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Motivation
✦ Transverse momentum distribution of the Higgs boson in gluon 

fusion: probe of standard model EW dynamics, test of QCD 
factorization
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Fig. 1: The absolute predictions for the production of a 125 GeV mass Higgs boson at the LHC.

Balazs et al., hep-ph/0403052
Harlander, Neumann, 1308.2225
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FIG. 1: Normalized Higgs transverse momentum distributions for scalar coupling operators. The normalization factors �ij are
given in table I.
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FIG. 2: Same as fig. 1, but for pseudo-scalar coupling operators. Note that the gg channel is identical to the scalar case. The
�ij are given in table II.

The O1O†
5 term is even negative; since its magnitude hardly decreases towards larger pT, it drives the qg channel to

negative values. But note that, in contrast to fig. 1, the scale ⇤ enters these results, and that it is set to ⇤ = mt; the
higher dimensional operators therefore become numerically dominant at pT & mt.

In contrast to the pT distribution, we do not observe any significant differences for the rapidity distributions among
the operators, which is why we refrain from showing these results here.
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❖ differentiate different origins of 
ggH effective couplings 

❖ probe production mechanism 
through QCD color structures 

❖ ideal for testing QCD factorization 
in gluon fusion process



✦ Experimental precision at LHC run 1 is limited by statistics but could 
be largely improved at run 2 or high luminosity LHC; current 
uncertainties on theoretical predictions are not small 
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ATLAS, arXiv: 1504.05833
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FIG. 3. Di↵erential cross sections (left) and normalized cross-section shapes (right) for inclusive Higgs boson production
measured by combining the H ! �� and H ! ZZ⇤ ! 4` channels. The measured variables are the Higgs boson transverse
momentum pHT (top) and its rapidity |yH| (middle), and the transverse momentum of the leading jet pj1T (bottom). The 0–30 GeV
bin of the pj1T distributions corresponds to events without jets above 30 GeV. Various theoretical predictions are presented,
using the same bin widths as the measurement.
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FIG. 3. Di↵erential cross sections (left) and normalized cross-section shapes (right) for inclusive Higgs boson production
measured by combining the H ! �� and H ! ZZ⇤ ! 4` channels. The measured variables are the Higgs boson transverse
momentum pHT (top) and its rapidity |yH| (middle), and the transverse momentum of the leading jet pj1T (bottom). The 0–30 GeV
bin of the pj1T distributions corresponds to events without jets above 30 GeV. Various theoretical predictions are presented,
using the same bin widths as the measurement.
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the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the di⇤eren-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

d�

d4qd⇥
⌥
 
d2pTd

2kT ⇥
2(pT +kT �qT )Mµ⌃�⇥

�
M �⇥

⌅⌥

⇥⇥

�µ⌅
g (x1,pT , ⇤1, µ)�

⌃⌥
g (x2,kT , ⇤2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg ⇧ �� partonic hard scat-
tering matrix element and � the following unpolarized
proton gluon TMD correlator,

�µ⌅
g (x,pT , ⇤, µ) ⇤ 2

 
d(⌃ · P ) d2⌃T
(xP · n)2(2⌥)3 e

i(xP+pT )·⇧

Trc
⌦
�P |Fn⌅(0)Un[–]

[0,⇧] F
nµ(⌃)Un[–]

[⇧,0]|P �
↵

⇧·P 0=0

= � 1

2x

⌥
gµ⌅T fg

1 �
⇤
pµTp⌅T
M2

p

+ gµ⌅T

p2
T

2M2
p

⌅
h⌅ g
1

�
+HT, (2)

with p2T = �p2
T and gµ⌅T = gµ⌅ � PµP ⇤⌅/P ·P ⇤ �

P ⇤µP ⌅/P ·P ⇤, where P and P ⇤ are the momenta of the
colliding protons and Mp their mass. The gauge link

Un[–]
[0,⇧] in the matrix element runs from 0 to ⌃ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ⇤2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
⇤ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ⇤, µ), the linearly

polarized gluon distribution h⌅ g
1 (x,p2

T , ⇤, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ⇤

�
q2.

The general structure of the di⇤erential cross section
for the process pp ⇧ ��X is given by [22]

d�

d4qd⇥
⌥ F1(Q, ⌅) C [fg

1 f
g
1 ] + F2(Q, ⌅) C

⌦
w2 h

⌅g
1 h⌅g

1

↵

+ F3(Q, ⌅) C
⌦
w3f

g
1 h

⌅g
1 + (x1 ⌃ x2)

↵
cos(2 )

+ F ⇤
3(Q, ⌅) C

⌦
w3f

g
1 h

⌅g
1 � (x1 ⌃ x2)

↵
sin(2 )

+ F4(Q, ⌅) C
⌦
w4 h

⌅g
1 h⌅g

1

↵
cos(4 ) +O

⇤
qT

Q

⌅
, (3)

where the Fi factors consist of specific combinations of
gg ⇧ X0,2 ⇧ �� helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ⇤
 

d2pT

 
d2kT ⇥

2(pT + kT � qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ⇤ 2(kT ·pT )
2 � k2

Tp
2
T

4M4
p

,

w3 ⇤ q2
Tk

2
T � 2(qT ·kT )2

2M2
pq

2
T

,

w4 ⇤ 2

⇧
pT ·kT

2M2
p

� (pT ·qT )(kT ·qT )

M2
pq

2
T

⌃2
� p2

Tk
2
T

4M4
p

. (5)

The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT ⌅ Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,

fg
1 (x,p

2
T ,

3

2

⇣
s,Mh) =

A0 M
2
0

M2
0 + p2

T

exp

⇧
� p2

T

ap2
T + 2�2

⌃
. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account e⇤ects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
� = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⌅g
1 (x,pT , ⇤, µ) = P(x,p2

T , ⇤)
2M2

p

p2
T

fg
1 (x,pT , ⇤, µ), (7)
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FIG. 1. Plot of qTC[fg

1 f
g

1 ] (line) and the Pythia Higgs d�/dqT
distribution for M

h

= 125 GeV at
⇤
s = 8 TeV (points).

such that |P| = 1 corresponds to h⇧g
1 saturating its up-

per bound [30] and with the correct power law tail as first
calculated in [19]. Calculations of the gluon TMD distri-
butions using the Color Glass Condensate model predict
maximal gluon polarization for large pT and small x [31].
Ideally one extracts the degree of polarization from data,
but this is currently unfeasible.

Perturbative QCD can be used to calculate the large
pT tails of the TMD distributions in terms of the collinear
parton distribution functions as has been done in Ref.
[21] for the unpolarized distribution and Ref. [19] for
the linearly polarized gluon distribution. We will follow
a similar approach, but keep finite ⌅ instead of taking
the ⌅ ⇧⌃ limit and calculate the degree of polarization
to leading order in �s from the MSTW 2008 collinear
parton distributions [32] evaluated at a scale of µ = 2
GeV.

The pQCD calculation is only valid in the limit pT ⌅
Mp. To model the lack of knowledge at low pT , we will
define three di�erent degrees of polarization Pmin, P and
Pmax, of which the first approaches zero at low pT , the
second follows the pQCD prediction and the last reaches
up to one at low pT . Other sources of uncertainty are the
choices of the scales ⌅ and µ and the omission of higher
order terms. We estimate this additional uncertainty, by
varying the di�erent scales, to be maximally 10% and
model it by letting Pmax,min approach the pQCD calcu-
lation ±10% for large pT . More specifically, we define

Pmin ⇤
p4

T

p40 + p4
T

0.9PpQCD(x,p
2
T ),

P ⇤ PpQCD(x,p
2
T ),

Pmax ⇤ 1� p4
T

p40 + p4
T

⇤
1� 1.1PpQCD(x,p

2
T )
⌅
, (8)

where PpQCD is the pQCD degree of polarization cal-
culated at ⌅ = 1.5

 
s and we take p0 = 5 GeV. The

resulting Pmin, P and Pmax are plotted in Figure 2.
We will consider the partonic process gg ⇧ X0,2 ⇧ ⇥⇥

where X is either a spin-0 or spin-2 boson, with com-
pletely general couplings. For the interaction vertex we
will follow the conventions of Refs. [11] and [12], where

20 40 60 80 100
pT �GeV⇥0.2
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FIG. 2. Plot of the degrees of polarization P
min

, P and P
max

at x = M
h

/
⇤
s, with M

h

= 125 GeV and
⇤
s = 8 TeV.

the vertex coupling a spin-0 boson to massless gauge
bosons is parameterized as

V [X0 ⇧ V µ(q1)V
⇧(q2)] = a1q

2gµ⇧ + a3⇤
q1q2µ⇧ , (9)

and for a spin-2 boson as

V [X�⇥
2 ⇧ V µ(q1)V

⇧(q2)] =
1

2
c1q

2gµ�g⇧⇥

+
�
c2q

2gµ⇧ + c5⇤
q1q2µ⇧

⇥ q̃�q̃⇥

q2
, (10)

where q ⇤ q1+q2 and q̃ ⇤ q1�q2. The coupling to gluons
can be di�erent from the coupling to photons, but to keep
expressions compact we will consider them equal.
For the gg ⇧ X0 ⇧ ⇥⇥ subprocess, the non-zero F

factors in Eq. (3) read

F1 = 16|a1|4 + 8|a1|2|a3|2 + |a3|2,
F2 = 16|a1|4 � |a3|4, (11)

and for the gg ⇧ X2 ⇧ ⇥⇥ process one has

F1 = 18A+|c1|2s4⇤ +A+2�
1� 3c2⇤

⇥2

+
9

8
|c1|4(28c2⇤ + c4⇤ + 35),

F2 = 9A�|c1|2s4⇤ +A�A+
�
1� 3c2⇤

⇥2
,

F3 = 3s2⇤B
� ⇤

3|c1|2(c2⇤ + 3) +A+(3c2⇤ + 1)
⌅
,

F ⌅
3 = 6s2⇤Re(c1c

⇥
5)

⇤
3|c1|2(c2⇤ + 3) +A+(3c2⇤ + 1)

⌅
,

F4 = 9s4⇤|c1|2
⇤
2B+ + 4|c5|2

⌅
, (12)

where we have defined A± ⇤ |c1 + 4c2|2 ± 4|c5|2, B± ⇤
|c1+2c2|2±4|c2|2, cn⇤ ⇤ cos(n⇧) and s⇤ ⇤ sin(⇧). Overall
factors have been dropped, because as said we will be
only interested in distributions and not the absolute size
of the cross section. Unlike the case for Higgs production
from linearly polarized photons [33], there is no direct
observable signalling CP violation in the spin-0 case. For
the spin-2 case there is such a clear signature, being a
sin 2⌥ dependence of the cross section, which can only

the choice of the scale � and the scale of the collinear pdfs from which the pQCD degree of polarization
is calculated and the fact that we use a finite order calculation. We model this as an additional 10%
inaccuracy, i.e.,

Pmin(p
2
T ) ⇤

p4
T

p40 + p4
T

0.9PpQCD(p
2
T ),

P(p2
T ) ⇤ PpQCD(p

2
T ),

Pmax(p
2
T ) ⇤ 1� p4

T

p40 + p4
T

�
1� 1.1PpQCD(p

2
T )
⇥
, (4)

where PpQCD is the degree of polarization predicted by pQCD and we take p0 = 5 GeV. The resulting
Pmin, P and Pmax are plotted in Figure 2.
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Figure 2: Plot of fg
1 (x,pT ) in Eq. (1) using the fitted parameters given in Eq. (3) (left) and

plot of the three di�erent assumptions on the degree of polarization P(p2
T ) (right).

1 R functions

The R functions are defined as

R2(qT ) ⇤
C
⌅
w2 h

⇥g
1 h⇥g

1

⇧

C [fg
1 f

g
1 ]

,

R±
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⌅
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1 fg

1 ± w3(kT )f
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1 h

⇥g
1

⇧

C [fg
1 f

g
1 ]

,

R4(qT ) ⇤
C
⌅
w4h

⇥g
1 h⇥g

1

⇧

C [fg
1 f

g
1 ]

, (5)

and the integrated Rint functions as

R±int
3 (qmax

T ) ⇤

⇤ qmax

T

0 dq2T C
⌅
w3(pT )h

⇥g
1 fg

1 ± w3(kT )f
g
1 h

⇥g
1

⇧

⇤ qmax

T

0 dq2T C [fg
1 f

g
1 ]

,

Rint
4 (qmax

T ) ⇤

⇤ qmax

T

0 dq2T C
⌅
w4h

⇥g
1 h⇥g

1

⇧

⇤ qmax

T

0 dq2T C [fg
1 f

g
1 ]

, (6)
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POWHEG+Pythia 8 Higgs qT distribution

unpolarized 
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p
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~mtop~10 GeV~GeV

large-qT

~mH 

✦ Theoretical predictions on SM Higgs boson qT distribution in different 
kinematic region: 1, non-perturbative region; 2, small-qT; 3, 
intermediate qT; 4, large qT; 5, Large-qT 



5

✦ Resummation of small-qT logarithms (Log(qT/Q)) to all-order in QCD 
in impact parameter space, first developed by Collins, Soper and 
Sterman (CSS, 1985)

c

a

b

h

h

1

2

p

p

1

2

f

f

a

b

c H

S

C

C

F
C

C

..

.

Figure 1: Diagrammatic structure of the various factors that enter the process-independent
resummation formula (13).

The two versions (4) and (13) of the resummation formula can formally be related as
follows. We use the renormalization-group identity

g1(αS(Q
2)) = exp

{∫ Q2

b2
0
/b2

dq2

q2
g2(αS(q

2))

}

g1(αS(b
2
0/b

2)) , (16)

which is valid when

g2(αS) = β(αS)
d ln g1(αS)

d ln αS
, (17)

where β(αS) is the QCD β-function

d ln αS(q2)

d ln q2
= β(αS(q

2)) , (18)

β(αS) = −β0
αS

π
− β1

(αS

π

)2

+ . . . , 12β0 = 11CA − 2Nf . (19)

Then, setting g1(αS(Q2)) = HF
c (αS(Q2)) and inserting the right-hand side of Eq. (16) in

Eq. (13), we immediately obtain Eq. (4). More precisely, the process-independent resumma-
tion formula in Eq. (13) implies the customary version in Eq. (4), provided the perturbative
function Bc(αS) in the form factor SF

c (see Eq. (5)) and the coefficient functions CF
ab are

related to their process-independent analogues by the following all-order relations

CF
ab(αS, z) =

[
HF

a (αS)
]1/2

Cab(αS, z) , (20)

BF
c (αS) = Bc(αS) − β(αS)

d lnHF
c (αS)

d ln αS
. (21)

While the perturbative function Ac(αS) and the first-order coefficient B(1)
c of the function

Bc(αS) are process-independent, the result in Eqs. (21) and (20) shows that the coefficients
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hadrons‡. The distinction between the two terms is purely theoretical. The partonic cross
section that enters in the resummed part (the first term on the right-hand side) contains
all the logarithmically-enhanced contributions αn

S lnm Q2/q2
⊥. Thus, this part has to be

evaluated by resumming the logarithmic terms to all orders in perturbation theory. On
the contrary, the partonic cross section in the second term on the right-hand side is finite
order-by-order in perturbation theory when q⊥ → 0. It can thus be computed by truncating
the perturbative expansion at a given fixed order in αS.

The finite component of the transverse-momentum cross section is obviously process-
dependent, and we have nothing to add on it in this paper. In the following we discuss the
structure of the resummed part.

The resummed component is§

[
dσF

dQ2 dq2
⊥

]

res.

=
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2

∫ ∞

0

db
b

2
J0(bq⊥) fa/h1

(x1, b
2
0/b

2) fb/h2
(x2, b

2
0/b

2)

· W F
ab(x1x2s; Q, b) . (3)

The Bessel function J0(bq⊥) and the coefficient b0 = 2e−γE (γE = 0.5772 . . . is the Euler
number) have a kinematical origin. To correctly take into account the kinematics constraint
of transverse-momentum conservation, the resummation procedure has to be carried out in
the impact-parameter space. The transverse-momentum cross section (3) is then obtained
by performing the inverse Fourier (Bessel) transformation with respect to the impact pa-
rameter b. The factor W F

ab is the perturbative and process-dependent partonic cross section
that embodies the all-order resummation of the large logarithms ln Q2b2 (the limit q⊥ ≪ Q
corresponds to Qb ≫ 1, because b is the variable conjugate to q⊥).

The resummed partonic cross section is usually (see, e.g., the list of references in Sec-
tions 5.1 and 5.3 of Ref. [1]) written in the following form:

W F
ab(s; Q, b) =

∑

c

∫ 1

0

dz1

∫ 1

0

dz2 CF
ca(αS(b

2
0/b

2), z1) CF
c̄b(αS(b

2
0/b

2), z2) δ(Q2 − z1z2s)

· σ(LO) F
cc̄ (Q2) SF

c (Q, b) . (4)

Here, σ(LO) F
cc̄ is the cross section (integrated over q⊥) for the LO partonic subprocess c+c̄ →

F , where c, c̄ = q, q̄ (the quark qf and the antiquark q̄f ′ can possibly have different flavours

f, f ′) or c, c̄ = g, g. The expression σ(LO) F
cc̄ can include an overall factor αp

S(Q
2), as in the

case of g + g → H through a triangular quark loop where p = 2. The term SF
c (Q, b) is the

quark (c = q) or gluon (c = g) Sudakov form factor. The resummation of the logarithmic
contributions is achieved by exponentiation [4]–[7], that is by showing [8, 9] that the form
factor can be expressed as

Sc(Q, b) = exp

{

−
∫ Q2

b2
0
/b2

dq2

q2

[
Ac(αS(q

2)) ln
Q2

q2
+ Bc(αS(q

2))

]}

, (5)

‡Throughout the paper we always use parton densities as defined in the MS factorization scheme and
αS(q2) is the QCD running coupling in the MS renormalization scheme.

§As discussed at the end of the paper, this expression can be generalized to include the dependence on
the renormalization and factorization scales µR and µF .

2

in the various terms on the right-hand side, the coefficient functions CF
ab depend on the

process. This is confirmed by the calculations of the coefficients C(1) F
ab , performed in the

literature for several processes ∥ [12] [14]–[19]. The form factor Sc(Q, b) that enters Eq. (4)
is (often) supposed to be universal (this is the reason why it is named quark or gluon form
factor rather than DY, γγ, WZ, H, . . . form factor). However, this is not the case: the
form factor SF

c (Q, b) in Eq. (4) is process-dependent. In the following, we first present a
universal (process-independent) version of the resummation formula (4) and we sketch its
physical origin. We then clarify the relation between Eq. (4) and our process-independent
version.

The process-independent resummation formula is

W F
ab(s; Q, b) =

∑

c

∫ 1

0

dz1

∫ 1

0

dz2 Cca(αS(b
2
0/b

2), z1) Cc̄b(αS(b
2
0/b

2), z2) δ(Q2 − z1z2s)

· σF
cc̄(Q

2, αS(Q
2)) Sc(Q, b) . (13)

It formally differs from Eq. (4) by the replacement σ(LO) F
cc̄ (Q2) → σF

cc̄(Q
2, αS(Q2)). While

σ(LO) F
cc̄ (Q2) is the cross section for the LO partonic subprocess, σF

cc̄(Q
2, αS(Q2)) includes

higher-order QCD corrections to it, according to

σF
cc̄(Q

2, αS(Q
2)) = σ(LO) F

cc̄ (Q2) HF
c (αS(Q

2)) , (14)

where the function HF
c (αS) has a perturbative expansion similar to Eqs. (6)–(8):

HF
c (αS) = 1 +

∞∑

n=1

(αS

π

)n
H(n) F

c . (15)

Note that the function HF
c (αS) depends on the process. Nonetheless, its introduction is

sufficient to transform the process-dependent form factor SF
c and coefficient functions CF

ca

of Eq. (4) into the process-independent form factor Sc and coefficient functions Cca of
Eq. (13).

The resummation formula in Eq. (13), which can be derived by the customary resum-
mation methods [4]–[9] [11], has a simple physical origin. When the final-state system F is
kinematically constrained to have a small transverse momentum, the emission of accompa-
nying radiation is strongly inhibited, so that only soft and collinear partons (i.e. partons
with low transverse momenta qt) can be radiated in the final state (Fig. 1). The process-
dependent factor HF

c (αS(Q2)) embodies hard contributions produced by virtual corrections
at transverse-momentum scales qt ∼ Q. The form factor Sc(Q, b) contains real and virtual
contributions due to soft (the function Ac(αS) in Eq. (5)) and flavour-conserving collinear
(the function Bc(αS) in Eq. (5)) radiation at scales Q∼>qt ∼> 1/b. At very low momentum
scales, qt ∼< 1/b, real and virtual soft-gluon corrections cancel because the cross section is
infrared safe, and only real and virtual contributions due to collinear radiation remain
(the coefficient functions Cab(αS(b2

0/b
2), z)). Note that Sc(Q, b) and Cab(αS(b2

0/b
2), z) are

process-independent and only depend on the flavour and colour charges of the QCD partons.

∥A general expression for the coefficients C(1) F

ab
in terms of the one-loop matrix element of the corre-

sponding process is given in Eq. (17) of Ref. [13].

4



6

✦ Higgs qT resummation based on Soft-Collinear effective theory [note 
the different convention in counting of matching order]
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Framework

✦ small-qT factorization and resummation in SCET [following the 
scheme by Becher, Neubert, 2010] 

7

Collinear anomaly and refactorization, qT<<mH

Figure 2: Sequence of matching steps and associated effective theories leading to the factor-
ization theorem (13).

momentum transfer q2 = m2
H , and with infrared divergences subtracted using the MS scheme

[17, 26, 28]:

H(m2
H , µ

2) =
∣∣CS(−m2

H − iϵ, µ2)
∣∣2 . (14)

On a technical level, the function CS appears as a Wilson coefficient in the matching of the
two-gluon operator in (11) onto an operator in SCET, in which all hard modes have been
integrated out. This matching takes the form

Gµν,aG
µν
a → CS(Q

2, µ2)Q2 gµν A
µ,a
n⊥A

ν,a
n̄⊥ , (15)

where Q2 = −q2 is (minus) the square of the total momentum carried by the operator. The
fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are effective, gauge-invariant gluon fields in SCET [45]. They describe

gluons propagating along the two light-like directions n, n̄ defined by the colliding hadrons.
The two-loop expression for the Wilson coefficient CS can be extracted from the results of
[46]. We write its perturbative series in the form

CS(−m2
H − iϵ, µ2) = 1 +

∞∑

n=1

cn(L)

(
αs(µ2)

4π

)n

, (16)

where L = ln[(−m2
H − iϵ)/µ2]. The one- and two-loop coefficients read

c1(L) = CA

(
−L2 +

π2

6

)
,

c2(L) = C2
A

[
L4

2
+

11

9
L3 +

(
−
67

9
+

π2

6

)
L2 +

(
80

27
−

11π2

9
− 2ζ3

)
L

+
5105

162
+

67π2

36
+

π4

72
−

143

9
ζ3

]
+ CFTFnf

(
4L−

67

3
+ 16ζ3

)

+ CATFnf

[
−
4

9
L3 +

20

9
L2 +

(
104

27
+

4π2

9

)
L−

1832

81
−

5π2

9
−

92

9
ζ3

]
.

(17)

The soft function S in (13) is defined in terms of the Fourier transform of a vacuum
expectation value of a Wilson loop in the adjoint representation of SU(Nc). In SCET is
arises after the decoupling of soft gluons from the hard-collinear and anti-hard-collinear fields
describing the partons originating from the colliding beam particles [28]. The soft function
in the case of Higgs-boson production is closely related to an analogous function entering

7

is not just given by the product of two collinear functions as in the usual CSS formula, but a
sum of two products of collinear functions describing the two production mechanisms, and the
resummation formula must be modified accordingly [24]. We show that the collinear anomaly
is the same for both structures, and that the dependence on the large scale mH therefore arises
as an overall factor in position space. We then compute the collinear functions at one-loop
order. The other feature, which distinguishes Higgs production from the vector-boson case, is
that the infrared protection mechanism discussed above is much more efficient. The numer-
ical value of q∗ ≈ 8GeV is significantly higher than in the Z-boson case, and we show that
long-distance hadronic effects have almost no impact on the Higgs-boson spectrum. We have
implemented our resummed results for Drell-Yan, W , Z, and Higgs production in a public
code CuTe [25] and give phenomenological predictions based on this program.

2 Factorization and resummation

We consider the cross section for the production of a Higgs boson with massmH and transverse
momentum qT = |q⊥| in gluon fusion at the LHC. The derivation of the factorization formula
for the cross section proceeds exactly as in the case of the Higgs-production cross section
defined with a jet veto, which we have recently considered in [20]. Our analysis there has
been performed at fixed q⊥ and rapidity y of the Higgs boson, and the integration over the
boson phase-space was carried out at the end. We can thus immediately use the result for the
factorized cross section obtained in [20], which reads

dσ = σ0(µ)C
2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2 m2
H

τs
dy

d2q⊥
(2π)2

∫

d2x⊥ e
−iq⊥·x⊥

× 2Bµν
c (ξ1, x⊥, µ)Bc̄ µν(ξ2, x⊥, µ)S(x⊥, µ) ,

(1)

where ξ1,2 =
√
τ e±y and τ = (m2

H + |q2⊥|)/s. The Born-level cross section is

σ0(µ) =
m2

H α2
s(µ)

72π(N2
c − 1)sv2

, (2)

where
√
s denotes the center-of-mass energy of the LHC and v is the Higgs vacuum expec-

tation value. The Wilson coefficient Ct multiplies the effective ggH operator obtained after
integrating out the heavy top quark, while the hard matching coefficient CS arises when this
operator is matched onto an effective two-gluon operator in SCET. Moreover, we have defined

Bµν
c (ξ, x⊥, µ) = −

ξ n̄ · p
2π

∫

dt e−iξtn̄·p
∑

Xc

⟨P (p)| Aµ,a
c⊥ (tn̄ + x⊥) |Xc⟩ ⟨Xc| Aν,a

c⊥(0) |P (p)⟩ ,

S(x⊥, µ) =
1

N2
c − 1

∑

Xs

⟨ 0 |
(

S†
nSn̄

)ab
(x⊥) |Xs⟩ ⟨Xs|

(

S†
n̄Sn

)ba
(0) |0⟩ . (3)

Here Ac⊥ is the gauge-invariant effective gluon field of SCET, and Sn, Sn̄ denote soft Wilson
lines. The soft function S describes the physics of soft gluons emitted from the colliding
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is not just given by the product of two collinear functions as in the usual CSS formula, but a
sum of two products of collinear functions describing the two production mechanisms, and the
resummation formula must be modified accordingly [24]. We show that the collinear anomaly
is the same for both structures, and that the dependence on the large scale mH therefore arises
as an overall factor in position space. We then compute the collinear functions at one-loop
order. The other feature, which distinguishes Higgs production from the vector-boson case, is
that the infrared protection mechanism discussed above is much more efficient. The numer-
ical value of q∗ ≈ 8GeV is significantly higher than in the Z-boson case, and we show that
long-distance hadronic effects have almost no impact on the Higgs-boson spectrum. We have
implemented our resummed results for Drell-Yan, W , Z, and Higgs production in a public
code CuTe [25] and give phenomenological predictions based on this program.
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is simplest, since SCET Feynman diagrams typically already contain light-cone denominators
involving k+ or k−. With the form (4) of the regularization, one finds that the soft function
is given by scaleless integrals, and thus S(x⊥, µ) = 1 to all orders in perturbation theory [11].
We will no longer write it explicitly in the rest of the paper. If one were to use the energy
k0 instead of k+ in (4), the soft function would be non-trivial, but can be absorbed into the
beam-jet functions without loss of generality.

The light-cone component k+ of the anti-collinear particles moving along the n̄µ direction is
large, k+ ∼ mH . Expanding in the regulator α, the dependence of the anti-collinear beam-jet
function on the regulator scale ν thus takes the form ln(ν/mH). On the other hand, the k+
component of the collinear partons is small, k+ ∼ q2T/mH ∼ 1/(x2

TmH), where q2T = −q2⊥ and
x2
T = −x2

⊥. In the collinear beam-jet function the dependence on the scale ν thus arises in the
form ln(νx2

TmH). The requirement that the physical cross section (1) must be independent of
the analytic regulator scale ν can then be expressed as

d

d ln ν
Bµν
c

(

ξ1, x⊥, ln(νx
2
TmH), µ

)

Bρσ
c̄

(

ξ2, x⊥, ln
ν

mH
, µ
)

= 0 . (5)

In the factorization theorem (1) the Lorentz indices of the beam functions are contracted.
The fact that ν independence also holds without contracting the indices follows by consider-
ing the factorization theorem for the production of a general color-neutral tensor field hµν .
The corresponding factorization theorem has the same structure as (1), except that the hard
matching coefficient |CS|2 would now depend on the Lorentz indices of the tensor fields in the
initial and final states. Since the logarithms in (5) have different arguments, the cancellation
of the ν dependence among the different factors imposes a non-trivial constraint on the mH

dependence of the product. As explained in detail in [11, 31], the above equation implies that
the dependence of the product of the two functions on mH must be power like. We can thus
rewrite the product in the form

Bµν
c

(

ξ1, x⊥, ln(νmHx
2
T ), µ

)

Bρσ
c̄

(

ξ2, x⊥, ln
ν

mH
, µ
)

=

(

x2
Tm

2
H

b20

)−Fgg(x2
T ,µ)

Bµν
g (ξ1, x⊥, µ)B

ρσ
g (ξ2, x⊥, µ) ,

(6)

with b0 = 2e−γE . The new beam-jet function Bµν
g (ξ, x⊥, µ) and the anomaly exponent

Fgg(x2
T , µ) are independent of mH .

Having determined the form of the anomaly, we now derive the scale dependences of the
function Bµν

g (ξ1, x⊥, µ) and the exponent Fgg(x2
T , µ). Their anomalous dimensions can be in-

ferred from the requirement that the cross section must be independent of the renormalization
scale µ, which implies that the µ dependence of the product of beam functions must cancel
against that of the hard function σ0 C2

t |CS|2 in (1). This leads to the renormalization-group
(RG) equations

dFgg(x2
T , µ)

d lnµ
= 2ΓA

cusp(αs) ,

d

d lnµ
Bµν

g (ξ, x⊥, µ) =

[

ΓA
cusp(αs) ln

x2
Tµ

2

b20
− 2γg(αs)

]

Bµν
g (ξ, x⊥, µ) ,

(7)
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Matching on to standard collinear PDFs, qT>>ΛQCD
which is valid up to hadronic corrections suppressed by powers of Λ2

QCD x2
T . The cross section

can then be written in the final form

d2σ
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= σ0(µ)C

2
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2
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dz2
z2

× C̄gg←ij(z1, z2, q
2
T , m

2
H , µ)φi/P (ξ1/z1, µ)φj/P (ξ2/z2, µ) ,

(12)

where

C̄gg←ij(z1, z2, q
2
T , m

2
H , µ) =

1

4π

∫

d2x⊥ e
−iq⊥·x⊥

(

x2
Tm

2
H

b20

)−Fgg(L⊥,as)

×
∑

n=1,2

I(n)g←i(z1, L⊥, as) I
(n)
g←j(z2, L⊥, as) .

(13)

With a slight abuse of notation, we have traded the variables x2
T and µ in the functions Fgg

and I(n)g←i for new variables

L⊥ = ln
x2
Tµ

2

b20
, as =

αs(µ)

4π
(14)

without changing the names of these functions. This notation will be convenient for our
discussion below, and it conforms with the notation used in [17]. Integrating the double
differential cross section (12) over rapidity, we find

dσ

dq2T
= σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
∑

i,j=g,q,q̄

∫ 1

τ

dz

z
C̃gg←ij

(

z, q2T , m
2
H , µ

)

ffij(τ/z, µ) , (15)

where the parton luminosities and new kernel functions are defined as

ffij(z, µ) =

∫ 1

z

du

u
φi/N1

(u, µ)φj/N2
(z/u, µ) ,

C̃gg←ij(z, q
2
T , m

2
H , µ) =

∫ 1

z

du

u
C̄gg←ij(u, z/u, q

2
T , m

2
H , µ) .

(16)

The factorized cross sections (12) and (15) receive power corrections in the two small quantities
q2T/m

2
H and Λ2

QCD x2
T , which will not be indicated explicitly in our equations.

A dependence on the hard scale mH enters formula (12) for the double-differential cross
section in two places: via the hard matching coefficient CS and via an xT -dependent power of
mH under the Fourier integral in (13). The latter effect is due to the collinear factorization
anomaly [11]. As long as x2

T ≪ Λ−2QCD, the anomalous exponent Fgg can be calculated in
perturbation theory, and at least up to three-loop order it is related to the corresponding
exponent Fqq̄ appearing in the Drell-Yan case by the Casimir-scaling relation [11]

Fgg(L⊥, as)

CA
=

Fqq̄(L⊥, as)

CF
+O(α4

s) . (17)

6

which is valid up to hadronic corrections suppressed by powers of Λ2
QCD x2

T . The cross section
can then be written in the final form

d2σ

dq2T dy
= σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
∑

i,j=g,q,q̄

∫ 1

ξ1

dz1
z1

∫ 1

ξ2

dz2
z2

× C̄gg←ij(z1, z2, q
2
T , m

2
H , µ)φi/P (ξ1/z1, µ)φj/P (ξ2/z2, µ) ,

(12)

where

C̄gg←ij(z1, z2, q
2
T , m

2
H , µ) =

1

4π

∫

d2x⊥ e
−iq⊥·x⊥

(

x2
Tm

2
H

b20

)−Fgg(L⊥,as)

×
∑

n=1,2

I(n)g←i(z1, L⊥, as) I
(n)
g←j(z2, L⊥, as) .

(13)

With a slight abuse of notation, we have traded the variables x2
T and µ in the functions Fgg

and I(n)g←i for new variables

L⊥ = ln
x2
Tµ

2

b20
, as =

αs(µ)

4π
(14)

without changing the names of these functions. This notation will be convenient for our
discussion below, and it conforms with the notation used in [17]. Integrating the double
differential cross section (12) over rapidity, we find

dσ

dq2T
= σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
∑

i,j=g,q,q̄

∫ 1

τ

dz

z
C̃gg←ij

(

z, q2T , m
2
H , µ

)

ffij(τ/z, µ) , (15)

where the parton luminosities and new kernel functions are defined as

ffij(z, µ) =

∫ 1

z

du

u
φi/N1

(u, µ)φj/N2
(z/u, µ) ,

C̃gg←ij(z, q
2
T , m

2
H , µ) =

∫ 1

z

du

u
C̄gg←ij(u, z/u, q

2
T , m

2
H , µ) .

(16)

The factorized cross sections (12) and (15) receive power corrections in the two small quantities
q2T/m

2
H and Λ2

QCD x2
T , which will not be indicated explicitly in our equations.

A dependence on the hard scale mH enters formula (12) for the double-differential cross
section in two places: via the hard matching coefficient CS and via an xT -dependent power of
mH under the Fourier integral in (13). The latter effect is due to the collinear factorization
anomaly [11]. As long as x2

T ≪ Λ−2QCD, the anomalous exponent Fgg can be calculated in
perturbation theory, and at least up to three-loop order it is related to the corresponding
exponent Fqq̄ appearing in the Drell-Yan case by the Casimir-scaling relation [11]

Fgg(L⊥, as)

CA
=

Fqq̄(L⊥, as)

CF
+O(α4

s) . (17)

6

with qT>>ΛQCD all colored objects can be calculated perturbatively; scale 
dependence are  organized by RG equation with  anomalous dimensions

✦ small-qT factorization and resummation in SCET [following the 
scheme by Becher, Neubert, 2010] 
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✦ Resummation of Sudakov logarithms is accomplished by evolving 
hard functions from canonical scales to a proper scale at which the 
expansion of remaining kernel C can be perturbatively controlled

9

RG evolution of the hard function

The Wilson coefficient CS arising when hard, virtual quantum corrections to the effective
two-gluon vertex (11) are integrated out obeys an evolution equation reflecting the renor-
malization properties of the effective two-gluon SCET operator on the right-hand side of the
matching relation (15). It reads [26]

d

d lnµ
CS(−m2

H − iϵ, µ2) =

[
ΓA
cusp(αs) ln

−m2
H − iϵ

µ2
+ γS(αs)

]
CS(−m2

H − iϵ, µ2) , (21)

where ΓA
cusp is the cusp anomalous dimension of Wilson lines with light-like segments in the

adjoint representation of SU(Nc). It controls the leading Sudakov double logarithms contained
in CS and is known to three-loop order [48]. The single-logarithmic evolution is controlled
by the anomalous dimension γS, which can be extracted from the infrared divergences of the
on-shell gluon form factor [26]. Using results from [49] it can be derived to three-loop order.
We collect the relevant expressions for the expansion coefficients of the anomalous dimensions
in Appendix A. The general solution to (21) is [51]

CS(−m2
H−iϵ, µ2

f)=exp

[
2S(µ2

h, µ
2
f)− aΓ(µ

2
h, µ

2
f) ln

−m2
H − iϵ

µ2
h

− aγS(µ2
h, µ

2
f)

]
CS(−m2

H−iϵ, µ2
h),

(22)
where µh is the hard matching scale. We have introduced the definitions

S(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA
cusp(α)

β(α)

α∫

αs(ν2)

dα′

β(α′)
,

aΓ(ν
2, µ2) = −

αs(µ2)∫

αs(ν2)

dα
ΓA
cusp(α)

β(α)
,

(23)

and similarly for the function aγS . The perturbative expansions of these functions obtained
at NNLO in RG-improved perturbation theory can be found in the Appendix of [27].

The naive choice µ2
h ∼ m2

H of the hard matching scale gives rise to large π2 terms in the
matching condition (16), which arise since L2 = ln2[(−m2

H − iϵ)/µ2
h] ∼ −π2 and render the

perturbative expansion of the hard function H in (14) unstable. We have shown in [18] that
these π2-enhanced terms are to a large extent responsible for the poor perturbative behavior of
fixed-order predictions for the Higgs-boson production cross sections at hadron colliders. We
can exploit the fact that the solution (22) is formally independent of the hard matching scale
to avoid the large π2 terms in the matching condition by a proper choice of the matching scale.
To this end we set µ2

h ∼ −m2
H − iϵ, so that ln[(−m2

H − iϵ)/µ2
h] remains a small parameter.

The π2-enhanced terms are then resummed to all orders in perturbation theory and appear
in the functions S and aΓ in the exponent in (22). With this choice, relation (22) involves the
running coupling αs(µ2) evaluated at negative argument. The definition β(αs) = dαs/d lnµ
of the QCD β-function implies that

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (24)

9

the Drell-Yan cross section [17, 28]. At two-loop order (but not beyond) the two quantities
coincide after a simple replacement of color factors. In the notation of the second reference,
we have

S(ŝ(1− z)2, µ2
f) =

√
ŝWHiggs(ŝ(1− z)2, µ2

f)

=
√
ŝWDY(ŝ(1− z)2, µ2

f)
∣∣∣
CF→CA

+O(α3
s) .

(18)

The explicit form of the result can be derived using formulas compiled in Appendix B of [28].
When one inserts the two-loop expressions for the various component functions into (13)

and expands the product to O(α2
s), one recovers the expression given in (7). In the following

section we will discuss how improved perturbative expressions for the component functions
can be obtained by solving RG evolution equations with appropriate boundary conditions. In
this way one avoids perturbative logarithms arising when the factorization scale µf is chosen
different from the characteristic scales mt, mH , or

√
ŝ(1 − z). Even though these logarithms

are not particularly large, their resummation has the effect of improving the stability of the
prediction with respect to scale variations. More importantly, however, we will also be able to
resum the π2-enhanced terms in the perturbative expansion related to the time-like kinematics
of the Higgs-boson production process. They have been shown to be responsible for the bulk
of the large K-factors arising in calculations of the Higgs-production cross sections at the
Tevatron and the LHC [18].

3 Renormalization-group analysis and resummation

Our formalism for the resummation of large perturbative corrections in Higgs-boson production
is based on effective field theory and follows closely our previous analyses of DIS at large x
[26, 27] and Drell-Yan production [28]. The two key steps of the approach are deriving a
factorization formula such as (13) valid near the partonic threshold z → 1, and then using the
RG directly in momentum space to resum logarithms arising from ratios of the different scales.
We stress that the final, RG-improved formula for the cross section follows unambiguously by
applying the rules of effective field theory at each step of the derivation.

The Wilson coefficient Ct appearing when the top quark is integrated out satisfies the RG
equation

d

d lnµ
Ct(m

2
t , µ

2) = γt(αs)Ct(m
2
t , µ

2) , with γt(αs) = α2
s

d

dαs

β(αs)

α2
s

. (19)

The fact that the anomalous dimension is related to the QCD β-function [34, 47] is not
surprising, since the two-gluon operator in (11) is proportional to the Yang-Mills Lagrangian.
The evolution equation can be integrated in closed form and leads to

Ct(m
2
t , µ

2
f) =

β
(
αs(µ2

f)
)
/α2

s(µ
2
f)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )

Ct(m
2
t , µ

2
t ) , (20)

where µt ∼ mt is the matching scale at which the top quark is integrated out.
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in (13) can be calculated using a controlled perturbative expansion. The solutions of the
corresponding RG equations are discussed in detail in [20]. For our numerical work we use
relations (A.2) and (A.4) from this paper. For the Drell-Yan case, the proper choice of the
factorization scale µ has been discussed in [17]. Since the resulting expressions for Higgs
production are completely analogous, we will not repeat details of the derivations here but
rather summarize the main physical insights and quote the final expressions. The most naive
choice would be to set µ ∼ x−1T inside the Fourier integral in (13), in which case L⊥ would be
a small logarithm for any choice of xT . There are several disadvantages to such a treatment.
First, since xT is integrated over all possible values, there would be no clear meaning to the
scale µ in terms of a characteristic scale of the process. Second, setting the scale under the
integral means that the integration unavoidably hits the Landau pole of the running coupling,
giving rise to ambiguities in the numerical results. In the spirit of effective field theory, the
scale µ should correspond to a physical scale in the underlying factorization theorem. We will
choose it in such a way that on average the xT -dependent logarithm L⊥ is small, and denote
the corresponding value by µ ∼ ⟨x−1T ⟩.

Naively, one would expect that the transverse momentum qT and average transverse sep-
aration ⟨xT ⟩ are conjugate variables satisfying qT ∼ ⟨x−1T ⟩. While this is sometimes true, the
general situation turns out to be more complicated. After integration over x⊥, the factorized
dependence on mH and qT in (13) gets intertwined in a complicated way, and this gives rise
to the peculiar effect that the two scales qT and µ ∼ ⟨x−1T ⟩ decouple for very small qT [17].
When this happens depends on the value of the coefficient

η ≡ ΓA
0 as ln

m2
H

µ2
=

CAαs(µ)

π
ln

m2
H

µ2
. (23)

As long as 0 < η < 1, one indeed finds that µ ∼ ⟨x−1T ⟩ ∼ qT , because contributions from large
values xT ≫ q−1T are suppressed due to the rapid oscillations of the phase factor of the Fourier
integral, while contributions from small values xT ≪ q−1T are phase-space suppressed. The
situation changes, however, at very small transverse momentum, where with the prescription
µ ∼ qT the value of η reaches 1. We denote by q∗ the value of µ where this happens, i.e.

q∗ = mH exp

(

−
2π

ΓA
0 αs(q∗)

)

≈ mH exp

(

−
2π

(ΓA
0 + β0)αs(mH)

)

, (24)

where in the last step we have used the one-loop approximation for the running coupling. As
long as q∗ is in the perturbative domain, one finds that at this scale ⟨x−1T ⟩ decouples from qT ,
and it remains a short-distance scale even in the extreme case where qT is taken to 0 [17].
Changing variables from xT to L⊥ in the Fourier integral, one observes that the integrand
exhibits a Gaussian peak with a width proportional to 1/

√
as. The condition that at the peak

the logarithm L⊥ = O(1) implies that 1 − η = O(as), indicating that the factorization scale
must be chosen in the vicinity of q∗. We thus conclude that the proper scale choice is

µ ∼ ⟨x−1T ⟩ ∼ max(qT , q∗) . (25)

In our numerical work below, we will use µ = qT +q∗ as the default choice for the factorization
scale. Solving the first equation in (24) numerically, we obtain q∗ ≈ 7.7GeV for mH =

8

Improved expansion in momentum space, Lperp~1/as1/2

125GeV, which is a short-distance scale well inside the perturbative domain. Due to the
difference in color factors, this scale is significantly larger than in the case of the Drell-Yan
production of electroweak gauge bosons, for which q∗ ≈ 1.75GeV [17].

It follows from these arguments that the transverse-momentum distribution of Higgs bosons
is protected from long-distance physics even for arbitrarily small qT – a fact that in the context
of the Drell-Yan process has been pointed out first a very long time ago in [18]. The resummed
perturbative series for the cross section generates the scale q∗ dynamically, and even though
this is a short-distance scale, it is related to the boson massmH in a genuinely non-perturbative
way. The scale q∗ also sets the magnitude of hadronic long-distance corrections, which turn
out to be power-suppressed in the ratio ΛQCD/q∗. The dynamical origin of this suppression
was studied in detail in [17]. We expect that these corrections are significantly smaller for
Higgs production than for the Drell-Yan production of Z and W bosons. This expectation
will be confirmed by our numerical studies presented below.

The above discussion shows that we must distinguish two regions of transverse momenta.
For qT ≫ q∗, the scale choice µ ∼ qT prevents that the logarithms L⊥ give rise to large
perturbative corrections. It is then consistent to count these logarithms as L⊥ ∼ 1 and
construct the perturbative series as a series in powers of as. A different situation is encountered
for qT ≪ q∗. Even though the scale choice µ ∼ q∗ ensures that L⊥ = O(1) on average, the
Gaussian weight factor allows for significant contributions to the Fourier integral over a range
of larger L⊥ values with a width proportional to 1/

√
as. It is then necessary to reorganize

the perturbative expansion by adopting the modified power counting L⊥ ∼ 1/
√
as. This

implies that single-logarithmic terms (asL⊥)
n ∼ an/2s are always suppressed, whereas double-

logarithmic terms (asL2
⊥)

n ∼ 1 are unsuppressed and must be resummed to all orders. To
keep track of this fact, we introduce an auxiliary expansion parameter ϵ (which at the end
is set to 1) and assign the power counting as ∼ ϵ and L⊥ ∼ ϵ−1/2. The terms contributing
up to O(ϵ) to the cross section have been derived in [17] using recursive solutions of the
relevant RG equations. Adapting the resulting expression to the present case, we find that
the hard-scattering kernels defined in (13) can be written in the form

C̄gg←ij(z1, z2, q
2
T , m

2
H , µ) =

1

2

∫ ∞

0

dxT xT J0(xT qT ) exp
[

gA(η, L⊥, as)
]

×
∑

n=1,2

Ī(n)g←i(z1, L⊥, as) Ī
(n)
g←j(z2, L⊥, as) ,

(26)

where

gA(η, L⊥, as) = −
[

ηL⊥
]

ϵ−1/2 −
[

as
(

ΓA
0 + ηβ0

) L2
⊥

2

]

ϵ0

−
[

as (2γ
g
0 + ηK)L⊥ + a2s

(

ΓA
0 + ηβ0

)

β0
L3
⊥

3

]

ϵ1/2
(27)

−
[

as ηd2 + a2s

(

KΓA
0 + 2γg

0β0 + η
(

β1 + 2Kβ0

)

)L2
⊥

2
+ a3s

(

ΓA
0 + ηβ0

)

β2
0

L4
⊥

4

]

ϵ

−O(ϵ3/2) .

9

125GeV, which is a short-distance scale well inside the perturbative domain. Due to the
difference in color factors, this scale is significantly larger than in the case of the Drell-Yan
production of electroweak gauge bosons, for which q∗ ≈ 1.75GeV [17].

It follows from these arguments that the transverse-momentum distribution of Higgs bosons
is protected from long-distance physics even for arbitrarily small qT – a fact that in the context
of the Drell-Yan process has been pointed out first a very long time ago in [18]. The resummed
perturbative series for the cross section generates the scale q∗ dynamically, and even though
this is a short-distance scale, it is related to the boson massmH in a genuinely non-perturbative
way. The scale q∗ also sets the magnitude of hadronic long-distance corrections, which turn
out to be power-suppressed in the ratio ΛQCD/q∗. The dynamical origin of this suppression
was studied in detail in [17]. We expect that these corrections are significantly smaller for
Higgs production than for the Drell-Yan production of Z and W bosons. This expectation
will be confirmed by our numerical studies presented below.

The above discussion shows that we must distinguish two regions of transverse momenta.
For qT ≫ q∗, the scale choice µ ∼ qT prevents that the logarithms L⊥ give rise to large
perturbative corrections. It is then consistent to count these logarithms as L⊥ ∼ 1 and
construct the perturbative series as a series in powers of as. A different situation is encountered
for qT ≪ q∗. Even though the scale choice µ ∼ q∗ ensures that L⊥ = O(1) on average, the
Gaussian weight factor allows for significant contributions to the Fourier integral over a range
of larger L⊥ values with a width proportional to 1/

√
as. It is then necessary to reorganize

the perturbative expansion by adopting the modified power counting L⊥ ∼ 1/
√
as. This

implies that single-logarithmic terms (asL⊥)
n ∼ an/2s are always suppressed, whereas double-

logarithmic terms (asL2
⊥)

n ∼ 1 are unsuppressed and must be resummed to all orders. To
keep track of this fact, we introduce an auxiliary expansion parameter ϵ (which at the end
is set to 1) and assign the power counting as ∼ ϵ and L⊥ ∼ ϵ−1/2. The terms contributing
up to O(ϵ) to the cross section have been derived in [17] using recursive solutions of the
relevant RG equations. Adapting the resulting expression to the present case, we find that
the hard-scattering kernels defined in (13) can be written in the form

C̄gg←ij(z1, z2, q
2
T , m

2
H , µ) =

1

2

∫ ∞

0

dxT xT J0(xT qT ) exp
[

gA(η, L⊥, as)
]

×
∑

n=1,2

Ī(n)g←i(z1, L⊥, as) Ī
(n)
g←j(z2, L⊥, as) ,

(26)

where

gA(η, L⊥, as) = −
[

ηL⊥
]

ϵ−1/2 −
[

as
(

ΓA
0 + ηβ0

) L2
⊥

2

]

ϵ0

−
[

as (2γ
g
0 + ηK)L⊥ + a2s

(

ΓA
0 + ηβ0

)

β0
L3
⊥

3

]

ϵ1/2
(27)

−
[

as ηd2 + a2s

(

KΓA
0 + 2γg

0β0 + η
(

β1 + 2Kβ0

)

)L2
⊥

2
+ a3s

(

ΓA
0 + ηβ0

)

β2
0

L4
⊥
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]

ϵ

−O(ϵ3/2) .
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Note that we treat ln(m2
H/µ

2) as a large logarithm and count η defined in (23) as an O(1)
variable. The auxiliary parameter ϵ counts the order in as resulting (for qT ≪ q∗) after the xT

integral in (26) has been performed. The two terms given in the first line are unsuppressed
and must be kept in the exponent of the integrand in (26), whereas the remaining terms can be
expanded in powers of ϵ1/2. It is important that the expansion is truncated at an integer power
of ϵ. The resulting integrals over the Bessel function can readily be evaluated numerically.

We finally give the expressions for the collinear kernel functions corresponding to our
modified power counting. We find

Ī(1)g←i(z, L⊥, as) = δ(1− z) δgi −
[

as P(1)
g←i(z)

L⊥
2

]

ϵ1/2

+

[

asRg←i(z) + a2s

(

Dg←i(z)− 2β0P(1)
g←i(z)

) L2
⊥

8

]

ϵ

+O(ϵ3/2) ,

(28)

while Ī(2)g←i coincides with I(2)g←i in (20) up to higher-order terms in ϵ. The corresponding
contribution to (26) is of O(ϵ2) and can be neglected to the order we are working. The
quantities

Dg←i(z) =
∑

j=g,q,q̄

∫ 1

z

du

u
P(1)

g←j(u)P
(1)
j←i(z/u) (29)

involve the convolutions of two DGLAP splitting functions. Following [17], we find

Dg←g(z)− 2β0P(1)
g←g(z)

= 64C2
A

[(

ln (1−z)2

z

1− z

)

+

+
1− 2z + z2 − z3

z
ln

(1− z)2

z
− 2(1 + z) ln z + 3(1− z)−

11

3

1− z3

z

]

+ 16CAβ0

[

z

(1− z)+
+

1− z

z
+ z(1 − z)

]

+ 32CFTFnf

[

2(1 + z) ln z + 1− z +
4

3

1− z3

z

]

,

Dg←q(z)− 2β0P(1)
g←q(z)

= 16CACF

[

1 + (1− z)2

z
ln

(1− z)2

z
−

2 + 6z + 3z2

z
ln z − (1− z)

(

31

3z
+

7

3
+

4z

3

)]

+ 16C2
F

[

1 + (1− z)2

z
ln

(1− z)2

z
+

2 ln z

z
+ 2−

z

2

]

.

(30)
Equations (26)–(28) are our main results. With the help of these expressions, large loga-

rithms can be resummed at NNLL order for arbitrarily small transverse momenta. For larger
qT values, the additional terms contained in (27) and (28) reduce to higher-order terms pro-
portional to a2s and a3s, which can be kept without doing any harm. Our formula thus provides
a smooth interpolation between the regions of small and very small qT . In fact, it has been
shown in [17] that the additional terms needed at very low qT serve an important purpose
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✦ power counting and perturbative ingredients needed for the N3LL 
resummation

‣ QCD beta function to 4-loop [Ritbergen et al., 1997], Cusp anomalous dimension 
to 4-loop [3-loop, Moch et al., 2004], quark and gluon anomalous dimension to 3-
loop [Becher, Neubert, 2009], Ct and Cs to 2-loop [Ahrens et al, 2009] at matching 
scales 

‣ kernel of beam functions [scale independent terms] to 2-loop [Gehrmann et al, 
2012, 2014], DGLAP splitting kernel to 2-loop [3-loop, Moch et al., 2004], collinear 
anomaly [scale independent terms] to 3-loop [2-loop, Becher, Neubert, 2011] 

two unknown numbers

Pade approx. for cusp at 
4-loop, effects are small 
as in many other studies

will vary 3-loop collinear 
anomaly (d3) in a 
reasonable range
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✦ Fixed-order matching (non-singular/power corrections) is important 
even in peak region for Higgs case, NNLO/N3LO [Glosser , Schmidt, 
2002, Boughezal et al., 2015]  

✦ Long-distance effects are found to be small in peak region of the 
Higgs qT [Becher et al., 2013, Echevarria et al., 2015, Florian et al., 2011]

component dominates at large values of qT . The two components have to be consistently matched
at intermediate values of qT , so as to obtain a theoretical prediction with uniform formal accuracy
over the entire range of qT , from qT ≪ M up to qT ∼ M . To this aim, we compute

[
dσ̂(fin.)

ab

]
f.o.

starting from
[
dσ̂ab

]
f.o.

, the usual perturbative series for the partonic cross section truncated at
a given fixed order in αS, and subtracting from it the perturbative truncation of the resummed
component at the same fixed order in αS:

[dσ̂(fin.)
F ab

dq2
T

]

f.o.
=

[dσ̂F ab

dq2
T

]

f.o.
−

[dσ̂(res.)
F ab

dq2
T

]

f.o.
. (6)

Moreover, we impose the condition:
[[dσ̂(res.)

F ab

dq2
T

]

l.a.

]

f.o.

=
[dσ̂(res.)

F ab

dq2
T

]

f.o.
. (7)

This matching procedure guarantees that the replacement in Eq. (5) retains the full information
of the perturbative calculation up to the specified fixed order plus resummation of logarithmically-
enhanced contributions from higher orders. Equations (6) and (7) indeed imply that the matching
is perturbatively exact, in the sense that the fixed-order truncation of the right-hand side of
Eq. (5) exactly reproduces the customary fixed-order truncation of the partonic cross section in
Eq. (2). The (small-qT ) resummed and (large-qT ) fixed-order approaches are thus consistently
combined without double-counting (or neglecting) of perturbative contributions and by avoiding
the introduction of ad-hoc boundaries (such as, for instance, the choice of some intermediate
value of qT as ‘switching’ point between the resummed and fixed-order calculations) between the
large-qT and small-qT regions.

The resummed contributions that are present in the term
[
dσ̂(res.)

F ab

]
l.a.

of Eq. (5) are necessary
and fully justified at small qT . Nonetheless they can lead to sizeable higher-order perturbative
effects also at large qT , where the small-qT logarithmic approximation is not valid. To reduce the
impact of these unjustified higher-order terms, we require that they give no contributions to the
most basic quantity, namely the total cross section, that is not affected by small-qT logarithmic
terms. We thus impose that the integral over qT of Eq. (5) exactly reproduces the fixed-order

calculation of the total cross section. Since dσ̂(fin.)
F ab is evaluated in fixed-order perturbation the-

ory, the perturbative constraint on the total cross section is achieved by imposing the following
condition: ∫ ∞

0

dq2
T

[dσ̂(res.)
F ab

dq2
T

]

l.a.
=

∫ ∞

0

dq2
T

[dσ̂(res.)
F ab

dq2
T

]

f.o.
. (8)

Equation (8) can be regarded, in some sense, as a unitarity constraint. As a matter of fact, the

logarithmic contributions that are resummed in dσ̂(res.)
F ab are, precisely speaking, plus distributions

of the type [(αn
S/q

2
T ) lnm(M2/q2

T )]+. Therefore, it is quite natural to require that these resummed
terms give a vanishing contribution to the total cross section. Note that the bulk of the qT dis-
tribution is in the region qT ∼<MH . Since resummed and fixed-order perturbation theory controls
the small-qT and large-qT regions respectively, the total cross section constraint mainly acts on the
size of the higher-order contributions introduced in the intermediate-qT region by the matching
procedure.

Another distinctive feature of the formalism illustrated so far is that we implement perturbative
QCD resummation at the level of the partonic cross section. In the factorization formula (2), the

5

~ 10% in peak region

We adopt the order matching, NLL+NLO, NNLL+NNLO, N3LL+N3LO 
[also require 3-loop DGLAP kernel]; will vary the canonical scale 
choices/hard functions in non-singular piece to further investigate the 
perturbative convergence  

coupling, as described by the time-like gluon form factor. In [37, 38], we have shown that it
is advantageous to evaluate the relevant matching coefficient CS(−m2

H , µh) with a time-like
scale choice µ2

h = −m2
H . This eliminates the large perturbative corrections arising when the

gluon form factor is continued from space-like to time-like kinematics. When this is done, also
the corrections to CS(−m2

H , µh) are of moderate size, and the effect of a variation of µh by a
factor 2 on the cross section is again below 1%. Since the variation of the factorization scale
µ leads to the largest scale uncertainties by far, we use it to generate the error bands in the
plots, keeping the hard matching scales µt and µh fixed at their default values. The NNLL
corrections have a noticable effect and strongly enhance the cross section in the peak region.
From the right plot, we observe that the scale variation at NLL order is very small in the
vicinity of qT = 5GeV, because the predictions with high and low µ values cross each other.
Near such a band crossing, the scale variation underestimates the theoretical uncertainty, and
it is therefore not too surprising that the NLL and NNLL bands do not overlap in the low-
qT region. Since the prediction at NNLL order does not exhibit a band crossing, we believe
that its scale variation provides a more reliable estimate of the theoretical uncertainty. Since
we observe that the one-loop correction arising at NNLL order is larger than the NLL scale
dependence suggests, we will be conservative when performing the matching to the fixed-order
result in Section 3 and adopt a matching scheme which yields larger scale uncertainties for
the combined result than for the resummed result itself (see Figure 4).

We proceed to study the impact on long-distance hadronic effects on the transverse-
momentum distribution, which for the case of Drell-Yan production of electroweak bosons
are known to have a non-negligible impact [2, 4, 39]. Following [17], we model these effects by

noting that the beam-jet functions B(n)
g (ξ, x2

T , µ) in (10), which are nothing but transverse-
position dependent PDFs, must vanish rapidly when the two gluon fields are separated by a
transverse distance xT larger than the proton size. This motivates an ansatz of the form

B(n)
g (ξ, x2

T , µ) = fhadr(xTΛNP)B
(n) pert
g (ξ, x2

T , µ) , (31)

where the perturbative functions B(n) pert
g carry all the scale dependence and are given by

(11), whereas the hadronic form factor fhadr(r) with fhadr(0) = 1 describes the fall-off at large
transverse distances and is parameterized in terms of a hadronic scale ΛNP. For simplicity,
we will assume that this form factor is independent of ξ. The above ansatz inserts a factor
[fhadr(xTΛNP)]2 under the integral over xT in (26), which suppresses the region of very large
xT values. We will employ the Gaussian model

fGauss
hadr (xTΛNP) = exp

(

−Λ2
NP x

2
T

)

(32)

for the form factor. For the case of Drell-Yan production, it was shown in [17] that the
functional form of the model function only has a minor impact on the results, which are
mainly sensitive to the value of the parameter ΛNP, and we have confirmed that the same
is true in the present case. Choosing ΛNP ≈ 600MeV shifts the position of the peak of the
qT distribution for Z-boson production at the LHC from 3.2GeV to 3.5GeV and yields to a
significantly better agreement with the data. A similar effect is seen for Tevatron data.

In Figure 2, we compare the situation in Drell-Yan production of Z bosons, for which the
characteristic scale q∗ ≈ 1.75GeV is rather low, with that in Higgs production at the LHC,
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Figure 2: Comparison of the importance of long-distance hadronic effects on the differential
cross sections dσ/dqT for Z-boson (left) and Higgs-boson production (right) at the LHC with√
s = 8TeV. We adopt the Gaussian model (32) and vary ΛNP between 0 and 1GeV. The

cross sections for Z-boson production include a factor of Br(Z → ℓ+ℓ−) = 3.37%.

for which q∗ ≈ 7.7GeV is safely in the perturbative domain. As expected, we find that the
impact of hadronic effects is significantly reduced in the latter case. With ΛNP ≈ 600MeV,
for instance, the peak position shifts by merely 100MeV (from 9.1GeV to 9.2GeV), which
is hardly visible on the scale of the plot. Even for ΛNP = 1GeV, the shift amounts to only
300MeV. We will see in the next section that perturbative uncertainties are significantly larger
than this effect. As long as ΛNP is in the GeV range, it therefore seems safe to ignore the
potential impact of long-distance effects for all practical purposes.

3 Predictions for the LHC

Having discussed the factorization of the cross section and its behavior at very small qT , we now
present our final results for the transverse-momentum spectrum of Higgs bosons produced in
gluon fusion at the LHC. In order to obtain reliable predictions also at intermediate qT values,
we match the resummed differential cross section (15) to the O(αs) fixed-order result. To
this end, we add the fixed-order cross section σNLO to the resummed result and subtract the
fixed-order expansion of (15) so as to avoid double counting:

dσNNLL+NLO = dσNNLL + dσmatching = dσNNLL +
(

dσNLO − dσNNLL

∣

∣

expanded to NLO

)

. (33)

The expansion of the resummed result to O(αs) can be derived using

q2T C̄gg→ij(z1, z2, q
2
T , m

2
H , µ) =

as
2

[(

2ΓA
0 ln

q2T
m2

H

+ 4γg
0

)

δ(1− z1) δ(1− z2) δgi δgj

+ P(1)
g←i(z1) δ(1− z2) δgj + δ(1− z1) δgi P(1)

g←j(z2)

]

.

(34)
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where the perturbative functions Bpert
i/N carry all the scale dependence and are given by (4),

whereas the hadronic form factor fhadr(r) with fhadr(0) = 1 describes the fall-off at large
transverse distances and is parameterized in terms of a hadronic scale ΛNP. For simplic-
ity, we assume that this form factor is independent of ξ. The above ansatz inserts a factor
[fhadr(xTΛNP)]2 under the integral over xT in (10), which suppresses the region of very large
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for the form factor, which agree in their first-order terms but have quite different behavior for
large separation. Fortunately, we will find that while the results are rather sensitive to the
value of the hadronic scale ΛNP, the precise shape of the form factor appears to be of minor
importance. We will show in Section 5 that hadronic corrections to the value of the intercept
of the dσ/dq2T distribution indeed scale (approximately) as a power law, ∼ (ΛQCD/q∗)δ, where
due to the resummation of the OPE the exponent δ is not given by an even integer. Let us
note for completeness that the hadronic form factor fhadr can in general also depend on the
quark flavor and the momentum fraction ξ. Models which include a factor ξΛ

2
2x

2
T in fhadr, with

a second non-perturbative parameter Λ2, were studied in [23, 24].

5 Systematic studies

Having discussed the structure of the theoretical prediction for the resummed Drell-Yan cross
section in detail, we now proceed to perform some systematic studies related to scale variations,
various implementations of the expansion, different ways to set the scale µ, and the importance
of power corrections. For the purposes of the discussion in this section, we will consider the
resummed cross section dσ/dqT without matching to fixed-order perturbation theory. We
show results at LO and NLO in RG-improved perturbation theory, which correspond to NLL
and NNLL accuracy. Since we will later match to fixed-order calculations, we will refer in the
following to the resummed results by their logarithmic accuracy rather than their order in RG-
improved perturbation theory so as to avoid confusion. For concreteness, we consider the case
of Z-boson production at the Tevatron with the Z-boson decaying leptonically, pp̄ → X+Z →
X + ℓ+ℓ−. The corresponding cross section is obtained by multiplying the Z-production cross
section with the leptonic branching ratio Br(Z → ℓ+ℓ−) = 0.03366. Throughout, we use
sin2 θW = 0.2312 for the weak mixing angle and α(MZ) = 1/128.89 for the fine-structure
constant. We use MSTW2008NNLO [25] as our default PDF set, which has an associated
value of αs(MZ) = 0.11707. The strong coupling is evolved with three-loop accuracy and has
flavor thresholds at µb = 4.75GeV and µc = 1.4GeV for the b and c quarks.

In Figure 2, we show the scale dependence of the cross section obtained in the improved
resummation scheme developed in Section 3, varying the factorization scale µ by a factor
two about the default choice µ = q∗ + qT , where q∗ ≈ 1.88GeV has been defined in (19)
and emerges dynamically in the region of very small transverse momentum. We observe
a significant reduction of the scale uncertainty when going from NLL to NNLL order. In
addition to the scale µ, the cross section also depends on the hard matching scale µh, which
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Numerical results [preliminary]

✦ resummed component and scale variation [two matching scales
+resummation scale, factorization scale], qT distribution 

12

resummed cross sections can be divided into two separate scale invariant parts 
to have a better gauge on missing higher-order contributions [see Becher et al., 
2013]
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✦ resummed component and scale variation [two matching scales
+resummation scale, factorization scale], intercept 

13

resummed cross sections can be divided into two separate scale invariant parts 
to have a better gauge on missing higher-order contributions [see Becher et al., 
2013]
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✦ resummed component and variation with d3 [variation with cusp at 
4-loop is negligible]

14

qT distribution                                                                 intercept

April 24, 2015

Note on d3 for Higgs pT resummation

Jun Gao

Fgg(L⊥,αs) =
∞
∑

1

dgn(L⊥)
(αs

4π

)n
(1)

Here I am following the setups in the note from Frank and Radja. Basically we are trying to translate the
inclusive pT distribution to approximate inclusive total cross sections (I think we also discussed about the possibility
of using accumulated cross sections between two pT cuts. But that is even more ambitious since there is no simple
correspondance between pT and threshold variable). In the abosolute threshold limit, m2

H ∼ s, then we hope this
approximate result can catch with all the singular pieces of z ≡ (1−m2

H/s) in the threshold expansion (at lease for
the logrithmic terms at non-vanishing z).

We start with the factorization formula in BN,

dσ

dq2T
= σ0(µ)C

2
t (m

2
t , µ)|CS(−m2

H , µ)|2
∫ 1

τ

dy

y
C̃gg←gg(y, q

2
T ,m

2
H , µ)Fgg(τ/y, µ), (2)

and the approximate inclusive cross section as

Σ(qT ) ≡
∫ q2T,limit

0
dq2T

dσ

dq2T
. (3)

Here I only include the gg channel for simplicity. There are two “Red” inputs here needs to be justified. First one is
the upper limit in the qT integration. In exact QCD we know q2T ≤ q2T,max ≡ s(1− z)2/4 from kinematics. Thus we
might first assume q2T,limit = q2T,max. On another hand, in the parton luminosities, in exact QCD the τ varible should
not only depend on qT but also the scattering angle in the partonic CMS frame as well as the recoil mass. Since here
the formula is inclusive in pT we can only choose some “average” value of τ , i.e., τ1 = m2

H/s (CSS), τ2 = (m2
H + q2T )/s

(BN), or τ3 = (
√

(m2
H + q2T ) + qT )2/s, and so on. In exact QCD, τ1 is the lower limit of τ for all qT , while τ3 is the

lower limit for a chosen qT . All choices are well justified for small qT resummation providing differences of power
corrections. While for the present situation it is not clear to me (no first principle guidance) which “average” value
should we choose and will lead to different results or not, due to the fact that we have integrated out the relevant
freedoms. Thus I will try all above three choices.

Before moving on to the integration on pT , first I outline the inverse Bessel transformation we need at O(αS). We
define

In ≡
1

2

∫ +∞

0
dxTxTJ0(xT qT )L

n
⊥. (4)

Note here the definition is different with the one in Frank and Radja’s note. The singularity at qT = 0 can be
regularized by usual plus distributions. It is straightforward to show that

In = (−1)n
(

d

dη

)n

q−2+2η
T

(

2µ

b0

)−2η Γ(1− η)

Γ(η)
|η→0, (5)

and for the first few terms

I0 =
1

µ2
δ(q2T /µ

2),

I1 = −
1

µ2

[

1

q2T /µ
2

]

+

,

I2 =
2

µ2

[

ln(q2T /µ
2)

q2T /µ
2

]

+

, (6)

being the scale independent 
part in collinear anomaly 

exponent, d1=0, d2=-95.8, d3=?

where the prime denotes a derivative with respect to L⊥, and as usual we have expanded the
cusp anomalous dimension and β(αs) = µ dαs/dµ as

ΓF
cusp(αs) =

∞∑

n=1

ΓF
n−1

(αs

4π

)n
, β(αs) = −2αs

∞∑

n=1

βn−1

(αs

4π

)n
. (49)

For the first two expansion coefficients, we obtain

dq1(L⊥) = ΓF
0 L⊥ + dq1 , dq2(L⊥) =

ΓF
0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq2 , (50)

where dqn ≡ dqn(0) with dq1 = 0. The expansion of the corresponding function Fgg for Higgs
production can be written as in (47) but with coefficients dgn, which obey analogous equations
in which ΓF

cusp is replaced by ΓA
cusp. We will later discuss how the two-loop coefficients dq,g2

can be extracted from existing calculations of higher-order corrections to Drell-Yan and Higgs
production cross sections derived in fixed-order perturbation theory [6, 7]. The result is

dq2
CF

=
dg2
CA

= CA

(
808

27
− 28ζ3

)
−

224

27
TFnf . (51)

These coefficients contain only maximally non-abelian color structures. This leads us to con-
jecture that also in higher orders they are constrained by the non-abelian exponentiation
theorem [41, 42], as is the case for the cusp anomalous dimension. This would imply that the
Casimir scaling relation dqn/CF = dgn/CA continues to hold at least to three-loop order. Since
the cusp anomalous dimension obeys the same relation, Casimir scaling to three-loop order
holds for the entire Fqq̄ and Fgg functions, as shown in (17). Note that there are arguments
indicating that for the cusp anomalous dimension Casimir scaling should hold at four loops
and perhaps even to all orders of perturbation theory [37].

4 Resummation and Fourier transformation

In the differential cross section (18) and the expression for the hard-scattering kernels Cqq̄→ij

in (23) the dependence on the scales M2 and x2
T is factorized explicitly. However, for any

given choice of the renormalization scale µ these expressions contain large logarithms, which
need to be resummed to all orders in perturbation theory. This is accomplished by solving RG
equations for the various component functions. We will now discuss these solutions in detail.
We will then derive a compact, all-order formula for the hard-scattering kernels Cqq̄→ij in qT
space, which is free of large logarithms.

In practice, the easiest way to perform the resummation of large logarithms is to choose µ
of order a typical hard-collinear scale, i.e. µ ∼ qT or µ ∼ x−1T , and then evolve the hard function
and the PDFs from appropriate initial scales to the scale µ. The PDF evolution is standard
and can be taken from any package that generates parton distributions. The evolution of the
hard function reads [31]

CV (−M2, µ) = exp [2S(µh, µ)− 2aγq(µh, µ)]

(
−M2

µ2
h

)−aΓ(µh,µ)

CV (−M2, µh) , (52)
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✦ non-singular component in conventional scheme, canonical mu=mH, 
no RG improvement [restrict to NNLO here]
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Here I only include the gg channel for simplicity. There are two “Red” inputs here needs to be justified. First one is
the upper limit in the qT integration. In exact QCD we know q2T ≤ q2T,max ≡ s(1− z)2/4 from kinematics. Thus we
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√

(m2
H + q2T ) + qT )2/s, and so on. In exact QCD, τ1 is the lower limit of τ for all qT , while τ3 is the

lower limit for a chosen qT . All choices are well justified for small qT resummation providing differences of power
corrections. While for the present situation it is not clear to me (no first principle guidance) which “average” value
should we choose and will lead to different results or not, due to the fact that we have integrated out the relevant
freedoms. Thus I will try all above three choices.
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✦ non-singular component in conventional/modified scheme, canonical  
mu=mH, no/with RG improvement [restrict to NNLO here]
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non-singular contributions are sensitive to the matching scheme used 
including choice of the canonical scale; uncertainties reduced from NLO to 
NNLO; N3LO must needed to match the precision in N3LL resummation
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✦ non-singular component in conventional/modified scheme, canonical  
mu=mH/q*+qT, no RG improvement [restrict to NNLO here]

17

non-singular contributions are sensitive to the matching scheme used 
including choice of the canonical scale; uncertainties reduced from NLO to 
NNLO; N3LO must needed to match the precision in N3LL resummation
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✦ non-singular component in conventional/modified scheme, mu=mH/
q*+qT, no/with RG improvement [restrict to NNLO here]
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✦ uncertainties in the combined spectrum, for NNLL+NNLO and N3LL
+N3LO [preliminary]

19

with N3LL+N3LO accuracy we expect to bring down the perturbative 
uncertainties to within 10% from peak region to large qT (not include 
uncertainties from unknown d3)

only shown for 10-60 GeV, and 1 
mat. scheme yet
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Summary
✦ We report progress in a N3LL+N3LO calculation of qT spectrum of 

the SM Higgs boson in gluon fusion production based on SCET 

✦ N3LL resummation reduce the scale uncertainties significantly and the 
resummation show good convergence 

✦ Non-singular component (FO matching) is important for predictions 
even around the peak region; N3LO contributions are needed  

✦ With all available perturbative inputs a reduction of perturbative 
uncertainties to within 10% are expected for the spectrum from small-
qT to ~mH 
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✦ non-singular component in conventional/modified scheme, canonical  
mu=mH/q*+qT, with RG improvement [restrict to NNLO here]
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non-singular contributions are sensitive to the matching scheme used 
including choice of the canonical scale; uncertainties reduced from NLO to 
NNLO; N3LO must needed to match the precision in N3LL resummation

mu=mH(ns)                                                                mu=q*+qT(ns)

pp!H, 125 GeV
at LHC 13 TeV
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alternative, mu"q#$qT NLO
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