The rare decay $H \rightarrow Z \gamma$ in perturbative QCD

Thomas Gehrmann, Sam Guns & Dominik Kara | June 15, 2015
Contents

1 Introduction

2 The decay in the Standard Model

3 Calculation of the two-loop amplitude
 - Integral basis and differential equations
 - Renormalization

4 Numerical results

5 Conclusions
Motivation: Experiment

$H \rightarrow \gamma\gamma$
- loop-mediated
 \Rightarrow sensitive to new physics
- clean signature
 \Rightarrow 20% relative precision

$H \rightarrow Z\gamma$
- more background
- smaller branching ratio
- spin-dependent particle correlations through $Z \rightarrow ll$
Motivation: Experiment

$H \rightarrow \gamma\gamma$
- loop-mediated
 ⇒ sensitive to new physics
- clean signature
 ⇒ 20% relative precision

$H \rightarrow Z\gamma$
- more background
- smaller branching ratio
- spin-dependent particle correlations through $Z \rightarrow ll$

⇒ broader spectrum of observables: more info on H couplings
Motivation: Theory

\[H \rightarrow Z\gamma \]

- Analytical LO result available
 - [Cahn, Chanowitz, Fleishon (1979)]
 - [Bergstrom, Huth (1985)]

- Numerical NLO result in QCD available
 - [Spira, Djouadi, Zerwas (1992)]

\[\Rightarrow \text{Analytical NLO result: independent check} \]

\[H + j \text{ production} \]

- NLO result in QCD available for \(m_t \rightarrow \infty \)
 - [Schmidt (1997)]
 - [Glosser, Schmidt (2002)]
 - [de Florian, Grazzini, Kunszt (1999)]
 - [Ravindran, Smith, van Neerven (2002)]

- NNLO calculation in QCD well-advanced for \(m_t \rightarrow \infty \)
 - [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)]
 - [Chen, Gehrmann, Glover, Jaquier (2012)]
 - [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)]
 - [Boughezal, Focke, Giele, Liu, Petriello (2015)]
Motivation: Theory

\[H \rightarrow Z\gamma \]

- Analytical LO result available
 - [Cahn, Chanowitz, Fleishon (1979)]
 - [Bergstrom, Huth (1985)]
- Numerical NLO result in QCD available
 - [Spira, Djouadi, Zerwas (1992)]

⇒ Analytical NLO result: independent check

\[H + j \text{ production} \]

- NLO result in QCD available for \(m_t \rightarrow \infty \)
 - [Schmidt (1997)]
 - [Glosser, Schmidt (2002)]
 - [de Florian, Grazzini, Kunszt (1999)]
 - [Ravindran, Smith, van Neerven (2002)]
- NNLO calculation in QCD well-advanced for \(m_t \rightarrow \infty \)
 - [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)]
 - [Chen, Gehrmann, Glover, Jaquier (2012)]
 - [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)]
 - [Boughezal, Focke, Giele, Liu, Petriello (2015)]
Motivation: Theory

H + j production

- EFT is likely to break down at high p_T
- High-priority aim: NLO QCD corrections with full m_t dependence

\Rightarrow Two-loop integrals for $H \rightarrow Z\gamma$ pave the way

H + j production

- EFT is likely to break down at high p_T
- High-priority aim: NLO QCD corrections with full m_t dependence

\Rightarrow Two-loop integrals for $H \rightarrow Z\gamma$ pave the way
Outline of the calculation

QGRAF ■ Generate Feynman diagrams for process $H(q) \rightarrow Z(p_1)\gamma(p_2)$

Introduction

The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD
Outline of the calculation

QGRAF
- Generate Feynman diagrams for process $H(q) \rightarrow Z(p_1)\gamma(p_2)$

FORM
- Project relevant Feynman diagrams onto tensor structure

$$\mathcal{M} = A \epsilon_{1,\mu}(p_1, \lambda_1) \epsilon_{2,\nu}(p_2, \lambda_2) \frac{P_{\mu\nu}}{P^2}$$

with projector

$$P_{\mu\nu} = p_2^{\mu} p_1^{\nu} - (p_1 \cdot p_2) g^{\mu\nu}$$

Introduction	The decay in the Standard Model	Calculation of the two-loop amplitude	Numerical results	Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD

June 15, 2015
Outline of the calculation

QGRAF
- Generate Feynman diagrams for process $H(q) \rightarrow Z(p_1)\gamma(p_2)$

FORM
- Project relevant Feynman diagrams onto tensor structure

\[M = A \epsilon_{1,\mu}(p_1, \lambda_1) \epsilon_{2,\nu}(p_2, \lambda_2) \frac{P^{\mu\nu}}{P^2} \]

with projector

\[P^{\mu\nu} = p_2^{\mu} p_1^{\nu} - (p_1 \cdot p_2) g^{\mu\nu} \]

REDUCE
- Reduce Feynman Integrals to set of Master Integrals (MIs)
 - Integration-by-parts identities (IBPs)
 - Laporta algorithm

Introduction

The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD

June 15, 2015
Outline of the calculation

QGRAF
- Generate Feynman diagrams for process $H(q) \rightarrow Z(p_1)\gamma(p_2)$

FORM
- Project relevant Feynman diagrams onto tensor structure

$$\mathcal{M} = \left[A \right] \epsilon_{1, \mu}(p_1, \lambda_1) \epsilon_{2, \nu}(p_2, \lambda_2) \frac{P^{\mu \nu}}{P^2}$$

with projector

$$P^{\mu \nu} = p_2^{\mu} p_1^{\nu} - (p_1 \cdot p_2) g^{\mu \nu}$$

REDUCE
- Reduce Feynman Integrals to set of Master Integrals (MIs)
 - Integration-by-parts identities (IBPs)
 - Laporta algorithm
The amplitude can be further decomposed

\[A = c_W A_W + \sum_q c_q A_q \]

with

\[c_W = \frac{\cos \theta_w}{\sin \theta_w}, \quad c_q = N_c \frac{2 Q_q \left(l_q^3 - 2 Q_q \sin^2 \theta_w \right)}{\sin \theta_w \cos \theta_w} \]

- Born-level contribution:
 \[A^{(1)} = c_W A_W^{(1)} + c_t A_t^{(1)} + c_b A_b^{(1)} \]

- NLO QCD corrections:
 \[A_q(m_H, m_Z, m_q, \alpha_s, \mu) = A_q^{(1)}(m_H, m_Z, m_q) + \frac{\alpha_s(\mu)}{\pi} A_q^{(2)}(m_H, m_Z, m_q, \mu) \]
The amplitude can be further decomposed

\[A = c_W A_W + \sum_q c_q A_q \]

with

\[c_W = \frac{\cos \theta_w}{\sin \theta_w}, \quad c_q = N_c \frac{2 Q_q (l_q^3 - 2 Q_q \sin^2 \theta_w)}{\sin \theta_w \cos \theta_w} \]

- Born-level contribution:
 \[A^{(1)} = c_W A_W^{(1)} + c_t A_t^{(1)} + c_b A_b^{(1)} \]

- NLO QCD corrections:
 \[A_q(m_H, m_Z, m_q, \alpha_s, \mu) = A_q^{(1)}(m_H, m_Z, m_q) + \frac{\alpha_s(\mu)}{\pi} A_q^{(2)}(m_H, m_Z, m_q, \mu) \]
The decay width

is obtained from the amplitude as

$$\Gamma = \frac{\pi G_F \alpha^2}{4\sqrt{2} m^3_H (m^2_H - m^2_Z)} |A|^2$$

$$\Rightarrow$$ We are left with computation of MIs

Parametrization

Use Landau-type variables to absorb natural roots

$$m^2_H = -m^2_q \frac{(1 - h)^2}{h}, \quad m^2_Z = -m^2_q \frac{(1 - z)^2}{z}$$

$$\Rightarrow \sqrt{1 - 4 \frac{m^2_q}{m^2_H}} \rightarrow \frac{|h + 1|}{|h - 1|}, \quad \sqrt{1 - 4 \frac{m^2_q}{m^2_Z}} \rightarrow \frac{|z + 1|}{|z - 1|}$$
The decay width

is obtained from the amplitude as

\[\Gamma = \frac{\pi G_F \alpha^2}{4\sqrt{2} m_H^3 (m_H^2 - m_Z^2)} |A|^2 \]

⇒ We are left with computation of MIs

Parametrization

Use Landau-type variables to absorb natural roots

\[m_H^2 = -m_q^2 \frac{(1 - h)^2}{h}, \quad m_Z^2 = -m_q^2 \frac{(1 - z)^2}{z} \]

⇒ \[\sqrt{1 - 4 \frac{m_q^2}{m_H^2}} \to \frac{|h + 1|}{|h - 1|}, \quad \sqrt{1 - 4 \frac{m_q^2}{m_Z^2}} \to \frac{|z + 1|}{|z - 1|} \]
Differential equations

1. Choose MI
2. Compute derivative of integrand with respect to internal mass and external invariants
3. Use IBPs to relate resulting integrals to original MI

Full system takes form of total differential

\[d\vec{I}(h, z) = \sum_{k=1}^{N} R_k(\epsilon) \, d \log(d_k) \, \vec{I}(h, z) \]

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>(d_5)</th>
<th>(d_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>(h + 1)</td>
<td>(h^2 - hz - h + 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_2)</th>
<th>(d_6)</th>
<th>(d_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z + 1)</td>
<td>(h - 1)</td>
<td>(h^2 z - hz - h + z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_3)</th>
<th>(d_7)</th>
<th>(d_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z - 1)</td>
<td>(h - z)</td>
<td>(z^2 - hz - z + 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_4)</th>
<th>(d_8)</th>
<th>(d_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>(hz - 1)</td>
<td>(z^2 h - hz - z + h)</td>
</tr>
</tbody>
</table>

..

Introduction

The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay \(H \rightarrow Z\gamma\) in perturbative QCD

June 15, 2015
Differential equations

1. Choose MI
2. Compute derivative of integrand with respect to internal mass and external invariants
3. Use IBPs to relate resulting integrals to original MI

Full system takes form of total differential

\[d\vec{l}(h, z) = \sum_{k=1}^{N} R_k(\epsilon) \, d\log(d_k) \, \vec{l}(h, z) \]

\[
\begin{align*}
d_1 &= z & d_5 &= h + 1 & d_9 &= h^2 - hz - h + 1 \\
d_2 &= z + 1 & d_6 &= h - 1 & d_{10} &= h^2z - hz - h + z \\
d_3 &= z - 1 & d_7 &= h - z & d_{11} &= z^2 - hz - z + 1 \\
d_4 &= h & d_8 &= hz - 1 & d_{12} &= z^2h - hz - z + h \ldots & d_N
\end{align*}
\]
Differential equations

1. Choose MI
2. Compute derivative of integrand with respect to internal mass and external invariants
3. Use IBPs to relate resulting integrals to original MI

Full system takes form of total differential

\[d\vec{I}(h, z) = \sum_{k=1}^{N} R_k \left(\epsilon \right) d\log(d_k) \vec{I}(h, z) \]

\[
\begin{align*}
d_1 &= z \\
d_5 &= h + 1 \\
d_9 &= h^2 - hz - h + 1 \\
d_2 &= z + 1 \\
d_6 &= h - 1 \\
d_{10} &= h^2 z - hz - h + z \\
d_3 &= z - 1 \\
d_7 &= h - z \\
d_{11} &= z^2 - hz - z + 1 \\
d_4 &= h \\
d_8 &= hz - 1 \\
d_{12} &= z^2 h - hz - z + h \\ &\ldots \\
d_N
\end{align*}
\]
Differential equations

Canonical form

\[\frac{d\tilde{M}(h, z)}{\epsilon} = \sum_{k=1}^{12} R_k \, d \log(d_k) \, \tilde{M}(h, z) \]

- reduced number of polynomials \(d_k \)
- can be integrated in terms of GHPLs:
 \[G(w_1, \ldots, w_n; x) \equiv \int_0^x dt \, \frac{1}{t - w_1} \, G(w_2, \ldots, w_n; t) \]
 \[G(\tilde{0}_n; x) \equiv \frac{\log^n x}{n!} \]
- leads to linear combinations of GHPLs of homogeneous weight

\[\Rightarrow \text{Change basis from Laporta integrals } \tilde{I} \text{ to canonical integrals } \tilde{M} \]

Introduction

The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay \(H \rightarrow Z \gamma \) in perturbative QCD

June 15, 2015
Differential equations

Canonical form

- Reduced number of polynomials d_k
- Can be integrated in terms of GHPLs:

 $$G(w_1, \ldots, w_n; x) \equiv \int_0^x dt \frac{1}{t - w_1} G(w_2, \ldots, w_n; t)$$

 $$G(\vec{0}_n; x) \equiv \frac{\log^n x}{n!}$$

- Leads to linear combinations of GHPLs of homogeneous weight

⇒ Change basis from Laporta integrals \vec{I} to canonical integrals \vec{M}

Introduction

- The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD

June 15, 2015
Integral basis

1. Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)]

Topology under consideration must

✓ have at most linear dependence on ϵ
✓ be triangular in $D = 4$ dimensions

I_1 I_2 I_3 I_4

I_5 I_6 I_7 I_8

I_9 I_{10} I_{11} I_{12}
Integral basis

1. Start with Laporta basis:

[Gehrmann, von Manteuffel, Tancredi, Weihs (2014)]

Introduction

The decay in the Standard Model

Calculation of the two-loop amplitude

Numerical results

Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD
Start with Laporta basis:

[Gehrmann, von Manteuffel, Tancredi, Weihs (2014)]
Integral basis

Perform transformation to canonical basis by integrating out homogeneous parts in $D = 4$

\[
\frac{dh_{15}}{dz} = \frac{hz}{d_1 d_2 d_3 d_4 d_9 d_{10} (2z (h^2 + 1) - h(z + 1)^2)}.
\]

\[
\left\{ \begin{array}{l}
\frac{3}{2} h z (h - 1)^2 \left((h^2 + 1) (z^2 + 1) - h (z + 1)^2 \right) h_7 \\
- h \left[h^4 z (z^2 + 1) - h (h^2 + 1) (z^4 + z^3 + 4z^2 + z + 1) \\
+ h^2 (z^4 + 4z^3 + 2z^2 + 4z + 1) + z (z^2 + 1) \right] (2l_{13} + l_{14}) \\
- \frac{1}{z} \left[2h^6 z^2 (z^2 + 1) - 2hz (h^4 + 1) (z + 1)^2 (2z^2 - z + 2) \\
+ h^2 (h^2 + 1) (z^6 + 8z^5 + 17z^4 + 8z^3 + 17z^2 + 8z + 1) + 2z^2 (z^2 + 1) \right] l_{15} \end{array} \right\}
\]

\[
\frac{dh_{15}}{dh} = \frac{hz}{d_1 d_4 d_9 d_{10} (2z (h^2 + 1) - h(z + 1)^2)}.
\]

\[
\left\{ \begin{array}{l}
- \frac{3}{2} z^2 (h - 1)^3 (h + 1) h_7 + z (h^2 - 1) (z (h^2 + 1) - h (z^2 + 1)) (2l_{13} + l_{14}) \\
- \frac{h^2 - 1}{h} \left[2z^2 (h^4 + 1) - 2hz(z + 1)^2 (h^2 + 1) + h^2 (z^4 + 2z^3 + 6z^2 + 2z + 1) \right] l_{15} \end{array} \right\}
\]
Integral basis

2 Perform transformation to canonical basis by integrating out homogeneous parts in $D = 4$

\[M_{15} = \frac{z(h^2 + 1) - h(z + 1)}{2z(h^2 + 1) - h(z + 1)^2} \left[\frac{3}{2} \left(\frac{h - 1)^2}{h} I_7 \right. \
\left. - \frac{(h - z)(hz - 1)}{hz} (2I_{13} + I_{14}) \right. \
\left. - \frac{(z^2 - 1)(h^2 + 1 - h(z + 1))}{hz} I_{15} \right] \]
Perform transformation to canonical basis by integrating out homogeneous parts in $D = 4$

$$dM_{15} = \epsilon \left[- \left(M_2 + \frac{3}{2} M_7 + 5 M_{13} + M_{14} - 4 M_{15} \right) d \log(d_1)
ight. $$

$$+ \left(\frac{3}{2} M_7 + 2 M_{13} + M_{14} - 2 M_{15} \right) d \log(d_2) $$

$$- \left(M_2 + \frac{3}{2} M_7 + M_{13} - M_{14} - M_{15} \right) d \log(d_3) $$

$$- \left(M_2 + 2 M_6 + \frac{5}{2} M_7 + M_{13} - M_{14} - M_{15} \right) d \log(d_4) + 3 M_7 d \log(d_6) $$

$$+ (M_2 + M_6 + 2 M_7 + 3 M_{13} - 2 M_{15}) d \log(d_7) $$

$$+ (M_2 - M_6 + M_7 + 3 M_{13} - 2 M_{15}) d \log(d_8) $$

$$- \left(\frac{3}{2} M_7 + 2 M_{13} + M_{14} - M_{15} \right) d \log(d_9) \right] $$
Integrate differential equation in h or z up to constant $C(z)$ or $C(h)$

Use boundary conditions:

\[
\begin{align*}
 h = 1 & \iff m_H^2 = 0 \\
 z = 1 & \iff m_Z^2 = 0 \\
 h = z & \iff m_H^2 = m_Z^2 \\
 h = \frac{1}{z} & \iff m_H^2 = m_Z^2
\end{align*}
\]

Perform transformations with the help of symbol and coproduct:

\[
\begin{align*}
 G(w_1(x), \ldots, w_n(x); x) & \rightarrow G(a_1, \ldots, a_n; x) \\
 G(w_1(x), \ldots, w_n(x); y) & \rightarrow G(c_1(y), \ldots, c_n(y); x)
\end{align*}
\]
Integration

- Integrate differential equation in h or z up to constant $C(z)$ or $C(h)$
- Use boundary conditions:

\[
\begin{align*}
 h = 1 & \iff m_H^2 = 0 \\
 z = 1 & \iff m_Z^2 = 0 \\
 h = z & \iff m_H^2 = m_Z^2 \\
 h = \frac{1}{z} & \iff m_H^2 = m_Z^2
\end{align*}
\]

- Perform transformations with the help of symbol and coproduct:

\[
\begin{align*}
 G(w_1(x), \ldots, w_n(x); x) & \rightarrow G(a_1, \ldots, a_n; x) \\
 G(w_1(x), \ldots, w_n(x); y) & \rightarrow G(c_1(y), \ldots, c_n(y); x)
\end{align*}
\]
Integration

- Integrate differential equation in \(h \) or \(z \) up to constant \(C(z) \) or \(C(h) \)
- Use boundary conditions:

 \[
 \begin{align*}
 h = 1 & \iff m_H^2 = 0 \\
 z = 1 & \iff m_Z^2 = 0 \\
 h = z & \iff m_H^2 = m_Z^2 \\
 h = \frac{1}{z} & \iff m_H^2 = m_Z^2
 \end{align*}
 \]
- Perform transformations with the help of symbol and coproduct:

 \[
 \begin{align*}
 G(w_1(x), \ldots, w_n(x); x) & \rightarrow G(a_1, \ldots, a_n; x) \\
 G(w_1(x), \ldots, w_n(x); y) & \rightarrow G(c_1(y), \ldots, c_n(y); x)
 \end{align*}
 \]
Integration

Results in terms of GHPLs up to weight four

\[G(a_1, \ldots, a_n; h) \quad \text{with} \quad a_i \in \{0, \pm 1, z, \frac{1}{z}, J_z, \frac{1}{J_z}, K_z^\pm, L_z^\pm\} \]

\[G(b_1, \ldots, b_n; z) \quad \text{with} \quad b_i \in \{0, \pm 1, c, \bar{c}\} \]

\[c = \frac{1}{2} \left(1 + i\sqrt{3}\right) \]

\[K_z^\pm = \frac{1}{2} \left(1 + z \pm \sqrt{-3 + 2z + z^2}\right) \]

\[J_z = \frac{z}{1 - z + z^2} \]

\[L_z^\pm = \frac{1}{2z} \left(1 + z \pm \sqrt{1 + 2z - 3z^2}\right) \]

✓ verified through differential equation in other variable
✓ checked numerically against SecDec

[Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)]

Introduction
The decay in the Standard Model
Calculation of the two-loop amplitude
Numerical results
Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay \(H \rightarrow Z\gamma \) in perturbative QCD

June 15, 2015 12/20
Integration

Results in terms of GHPLs up to weight four

\[G(a_1, \ldots, a_n; h) \quad \text{with} \quad a_i \in \{0, \pm 1, \frac{1}{z}, J_z, \frac{1}{J_z}, K_z^\pm, L_z^\pm\} \]

\[G(b_1, \ldots, b_n; z) \quad \text{with} \quad b_i \in \{0, \pm 1, c, \bar{c}\} \]

\[c = \frac{1}{2} \left(1 + i \sqrt{3}\right) \quad K_z^\pm = \frac{1}{2} \left(1 + z \pm \sqrt{-3 + 2z + z^2}\right) \]

\[J_z = \frac{z}{1 - z + z^2} \quad L_z^\pm = \frac{1}{2z} \left(1 + z \pm \sqrt{1 + 2z - 3z^2}\right) \]

✓ verified through differential equation in other variable
✓ checked numerically against \texttt{SecDec}

[Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)]
Integration

Example

\[M_{15} = \epsilon^2 \left[-\frac{\pi^2}{6} - G\left(\frac{1}{z}, 0; h\right) + G(z, 0; h) - G(0; z) G\left(\frac{1}{z}; h\right) - G(0; z) G(z; h) + G(0; z) G(0; h) \\
- 2G(0, 0; h) + G(1, 0; z) \right] \\
+ \epsilon^3 \left[5\zeta_3 + 2G\left(\frac{1}{z}, \frac{1}{z}, 0; h\right) - 2G\left(\frac{1}{z}, z, 0; h\right) + \frac{2\pi^2}{3} G\left(\frac{1}{z}; h\right) + 6G\left(\frac{1}{z}, -1, 0; h\right) \\
- 3G\left(\frac{1}{z}, 0, 0; h\right) + 2G\left(\frac{1}{z}, 1, 0; h\right) + 2G(z, \frac{1}{z}, 0; h) - 2G(z, z, 0; h) + \frac{\pi^2}{3} G(z; h) \\
- 6G(z, -1, 0; h) + 5G(z, 0, 0; h) - 2G(z, 1, 0; h) - G(K_z^-, \frac{1}{z}, 0; h) + G(K_z^-, z, 0; h) \\
- \frac{\pi^2}{6} G(K_z^-; h) + 2G(K_z^-, 0, 0; h) - G(K_z^+, \frac{1}{z}, 0; h) + G(K_z^+, z, 0; h) - \frac{\pi^2}{6} G(K_z^+; h) \\
+ 2G(K_z^+, 0, 0; h) + \frac{\pi^2}{3} G(-1; z) + 2G(-1, 0; z) G\left(\frac{1}{z}; h\right) + 2G(-1, 0; z) G(z; h) \\
- 2G(-1, 0; z) G(0; h) + G(-1, 0, 0; z) - 2G(-1, 1, 0; z) - G(0, \frac{1}{z}, 0; h) - \frac{\pi^2}{2} G(0; z) \right] \]
\[
\begin{align*}
&+ 2G(0; z)G\left(\frac{1}{z}, \frac{1}{z}; h\right) + 2G(0; z)G\left(\frac{1}{z}, z; h\right) - 2G(0; z)G\left(\frac{1}{z}, 0; h\right) + 2G(0; z)G(z, \frac{1}{z}; h) \\
&+ 2G(0; z)G(z, z; h) - 2G(0; z)G(z, 0; h) - G(0; z)G(K_0^-, \frac{1}{z}; h) - G(0; z)G(K_0^-, z; h) \\
&+ G(0; z)G(K_0^-, 0; h) - G(0; z)G(K_0^+, \frac{1}{z}; h) - G(0; z)G(K_0^+, z; h) + G(0; z)G(K_0^+, 0; h) \\
&- G(0; z)G(0, \frac{1}{z}; h) - G(0; z)G(0, z; h) + G(0, z, 0; h) + G(0; h)G(1, 0; z) + 12G(0, -1, 0; h) \\
&- G(0, 0; z)G\left(\frac{1}{z}; h\right) - G(0, 0; z)G(z; h) - G(0, 0; z)G(K_0^-; h) - G(0, 0; z)G(K_0^+; h) \\
&+ 2G(0, 0; z)G(0; h) + G(0, 0; h)G(0; z) - G(0, 0; 0; z) - 8G(0, 0, 0; h) + 2G(0, 1, 0; z) \\
&+ 4G(0, 1, 0; h) - \frac{\pi^2}{3}G(1; z) - 2G(1, -1, 0; z) - 2G(1, 0; z)G\left(\frac{1}{z}; h\right) - 2G(1, 0; z)G(z; h) \\
&+ G(1, 0; z)G(K_0^-; h) + G(1, 0; z)G(K_0^+; h) + 2G(1, 0, 0; z) - 6G(1, 0, 0; h) + G(1, 1, 0; z)] \\
&+ \mathcal{O}\left(\epsilon^4\right)
\end{align*}
\]
(a) quark mass M_q and Yukawa coupling Y_q in OS scheme

\[A_q^{(2,a)}(m_H, m_Z, M_q) = A_q^{(2)}_{\text{bare}} + Z_{\text{OS}} A_q^{(1)} + \frac{\delta m_{\text{OS}}}{m_q} C_q^{(1)} \]

Renormalization constants

\[Z_{\text{OS}} = \frac{\alpha_s(\mu)}{\pi} 16 i \pi^2 S_\epsilon \frac{C_F}{4} \frac{3 - 2\epsilon}{\epsilon(1 - 2\epsilon)} \]

\[\delta m_{\text{OS}} = m_q Z_{\text{OS}} \]
(a) quark mass M_q and Yukawa coupling Y_q in OS scheme

$$A_{q}^{(2,a)}(m_H, m_Z, M_q) = A_{q,bare}^{(2)} + Z_{OS} A_{q}^{(1)} + \frac{\delta m_{OS}}{m_q} C_q^{(1)}$$

Renormalization constants

$$Z_{OS} = \frac{\alpha_s(\mu)}{\pi} 16 i \pi^2 S_\epsilon \frac{C_F}{4} \frac{3 - 2\epsilon}{\epsilon (1 - 2\epsilon)}$$

$$\delta m_{OS} = m_q Z_{OS}$$
Renormalization

(a) quark mass M_q and Yukawa coupling Y_q in OS scheme

\[A^{(2,a)}_q(m_H, m_Z, M_q) = A^{(2)}_{q,bare} + Z_{OS} A^{(1)}_q + \frac{\delta m_{OS}}{m_q} C^{(1)}_q \]

- Renormalization constants

\[Z_{OS} = \frac{\alpha_s(\mu)}{\pi} 16 i \pi^2 S_\epsilon \frac{C_F}{4} \frac{3 - 2\epsilon}{\epsilon (1 - 2\epsilon)} \]

\[\delta m_{OS} = m_q Z_{OS} \]

- Counterterms

\[C^{(1)}_q = \]

Introduction	The decay in the Standard Model	Calculation of the two-loop amplitude	Numerical results	Conclusions

Thomas Gehrmann, Sam Guns & Dominik Kara – The rare decay $H \rightarrow Z\gamma$ in perturbative QCD

June 15, 2015 | 14/20
Renormalization

(b) quark mass M_q in OS, Yukawa coupling \bar{y}_q in $\overline{\text{MS}}$ scheme

$$A_{q}^{(2,b)}(m_H, m_Z, \bar{m}_q, \mu) = A_{q}^{(2,a)}(m_H, m_Z, \bar{m}_q(\mu)) + \Delta \cdot A_{q}^{(1)}(m_H, m_Z, \bar{m}_q(\mu))$$

The finite shift in the amplitude is induced by expressing the OS quantities in terms of $\overline{\text{MS}}$ quantities:

$$M_q = \bar{m}_q(\mu) \left(1 + \Delta\right)$$
$$Y_q = \bar{y}_q(\mu) \left(1 + \Delta\right)$$

$$\Delta = \frac{\alpha_s(\mu)}{\pi} C_F \left(1 + \frac{3}{4} \log \frac{\mu^2}{\bar{m}_q^2(\mu)}\right)$$
Renormalization

\(A^{(2, c)}_{q}(m_H, m_Z, \overline{m}_q, \mu) = A^{(2, b)}_{q}(m_H, m_Z, \overline{m}_q(\mu)) \)

\[+ \Delta \cdot \frac{\partial A^{(1)}_{q}(m_H, m_Z, M_q)}{\partial M_q} \bigg|_{M_q = \overline{m}_q(\mu)} \]

\(\overline{\Delta} \) is defined through the following replacements in \(A^{(1)}_{q} \):

\[h = \overline{h} - 2 \Delta \overline{h} \frac{\overline{h} - 1}{\overline{h} + 1} \]

\[z = \overline{z} - 2 \Delta \overline{z} \frac{\overline{z} - 1}{\overline{z} + 1} \]
Numerical results

Analytic continuation from Euclidean to Minkowski region

- Region I: \(m_Z^2 < m_H^2 < 4m_q^2 \) \(\Rightarrow \) top quark amplitude
- Region II: \(m_Z^2 < 4m_q^2 < m_H^2 \) \(\Rightarrow \) not needed
- Region III: \(4m_q^2 < m_Z^2 < m_H^2 \) \(\Rightarrow \) bottom quark amplitude

NLO decay width \(\Gamma^{(2)} \) in renormalization schemes (a), (b) and (c)

\[
\Gamma^{(2,a)} = \left[7.04500 + 0.42617 \frac{\alpha_s(\mu)}{\pi} \right] \text{keV} \quad \mu = m_H = 7.06033 \text{keV} \\
\Gamma^{(2,b)} = \left[7.06369 + \frac{\alpha_s(\mu)}{\pi} \left(-0.53038 - 0.76333 \log \frac{\mu^2}{m_t^2(\mu)} + 0.01224 \log \frac{\mu^2}{m_b^2(\mu)} \right) \right] \text{keV} \\
\mu = m_H = 7.06363 \text{keV} < 10^{-5} \\
\Gamma^{(2,c)} = \left[7.02908 + \frac{\alpha_s(\mu)}{\pi} \left(0.64310 + 0.10551 \log \frac{\mu^2}{m_t^2(\mu)} + 0.01446 \log \frac{\mu^2}{m_b^2(\mu)} \right) \right] \text{keV} \\
\mu = m_H = 7.05402 \text{keV} \quad 3\% \text{oo}
\]
Numerical results

Analytic continuation from Euclidean to Minkowski region

- Region I: \(m_Z^2 < m_H^2 < 4m_q^2 \) \(\Rightarrow \) top quark amplitude
- Region II: \(m_Z^2 < 4m_q^2 < m_H^2 \) \(\Rightarrow \) not needed
- Region III: \(4m_q^2 < m_Z^2 < m_H^2 \) \(\Rightarrow \) bottom quark amplitude

NLO decay width \(\Gamma^{(2)} \) in renormalization schemes (a), (b) and (c)

\[
\Gamma^{(2,a)} = \left[7.04500 + 0.42617 \frac{\alpha_s(\mu)}{\pi} \right] \text{ keV} \quad \mu = m_H = 7.06033 \text{ keV} \quad 2\% \\
\Gamma^{(2,b)} = \left[7.06369 + \frac{\alpha_s(\mu)}{\pi} \left(-0.53038 - 0.76333 \log \frac{\mu^2}{m_t^2(\mu)} + 0.01224 \log \frac{\mu^2}{m_b^2(\mu)} \right) \right] \text{ keV} \quad \mu = m_H = 7.06363 \text{ keV} \quad < 10^{-5} \\
\Gamma^{(2,c)} = \left[7.02908 + \frac{\alpha_s(\mu)}{\pi} \left(0.64310 + 0.10551 \log \frac{\mu^2}{m_t^2(\mu)} + 0.01446 \log \frac{\mu^2}{m_b^2(\mu)} \right) \right] \text{ keV} \quad \mu = m_H = 7.05402 \text{ keV} \quad 3\%
\]
<table>
<thead>
<tr>
<th>Partial width</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{WW}^{(1)}$</td>
<td>7.83473859</td>
<td>7.83473859</td>
<td>7.83473859</td>
</tr>
<tr>
<td>$\Gamma_{WW}^{(1)}$</td>
<td>-0.83278001</td>
<td>-0.80390896</td>
<td>-0.83655274</td>
</tr>
<tr>
<td>$\Gamma_{Wb}^{(1)}$</td>
<td>0.02206641</td>
<td>0.01288843</td>
<td>0.00904595</td>
</tr>
<tr>
<td>$\Gamma_{tt}^{(1)}$</td>
<td>0.02212973</td>
<td>0.02062193</td>
<td>0.02233069</td>
</tr>
<tr>
<td>$\Gamma_{tb}^{(1)}$</td>
<td>-0.00117276</td>
<td>-0.00066123</td>
<td>-0.00048294</td>
</tr>
<tr>
<td>$\Gamma_{bb}^{(1)}$</td>
<td>0.00002094</td>
<td>0.00000714</td>
<td>0.00000324</td>
</tr>
<tr>
<td>$\Gamma^{(1)}$</td>
<td>7.04500291</td>
<td>7.06368591</td>
<td>7.02908279</td>
</tr>
<tr>
<td>$\Gamma_{Wt}^{(2)}$</td>
<td>0.02203714</td>
<td>-0.00078280</td>
<td>0.02457012</td>
</tr>
<tr>
<td>$\Gamma_{Wb}^{(2)}$</td>
<td>-0.00586227</td>
<td>0.00072730</td>
<td>0.00175365</td>
</tr>
<tr>
<td>$\Gamma_{tt}^{(2)}$</td>
<td>-0.00117120</td>
<td>0.00004016</td>
<td>-0.00131174</td>
</tr>
<tr>
<td>$\Gamma_{tb}^{(2)}$</td>
<td>0.00031156</td>
<td>-0.00003731</td>
<td>-0.00009362</td>
</tr>
<tr>
<td>$\Gamma_{bt}^{(2)}$</td>
<td>0.00003103</td>
<td>-0.00000064</td>
<td>0.00001418</td>
</tr>
<tr>
<td>$\Gamma_{bb}^{(2)}$</td>
<td>-0.00001585</td>
<td>-0.00000081</td>
<td>0.00000078</td>
</tr>
<tr>
<td>$\Gamma^{(2)}$</td>
<td>7.06033332</td>
<td>7.06368591</td>
<td>7.05401616</td>
</tr>
</tbody>
</table>
Numerical results

\[\Gamma^{(2)} \text{ in keV} \]
\[\mu \text{ in GeV} \]

(a) \(\mu = m_H \)
(b) \(\mu = 2m_H \)

- 0.4% \(\mu = m_H \)
- 1.3% \(\mu = 2m_H \)

Introduction
The decay in the Standard Model
Calculation of the two-loop amplitude
Numerical results
Conclusions
Conclusions

Renormalization
- OS scheme
- \overline{MS} scheme
- hybrid scheme with OS mass and \overline{MS} Yukawa coupling

Numerical results
- Corrections in sub-per-cent range and consistent with each other
- Residual QCD uncertainty: 1.7\%

Checks
- Confirmation of previously available numerical OS result
 [Spira, Djouadi, Zerwas (1992)]
- Agreement with independent calculation
 [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)]

Master Integrals
- Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations
- Important ingredient to two-loop amplitudes of $H + j$ production
Conclusions

Renormalization
- OS scheme
- $\overline{\text{MS}}$ scheme
- hybrid scheme with OS mass and $\overline{\text{MS}}$ Yukawa coupling

Numerical results
- Corrections in sub-per-cent range and consistent with each other
- Residual QCD uncertainty: 1.7\%

Checks
- Confirmation of previously available numerical OS result
 [Spira, Djouadi, Zerwas (1992)]
- Agreement with independent calculation
 [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)]

Master Integrals
- Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations
- Important ingredient to two-loop amplitudes of $H \to j$ production
Conclusions

Renormalization

- OS scheme
- $\overline{\text{MS}}$ scheme
- hybrid scheme with OS mass and $\overline{\text{MS}}$ Yukawa coupling

Numerical results

- Corrections in sub-per-cent range and consistent with each other
- Residual QCD uncertainty: 1.7%

Checks

- Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)]
- Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)]

Master Integrals

- Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations
- Important ingredient to two-loop amplitudes of $H \rightarrow j$ production
Conclusions

Renormalization

- OS scheme
- $\overline{\text{MS}}$ scheme
- hybrid scheme with OS mass and $\overline{\text{MS}}$ Yukawa coupling

Numerical results

- Corrections in sub-per-cent range and consistent with each other
- Residual QCD uncertainty: 1.7\%

Checks

- Confirmation of previously available numerical OS result
 [Spira, Djouadi, Zerwas (1992)]
- Agreement with independent calculation
 [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)]

Master Integrals

- Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations
- Important ingredient to two-loop amplitudes of $H + j$ production