft/collinear parton emissions are treated with local subtractions.

$$\sigma^{\text{NLO}} = \int_{m+1} \left[\mathrm{d}\sigma_m^{\text{R}} J_{m+1} - \mathrm{d}\sigma_{m+1}^{\text{R,A}} J_m \right] + \int_m \left[\mathrm{d}\sigma_m^{\text{V}} + \int_1 \mathrm{d}\sigma_{m+1}^{\text{R,A}} \right] J_m$$

Singly unresolved

The Colorful NNLO framework was worked out for colorless initial states by Del Duca, Somogyi, Trocsanyi et al., for detailed information see Gabor's talk...

@NNLO:

 $\sigma^{\rm NNLO} =$

$$= \int_{m+2} \left\{ d\sigma_{m+2}^{\mathrm{RR}} J_{m+2} - d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{2}} J_{m} - \left[d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} J_{m+1} - d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}} J_{m} \right] \right\}_{\varepsilon=0} \\ + \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\mathrm{RV}} + \int_{1} d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right) J_{m+1} - \left[d\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} + \left(\int_{1} d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right)^{\mathrm{A}_{1}} \right] J_{m} \right\}_{\varepsilon=0} \\ + \int_{m} \left\{ d\sigma_{m}^{\mathrm{VV}} + \int_{2} \left[d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{2}} - d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}} \right] + \int_{1} \left[d\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} + \left(\int_{1} d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right)^{\mathrm{A}_{1}} \right] \right\}_{\varepsilon=0} J_{m}$$

@NNLO: m-parton line:

$$\int_{m} \left\{ \mathrm{d}\sigma_{m}^{\mathrm{VV}} + \int_{2} \left[\mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{2}} - \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}} \right] + \int_{1} \left[\mathrm{d}\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right)^{\mathrm{A}_{1}} \right] \right\}_{\varepsilon=0} J_{m}$$

- Free of kinematical singularities (jet-function!).
- Contains the integrals of the subtraction terms (see the talk of Gabor on thursday afternoon, too).
- State of the art: Two-loop amplitude (& integration of subtraction terms).

@NNLO: m+1-parton line:

$$\int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}} \right)^{\mathrm{A}_{1}} \right] J_{m} \right\}_{\varepsilon = 0}$$

- Only singly unresolved regions present.
- But RV has different factorization properties (one-loop amplitude is involved).
- State of the art: fast and precise evaluation of the involved one-loop amplitude (even in the singly unresolved region!).

@NNLO:

m+2-parton line:

- Both singly and doubly unresolved regions present.
- Also spurious ones! e.g.: kinematical singularities of A_2 in singly and kinematical singularities of A_1 in doubly unresolved regions.

m+2-parton line:

Bottleneck(s):

- •RR SME still tree-level, but contains two partons more compared to the Born one.
- Several subtraction terms. For $e^+ e^- \rightarrow u \, \bar{u} \, g \, g \, g$ O(100).
- Generation of UB PS points (momentum mappings) and the corresponding UB SMEs.
- Application of physical cuts.
- Filling histograms.

Bottom line:

- Several subprocesses contribute.
- Various subtraction terms have to be calculated.
- Subtraction terms present a twofold problem: heavy bookkeeping due to the immense number of terms, a clever grouping is needed to ease up (a bit) the computational burden.

 \Rightarrow More profitable to automatize subtractions!

A numerical implementation of the Colorful NNLO framework For demonstration we take e+ e- to 3-jet production.

The code is organized directory-wise, for a new process a new folder has to be created:

genprocesses	rambo.f90
genprocesses.f90	random.f90
hbb	ranlux.f
iops.f90	regioncheck.f90
main.f90	regions.f90
modules.f90	reshuffle.f90
multi_rambo.f90	sigma.f90
nnloinput.f	statistics.f90
observables.f90	subtractions.f90
phasespace.f90	
	<pre>genprocesses genprocesses.f90 hbb iops.f90 main.f90 modules.f90 multi_rambo.f90 nnloinput.f observables.f90 phasespace.f90</pre>

The generation of all subprocesses is automatic:

We define the process at th	e Bor	n leve	el:							
$proc_LO(1) = 'e+'$	Numb	er of	sul	bpro	cesse	es at	the	NNLO-RR	level:	20
$proc_{LO}(2) = 'e - '$	-11	11	5	-5	5	-5	0			
proc LO(4) = 'j '	-11	11	5	-5	4	-4	0			
$proc_LO(5) = 'j '$	-11	11	3	-3	5	-5	0			
	-11	11	5	-5	2	-2	0			
	-11	11	1	-1	5	-5	0			
	-11	11	5	-5	0	0	0			
	-11	11	4	-4	4	-4	0			
	-11	11	3	-3	4	-4	0			
	-11	11	2	-2	4	-4	0			
	-11	11	1	-1	4	-4	0			
	-11	11	4	-4	0	0	0			
	-11	11	3	-3	3	-3	0			
	-11	11	3	-3	2	-2	0			
	-11	11	1	-1	3	-3	0			
	-11	11	3	-3	0	0	0			
	-11	11	2	-2	2	-2	0			
	-11	11	1	-1	2	-2	0			
	-11	11	2	-2	0	0	0			
	-11	11	1	-1	1	-1	0			
	11	11	1	1	0	0	0			

Investigating for possible numerical relations between SMES:

We	e fou	ınd	the	fo	llow	ing	rel	lations for the double real:
e+	e	-> 1	b b [.]	- b	b~	g	:	Irreducible
e+	e	> 1	b b [.]	- c	c~	g	:	Irreducible
e+	e	->	s s [.]	- b	b~	g	:	Irreducible
e+	e	-> 1	b b [.]	- u	u~	g	~	1.0000 e+ e> b b~ c c~ g
e+	e	.> (d d	- b	b~	g	~	1.0000 e+ e> s s~ b b~ g
e+	e	-> 1	b b [.]	- g	g	g	:	Irreducible
e+	e	.> (c c	- C	c~	g	~	4.0000 e+ e> b b~ b b~ g
e+	e	->	s s [.]	- c	c~	g	~	1.0000 e+ e> b b~ c c~ g
e+	e	-> 1	u u	- c	c~	g	~	4.0000 e+ e> s s~ b b~ g
e+	e	-> (d d	- c	c~	g	~	1.0000 e+ e> b b~ c c~ g
e+	e	-> (c c	- g	g	g	~	4.0000 e+ e> b b~ g g g
e+	e	-> ;	s s [.]	- s	s~	g	~	1.0000 e+ e> b b~ b b~ g
e+	e	-> ;	s s [.]	- u	u~	g	~	1.0000 e+ e> b b~ c c~ g
e+	e	-> (d d	- s	s~	g	~	1.0000 e+ e> s s~ b b~ g
e+	e	-> ;	s s [.]	- g	g	g	~	1.0000 e+ e> b b~ g g g
e+	e	-> 1	u u	- u	u~	g	~	4.0000 e+ e> b b~ b b~ g
e+	e	-> (d d	- u	u~	g	~	1.0000 e+ e> b b~ c c~ g
e+	e	-> 1	u u	- g	g	g	~	4.0000 e+ e> b b~ g g g
e+	e	-> (d d	- d	d~	g	~	1.0000 e+ e> b b~ b b~ g
e+	e	-> (d d	- g	g	g	~	1.0000 e+ e> b b~ g g g

Automatic detection of all singular regions:

Cirs ~ iterm: 1 , b (3) -> b (3) || g (5) || g (6) UBorn: $e+e- \rightarrow b$ b~ q -> b q qiterm: 2 , b (3) -> b (3) || g (5) || g (7) UBorn: e+e- -> b b - q∖-> b g g iterm: 3 , b (3) -> b (3) || g (6) || g (7) UBorn: $e+e- \rightarrow b$ b~ q \-> b g g iterm: 4, $b^{(4)} \rightarrow b^{(4)} || g (5) || g (6)$ UBorn: $e+e- \rightarrow b$ b~ q \-> b~ q q iterm: 5, $b^{(4)} \rightarrow b^{(4)} \mid g(5) \mid g(7)$ UBorn: $e+e- \rightarrow b$ b~ q _> b~ g g iterm: 6, $b^{(4)} \rightarrow b^{(4)} || g (6) || g (7)$ UBorn: $e+e- \rightarrow b$ b~ q \-> b~ q q iterm: 7, g (5) -> g (5) || g (6) || g (7) UBorn: $e+e- \rightarrow b$ b~ q -> q q q

An NNLO calculation is extremely complex. Due to this complexity it is good practice to make as much checks as possible.

In our code the following ones are built in:

• Check upon individual subtraction terms, e.g.:

$$\lim_{p_i \mid \mid p_r \mid \mid p_s} \frac{\mathcal{C}_{irs}}{\left| \mathcal{M}_{\mathrm{RR}} \right|^2} = 1$$

 Checking bookkeeping and overall consistency by checking complete lines, e.g.:

$$\lim_{p_i \mid \mid p_r, p_s \to 0} \frac{\mathcal{A}_1 + \mathcal{A}_2 - \mathcal{A}_{12}}{\left| \mathcal{M}_{\text{RR}} \right|^2} = 1$$

Testing the subtraction terms in all limits (even in quad precision):

iterm:		5 , g (3) -> g	(7) b (3) b~(6)
UBorn:	e+	e> g b~ b	
		_> g b	b b~
iexp=	1	, Cirs/RR=	1.00803271854102469359760256565251
iexp=	0	, Cirs/RR=	1.00499213240252449541142746655114
iexp=	0	, Cirs/RR=	1.00188210122417253945669893587992
iexp=	-1	, Cirs/RR=	1.00062799209472484026964163812994
iexp=	-2	, Cirs/RR=	1.00020195770962404594799550034461
iexp=	-3	, Cirs/RR=	1.00006420440823578844890246156009
iexp=	-4	, Cirs/RR=	1.00002033728517247971408852818993
iexp=	-5	, Cirs/RR=	1.00000643462401283847535738494549
iexp=	-6	, Cirs/RR=	1.00000203514784404384857605445244
iexp=	-7	, Cirs/RR=	1.00000064360436586785172322902143
iexp=	-8	, Cirs/RR=	1.00000020352898187202854767170299
iexp=	-9	, Cirs/RR=	1.0000006436185636550093621075798
iexp= -	-10	, Cirs/RR=	1.0000002035304016617958048905596
iexp= -	-11	, Cirs/RR=	1.0000000643619983435100933779238
iexp= -	-12	, Cirs/RR=	1.0000000203530543521165651669029
iexp= -	-13	, Cirs/RR=	1.0000000064362017775031206617771
iexp= -	-14	, Cirs/RR=	1.0000000020353075587311446332694
iexp= -	-15	, Cirs/RR=	1.000000006435764917616243177692
iexp= -	-16	, Cirs/RR=	1.0000000002031691222958531635813
iexp= -	-17	, Cirs/RR=	1.0000000000562358122843217515565

Testing the whole m+2 parton line:

CSirs: $g(6) \rightarrow g(6) g(7), g(5) \rightarrow 0$ VALID	
iter no. 1 scale no. 1 1.06266634948744061310369102475825 *-WA	RN-
iter no. 2 scale no. 1 .999333391187566641313172350855109	
iter no. 3 scale no. 1 .999936056716206679301961328662179	
iter no. 4 scale no. 1 .999993217158857353081669676825320	
iter no. 5 scale no. 1 .999999289527334562367472371577073	
iter no. 6 scale no. 1 .999999927955557480464159147841895	
iter no. 7 scale no. 1 .999999992764231332748306260947794	
iter no. 8 scale no. 1 .999999999275434672484589563284781	
iter no. 9 scale no. 1 .999999999927512229318504406669479	
iter no. 10 scale no. 1 .9999999999992750235327996735663320	
iter no. 11 scale no. 1 .999999999999274992304311327282204	
iter no. 12 scale no. 1 .9999999999999927498242894752910729	
iter no. 13 scale no. 1 .9999999999999999994474709275527	
iter no. 14 scale no. 1 .9999999999999999275003843983911918	
iter no. 15 scale no. 1 .99999999999999999927675414662535521	

Doubly unresolved

Singly unresolved:

Cir:	b (3	3) -	-> b (3	3)	g	(7) VALID
iter	no.	1	scale	no.	1	.961486708018718654422606471529938 *-WARN-*
iter	no.	2	scale	no.	1	1.00602959209786220837235112804777
iter	no.	3	scale	no.	1	1.00066580047174234782868128197356
iter	no.	4	scale	no.	1	1.00006749924864464471460885374332
iter	no.	5	scale	no.	1	1.00000675951123416892158622562722
iter	no.	6	scale	no.	1	1.00000067604739572862393476710447
iter	no.	7	scale	no.	1	1.0000006760570270606858225599869
iter	no.	8	scale	no.	1	1.0000000676057990234915689940388
iter	no.	9	scale	no.	1	1.0000000067605808655274887283141
iter	no.	10	scale	no.	1	1.0000000006760580961845340615602
iter	no.	11	scale	no.	1	1.0000000000676058097147183507127
iter	no.	12	scale	no.	1	1.0000000000067605809725802473631
iter	no.	13	scale	no.	1	1.0000000000006760580921822736597
iter	no.	14	scale	no.	1	1.0000000000000676057794954317165
iter	no.	15	scale	no.	1	1.000000000000067615396661119602

Behavior of the m+2 parton line in a triple and double collinear limit.

Behavior of the m+2 parton line in a collinear and a soft limit.

Towards phenomenology

Considering only $e^+ + e^- \rightarrow \gamma^* \rightarrow 3 \, \text{jets}$

NNLO* : no VV and I operators, hence non-physical, though still informative.

$$\sqrt{s} = 90 \,\text{GeV}$$

 $\mu_R = m_Z$
 $m_Z = 91.1876 \,\text{GeV}, \, m_W = 80.385 \,\text{GeV}$
 $\alpha_s(m_Z) = 0.118, \, 1/\alpha_{\text{EM}} = 132.23$

Calculating key event shape variables. For a precise definition, see: Gehrmann-De Ridder et al., arXiv:0711.4711 and also Kunszt et al. QCD at LEP, ETH-PT-89-39.

The whole calculation took 4+4 hours on 300 cores.

e⁺ e⁻ →3 jets

Total and wide jet broadening:

Preliminary

The jet transition variable and large hemisphere invariant mass:

Preliminary

The jet transition variable and large hemisphere invariant mass:

Preliminary

... and even a completely new one, never appeared in the literature before:

Energy-energy correlation:

Preliminar)

Conclusions

Conclusions

- A general numerical NNLO framework is introduced to manage subtractions for the case of $e^+ e^-$ annihilation.
- It contains all subtraction terms, the user only has to provide his/her matrix elements (the I operators will also be included).
- The framework was applied to 3-jet production to obtain some key distributions.
- The inclusion of the I operators and the VV part for 3-jet production is in progress.

Thank you for your attention!