Mixed QCD–electroweak $\mathcal{O}(\alpha_s \alpha)$ corrections to Drell–Yan processes in the resonance region

Alexander Huss

in collaboration with S. Dittmaier and C. Schwinn

Radcor–Loopfest 2015

June 15th 2015, UCLA

based on Nucl. Phys. B885 (2014) 318 [arXiv:1403.3216 [hep-ph]]

2 Pole Approximation @ NNLO $O(\alpha_s \alpha)$

3 Conclusions and Outlook

 W^{\pm} and Z production at the LHC

Clean experimental signature & Large cross section

⇒ One of the most precise probes to test the Standard Model!

- ► important "standard candles" at the LHC → detector calibration, luminosity monitor, quark PDFs,...
- ► searches for physics beyond the Standard Model → background in Z', W' searches (high M_{ℓℓ}, M_{T,νℓ} tails)
- precision measurements $\hookrightarrow M_{\mathbf{W}}, \sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}$

\Rightarrow One of the most precise probes to test the Standard Model!

- ► important "standard candles" at the LHC → detector calibration, luminosity monitor, quark PDFs,...
- ► searches for physics beyond the Standard Model → background in Z', W' searches (high M_{ℓℓ}, M_{T,νℓ} tails)
- precision measurements $\hookrightarrow M_{\mathbf{W}}, \sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}$

- Tevatron: (most precise measurement) $M_{\rm W} = 80.387 \pm 0.016 \text{ GeV}$
- ► LHC: aimed precision of $\Delta M_{\rm W} \lesssim 7 \; {\rm MeV}$ [Besson et al. '08] [Baak et al. '13]
- ► fits to kinematic distributions $M_{\mathrm{T},\nu\ell} \in [65, 90] \,\mathrm{GeV}$

Motivation: $M_{\rm W}$ measurement

Theoretical Status

 $\begin{array}{cccccc} \textbf{QCD} & \textbf{NNLO} \ \mathcal{O}\left(\alpha_{s}^{2}\right) & \dots & [Hamberg et al. '91 / Harlander, Kilgore '02] \\ & (differential) [Anastasiou et al. '04] [Melnikov, Petriello '06] [Catani et al. '09] \\ & resummation \\ & \dots & [Balazs, Yuan '97] [Bozzi et al. '10] [Becher et al. '11] [Banfi et al. '12] [Guzzi et al. '13] \\ & \textbf{PS} matching \\ & \dots & [Frixione Webber '06] [Alioli et al. '08] [Hamilton, Richardson, Tully '08] \\ & (matching@NNLO) [Höche, Li, Prestel '14] [Karlberg, Re, Zanderichi '14] \\ \end{array}$

EW NLO $\mathcal{O}(\alpha)$

+ much more...

Approaches to Combination

- ► Additive/multiplicative combinations [Cao, Yuan '04] [Li, Petriello '12] [Richardson et al. '12]
- NLO (EW+QCD) + PS matching [Bernaciak, Wackeroth '12] [Barzè et al. '12, '13]

Steps towards NNLO QCDimesEW $\mathcal{O}(\alpha_{s}\alpha)$

- ▶ NLO EW $O(\alpha)$ to V + jet (off-shell + decay) [Denner, Dittmaier, Kasprzik, Mück '09, '11]
- ► Decay widths [Czarnecki, Kühn '96](Z) [Kara '13](W)

Pole Approximation

[Stuart '91] [H.Veltman '94] [Aeppli, v.Oldenborgh, Wyler '94]

Aim: Improve the theoretical prediction in resonance region \hookrightarrow Expansion about complex pole $\mu_V^2 = M_V^2 - iM_V\Gamma_V \implies \text{leading:} (p_V^2 - \mu_V^2)^{-1}$

Leading pole approximation (PA)

Factorizable corrections:

 \hookrightarrow propagator $(1 \rightarrow 1)$

(taken care by on-shell scheme)

Non-factorizable corrections:

► connect production & decay resonant contribution ↔ only soft-photon exchange ↔ non-fact. (2 → 2)

 \Rightarrow Simplifications compared to the full off-shell calculation (2 \rightarrow 2) [Dittmaier, Krämer '01], etc.

PA @ NLO

- full calculation vs. PA: agreement $\leq 1\%$ around resonance
- ▶ PA for $\mathcal{O}(\alpha_{s}\alpha)$ corrections expected to be sufficient
- dominant contribution: factorizable corrections to the decay

PA @ NLO

- full calculation vs. PA: agreement $\leq 1\%$ around resonance
- ▶ PA for $\mathcal{O}(\alpha_{s}\alpha)$ corrections expected to be sufficient
- dominant contribution: factorizable corrections to the decay

2 Pole Approximation @ NNLO $\mathcal{O}(\alpha_{\rm s}\alpha)$

Pole Approximation @ NNLO $O(\alpha_s \alpha)$ —Contributions

Non-factorizable corrections*

[Dittmaier, AH, Schwinn '14]

QCD corrections to production
 x soft-photon exchange: production & decay

Factorizable final–final corrections ✓

• only a constant $\mathcal{O}(\alpha_s \alpha)$ counterterm

Factorizable initial–final corrections* 🗸

- QCD corrections to production × EW corrections to decay
- large corrections & shape distortion expected

Factorizable initial-initial corrections*

- $\mathcal{O}(\alpha_{s}\alpha)$ corrections to on-shell V production
- no significant shape distortion expected
- no $\mathcal{O}(\alpha_{s}\alpha)$ PDFs

 * only virtual contributions indicated ightarrow also real-, double-real emission, interferences, \ldots

Pole Approximation @ NNLO $O(\alpha_s \alpha)$ —Contributions

Non-factorizable corrections*

[Dittmaier, AH, Schwinn '14]

QCD corrections to production
 x soft-photon exchange: production & decay

Factorizable final–final corrections ✓

• only a constant $\mathcal{O}(\alpha_s \alpha)$ counterterm

Factorizable initial–final corrections* 🗸

- QCD corrections to production × EW corrections to decay
- large corrections & shape distortion expected

Factorizable initial-initial corrections*

- $\mathcal{O}(\alpha_{s}\alpha)$ corrections to on-shell V production
- no significant shape distortion expected
- no $\mathcal{O}(\alpha_{s}\alpha)$ PDFs

 * only virtual contributions indicated ightarrow also real-, double-real emission, interferences, \ldots

Non-factorizable $\mathcal{O}(\alpha_s \alpha)$ corrections: Ingredients

- issue of overlapping IR singularities
- double-virtual contributions: (non-trivial cancellations)
 - expansion via Mellin–Barnes representation
 - effective field theory for unstable particles [Beneke et al. '03,'04]
 - generalization of [Yennie, Frautschi, Suura '61]

 \hookrightarrow factorized structure: (NNLO QCD×EW)_{nf} ~ (NLO QCD) × δ_{nf}

$$\begin{array}{c} \bar{q}_{a} & \gamma \\ q_{b} & q_{b} \\ q_{b} & V \end{array} \sim - \frac{C_{\mathrm{F}} \alpha_{\mathrm{s}}}{2\pi} \frac{Q_{q} Q_{l} \alpha}{2\pi} \mathcal{M}^{0} \left(1 - \epsilon\right) \left(-\hat{t}\right) \left(\mu_{V}^{2} - \hat{s}^{2}\right) \\ \times \end{array} \right)$$

$$= \frac{(4\pi)^{2\epsilon}\Gamma^{2}(1+\epsilon)}{(\mu_{V}^{2}-\hat{s})(-\hat{t})} \left(\frac{\mu_{V}^{2}-\hat{s}}{M_{V}^{2}}\right)^{-3\epsilon} \left(\frac{-\hat{t}}{\mu^{2}}\right)^{-2\epsilon} \left\{\frac{1}{2\epsilon^{3}} + \frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \left[2 + \frac{5\pi^{2}}{12} + \text{Li}_{2}\left(1 + \frac{\hat{t}}{M_{V}^{2}}\right)\right] + 2\operatorname{Li}_{3}\left(\frac{-\hat{t}}{M_{V}^{2}}\right) + \operatorname{Li}_{3}\left(1 + \frac{\hat{t}}{M_{V}^{2}}\right) - 6\zeta(3) - 2\ln\left(\frac{-\hat{t}}{M_{V}^{2}}\right) \left[\frac{\pi^{2}}{6} - \operatorname{Li}_{2}\left(1 + \frac{\hat{t}}{M_{V}^{2}}\right)\right] + \ln^{2}\left(\frac{-\hat{t}}{M_{V}^{2}}\right)\ln\left(1 + \frac{\hat{t}}{M_{V}^{2}}\right) + \frac{5\pi^{2}}{6} + 2\operatorname{Li}_{2}\left(1 + \frac{\hat{t}}{M_{V}^{2}}\right) + 4 + \mathcal{O}(\epsilon) + \mathcal{O}\left(\hat{s} - \mu_{V}^{2}\right)\right\}$$

$$+ 12/24$$

- issue of overlapping IR singularities
- double-virtual contributions: (non-trivial cancellations)
 - expansion via Mellin–Barnes representation
 - effective field theory for unstable particles [Beneke et al. '03,'04]
 - generalization of [Yennie, Frautschi, Suura '61]
- \hookrightarrow factorized structure: (NNLO QCDimesEW)_{nf} \sim (NLO QCD) imes δ_{nf}

- soft photon insertion along quark line
- ► hard interaction T
- gluons: virtual/real, hard/soft

- issue of overlapping IR singularities
- double-virtual contributions: (non-trivial cancellations)
 - expansion via Mellin–Barnes representation
 - effective field theory for unstable particles [Beneke et al. '03,'04]
 - generalization of [Yennie, Frautschi, Suura '61]
- \hookrightarrow factorized structure: (NNLO QCD×EW)_{nf} ~ (NLO QCD) × δ_{nf}

- issue of overlapping IR singularities
- double-virtual contributions: (non-trivial cancellations)
 - expansion via Mellin–Barnes representation
 - effective field theory for unstable particles [Beneke et al. '03,'04]
 - generalization of [Yennie, Frautschi, Suura '61]
- \hookrightarrow factorized structure: (NNLO QCD×EW)_{nf} ~ (NLO QCD) × δ_{nf}

$$\begin{split} \hat{\sigma}_{\mathsf{nf}}^{\mathsf{QCD}\otimes\mathsf{EW}} &= \iint\limits_{3+\gamma} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to3+\gamma} + \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} + \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} \\ &+ \int_{3} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, 2\,\mathrm{Re}\left\{\delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to3}\right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, 2\,\mathrm{Re}\left\{\delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2}\right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2\,\mathrm{Re}\left\{\delta_{\mathrm{N}}^{2\to2}\right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2\,\mathrm{Re}\left\{\delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2}\right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, +$$

Infrared singularities—QCD corrections: dipole subtraction formalism

$$\begin{split} \hat{\sigma}^{\text{QCD}} &= \int_{3}^{} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} + \int_{2}^{} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} + \int_{2}^{} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \\ &= \int_{3}^{} \left[\left(\mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \right)_{\epsilon=0} - \left(\mathrm{d}\sigma^{\mathrm{A}_{\mathrm{S}}} \right)_{\epsilon=0} \right] + \int_{2}^{} \left[\mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} + \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} + \int_{1}^{} \mathrm{d}\sigma^{\mathrm{A}_{\mathrm{S}}} \right]_{\epsilon=0} \end{split}$$

Infrared singularities—EW corrections: phase-space slicing method $\Delta E \ll \Gamma_V$

$$\int_{\gamma} d\Phi_{\gamma} d\sigma^{\text{QCD}} \delta_{\text{R}_{\text{ew}},\text{nf}}^{\gamma} = \int_{E_{\gamma} < \Delta E} d\Phi_{\gamma} d\sigma^{\text{QCD}} \delta_{\text{R}_{\text{ew}},\text{nf}}^{\gamma} + \int_{E_{\gamma} > \Delta E} d\Phi_{\gamma} d\sigma^{\text{QCD}} \delta_{\text{R}_{\text{ew}},\text{nf}}^{\gamma}$$

$$= \int_{E_{\gamma} < \Delta E} d\Phi_{\gamma} \delta_{\text{elk}}^{\gamma} d\sigma^{\text{QCD}} + \int_{E_{\gamma} > \Delta E} d\Phi_{\gamma} d\sigma^{\text{QCD}} \delta_{\text{R}_{\text{ew}},\text{nf}}^{\gamma}$$

$$= \delta_{\text{soft}}(\Delta E)$$

$$\begin{split} \hat{\sigma}_{\mathsf{n}\mathsf{f}}^{\mathsf{QCD}\otimes\mathsf{EW}} &= \iint\limits_{3+\gamma} \, \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{s}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{n}\mathsf{f}}^{2\to3+\gamma} \, + \, \iint\limits_{2+\gamma} \, \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{s}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{n}\mathsf{f}}^{2\to2+\gamma} \, + \, \iint\limits_{2+\gamma} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{n}\mathsf{f}}^{2\to2+\gamma} \\ &+ \, \int_{3} \, \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to3} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{n}\mathsf{f}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{Vew},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VeW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VW},\mathsf{m}}^{2\to2} \right\} \, + \, \int_{2} \, \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{s}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{VW},\mathsf{m}}^{2\to2} \, + \, \delta_{\mathrm{WW},\mathsf{m}}^{2\to2} \, + \, \delta_{\mathrm{W},\mathsf{m}}^{2\to2} \, + \, \delta_{\mathrm{W},\mathsf{m}}^{2\to2} \, + \, \delta_{\mathrm{W},\mathsf{m}}^{2\to2} \, + \, \delta_{\mathrm{W},\mathsf{m}}^{2\to2}$$

Example: double-real corrections

$$\widetilde{\sigma}_{\mathsf{nf}}^{\mathbf{R}_{\mathbf{s}}\otimes\mathbf{R}_{\mathbf{ew}}} = \iint_{\substack{\mathbf{3}+\gamma\\ E_{\gamma} > \Delta E}} \left\{ \mathrm{d}\sigma^{\mathbf{R}_{\mathbf{s}}} \ \delta_{\mathbf{R}_{\mathbf{ew}},\mathsf{nf}}^{2\to3+\gamma}(\Phi_{3+\gamma}) - \sum_{\mathsf{dipoles}} \mathrm{d}\sigma^{0} \ \delta_{\mathbf{R}_{\mathbf{ew}},\mathsf{nf}}^{2\to2+\gamma}(\Phi_{2+\gamma}) \otimes \mathrm{d}V_{\mathsf{dip}} \right\}$$

$$\blacktriangleright \ \delta^{2\to 2+\gamma}_{\mathrm{R}_{\mathrm{ew}},\mathrm{nf}}(\widetilde{\Phi}_{2+\gamma})$$

ightarrow analytic integration over unresolved phase space

• cut $E_{\gamma} > \Delta E$ frame dependent \rightsquigarrow partonic CMS of $\Phi_{3+\gamma}$ $\hookrightarrow \widetilde{\Phi}_{2+\gamma}$ boosted in beam direction

$$\begin{split} \hat{\sigma}_{\mathsf{nf}}^{\mathsf{QCD}\otimes\mathsf{EW}} &= \iint\limits_{3+\gamma} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to3+\gamma} \, + \, \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} \, + \, \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} \\ &+ \, \int_{3} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to3} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE}$$

Example: double-real corrections

$$\widetilde{\sigma}_{\mathsf{nf}}^{\mathbf{R}_{\mathbf{S}}\otimes\mathbf{R}_{\mathbf{ew}}} = \iint_{\substack{3+\gamma\\ E_{\gamma} > \Delta E}} \left\{ \mathrm{d}\sigma^{\mathbf{R}_{\mathbf{S}}} \, \delta_{\mathbf{R}_{\mathbf{ew}},\mathsf{nf}}^{2 \to 3+\gamma}(\Phi_{3+\gamma}) - \sum_{\mathsf{dipoles}} \mathrm{d}\sigma^{0} \, \delta_{\mathbf{R}_{\mathbf{ew}},\mathsf{nf}}^{2 \to 2+\gamma}(\widetilde{\Phi}_{2+\gamma}) \otimes \mathrm{d}V_{\mathsf{dip}} \right\}$$

 $\begin{array}{l} \bullet \ \delta^{2 \to 2 + \gamma}_{\mathrm{Rew}, \mathsf{nf}}(\widetilde{\Phi}_{2 + \gamma}) \\ \hookrightarrow \text{ analytic integration over unresolved phase space} \end{array}$

cut E_γ > ΔE frame dependent → partonic CMS of Φ_{3+γ} → Φ̃_{2+γ} boosted in beam direction

$$\begin{split} \hat{\sigma}_{\mathsf{nf}}^{\mathsf{QCD}\otimes\mathsf{EW}} &= \iint\limits_{3+\gamma} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to3+\gamma} \, + \, \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} \, + \, \iint\limits_{2+\gamma} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2\to2+\gamma} \\ &+ \, \int_{3} \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to3} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{V}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{Re} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE} \left\{ \delta_{\mathrm{V}_{\mathrm{ew}},\mathsf{nf}}^{2\to2} \right\} \, + \, \int_{2} \mathrm{d}\sigma^{\mathrm{C}_{\mathrm{S}}} \, 2 \operatorname{RE}$$

Example: double-real corrections

$$\widetilde{\sigma}_{\mathsf{nf}}^{\mathrm{R}_{\mathrm{s}}\otimes\mathrm{R}_{\mathrm{ew}}} = \iint_{\substack{3+\gamma\\ E_{\gamma} > \Delta E}} \left\{ \mathrm{d}\sigma^{\mathrm{R}_{\mathrm{s}}} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2 \to 3+\gamma}(\Phi_{3+\gamma}) - \sum_{\mathsf{dipoles}} \mathrm{d}\sigma^{0} \, \delta_{\mathrm{R}_{\mathrm{ew}},\mathsf{nf}}^{2 \to 2+\gamma}(\widetilde{\Phi}_{2+\gamma}) \otimes \mathrm{d}V_{\mathsf{dip}} \right\}$$

 $\blacktriangleright \ \delta^{2 \to 2+\gamma}_{\mathrm{R}_{\mathrm{ew}}, \mathsf{nf}}(\widetilde{\Phi}_{2+\gamma})$

 \hookrightarrow analytic integration over unresolved phase space

► cut $E_{\gamma} > \Delta E$ frame dependent \rightsquigarrow partonic CMS of $\Phi_{3+\gamma}$ $\hookrightarrow \widetilde{\Phi}_{2+\gamma}$ boosted in beam direction

W^+ distributions @ NNLO $\mathcal{O}(\alpha_s \alpha)$ (non-factorizable)

- almost perfect cancellation between different contributions
- tiny & flat corrections!
- \Rightarrow dominant contributions at $\mathcal{O}(\alpha_{s}\alpha)$ from the factorizable corrections!

Pole Approximation @ NNLO $\mathcal{O}(\alpha_s \alpha)$ —Contributions

Non-factorizable corrections* 🗸 [Dittmaier, AH, Schwinn '14]

- QCD corrections to production
 x soft-photon exchange: production & decay
- phenomenologically negligible

Factorizable final–final corrections ✓

• only a constant $\mathcal{O}(\alpha_s \alpha)$ counterterm

Factorizable initial–final corrections[∗] ✓

- QCD corrections to production × EW corrections to decay
- large corrections & shape distortion expected

Factorizable initial-initial corrections*

- $\mathcal{O}(\alpha_{s}\alpha)$ corrections to on-shell V production
- no significant shape distortion expected
- no $\mathcal{O}(\alpha_{s}\alpha)$ PDFs

 * only virtual contributions indicated \rightsquigarrow also real-, double-real emission, interferences, \ldots

 \hookrightarrow small $\mathcal{O}(\lesssim 0.1\%)$ and flat corrections

 G_{μ} input parameter scheme

$$\alpha_{G_{\mu}} = \frac{\sqrt{2}G_{\mu}M_{W}^{2}}{\pi} \left(1 - \frac{M_{W}^{2}}{M_{Z}^{2}}\right), \qquad \delta Z_{e}^{G_{\mu}} = \delta Z_{e}^{\alpha(0)} - \frac{1}{2} \Delta r$$

Pole Approximation @ NNLO $\mathcal{O}(\alpha_s \alpha)$ —Contributions

Non-factorizable corrections* 🗸 [Dittmaier, AH, Schwinn '14]

- QCD corrections to production
 x soft-photon exchange: production & decay
- phenomenologically negligible

Factorizable final–final corrections ✓

- only a constant $\mathcal{O}(\alpha_s \alpha)$ counterterm
- small & no impact on shape

Factorizable initial–final corrections* 🗸

- QCD corrections to production × EW corrections to decay
- large corrections & shape distortion expected

Factorizable initial-initial corrections*

- $\mathcal{O}(\alpha_{s}\alpha)$ corrections to on-shell V production
- no significant shape distortion expected
- no $\mathcal{O}(\alpha_{s}\alpha)$ PDFs

 * only virtual contributions indicated \rightsquigarrow also real-, double-real emission, interferences, \ldots

- QCD corrections confined to production sub-process
- EW corrections confined to <u>decay</u> sub-process

 \Rightarrow reducible structure^{*}: (NLO QCD) × (NLO EW)

*exception: double-real corrections

$$\begin{split} \hat{\sigma}_{\text{fact. ini-fin}}^{\text{OCD}\otimes\text{EW}} &= \int_{3} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \mathrm{d}\sigma^{\text{R}_{\text{S}}} + \int_{2} 4\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} \mathrm{d}\sigma^{0} + \int_{2} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \mathrm{d}\sigma^{\text{C}_{\text{S}}} \\ &+ \iint_{3+\gamma} \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} + \iint_{2+\gamma} 2\operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} \mathrm{d}\sigma^{\text{R}_{\text{ew}}} + \iint_{2+\gamma} \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{C}_{\text{s}}\otimes\text{R}_{\text{ew}}} \end{split}$$

Treatment of infrared (IR) singularities

composition of two NLO methods:

- QCD: dipole subtraction formalism
- EW: dipole subtraction formalism

- QCD corrections confined to production sub-process
- EW corrections confined to <u>decay</u> sub-process

 \Rightarrow reducible structure^{*}: (NLO QCD) × (NLO EW)

*exception: double-real corrections

$$\begin{split} \hat{\sigma}_{\text{fact. ini-fin}}^{\text{OCD}\otimes\text{EW}} &= \int_{3} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \mathrm{d}\sigma^{\text{R}_{\text{S}}} + \int_{2} 4\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} \mathrm{d}\sigma^{0} + \int_{2} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \mathrm{d}\sigma^{\text{C}_{\text{S}}} \\ &+ \iint_{3+\gamma} \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} + \iint_{2+\gamma} 2\operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} \mathrm{d}\sigma^{\text{R}_{\text{ew}}} + \iint_{2+\gamma} \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{C}_{\text{s}}\otimes\text{R}_{\text{ew}}} \end{split}$$

Treatment of infrared (IR) singularities

composition of two NLO methods:

- QCD: dipole subtraction formalism
- ► EW: dipole subtraction formalism ~→

$$\begin{split} \hat{\sigma}_{\text{fact. ini-fin}}^{\text{QCD}\otimes\text{EW}} &= \int_{3} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{R}_{\text{S}}} + \int_{2} 4\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{0} + \int_{2} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{C}_{\text{S}}} \\ &+ \iint_{3+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{S}}\otimes\text{R}_{\text{ew}}} + \iint_{2+\gamma} 2\operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{\text{R}_{\text{ew}}} + \iint_{2+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{C}_{\text{S}}\otimes\text{R}_{\text{ew}}} \end{split}$$

Example: double-real corrections

$$\begin{split} \widetilde{\sigma}_{\text{fact. ini-fin}}^{\text{R}_{\text{S}}\otimes\text{R}_{\text{ew}}} &= \iint_{3+\gamma} \left\{ d\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} - \sum_{\substack{\text{OCD} \\ \text{dipoles}}} d\sigma_{\text{dec}}^{\text{R}_{\text{ew}}} \otimes dV_{\text{dip}} - \sum_{\substack{I,J \\ I \neq J}} d\sigma_{\text{PA}}^{\text{R}_{\text{B}}} \otimes dV_{\text{dip},IJ}^{\text{ew}} \right\} \\ &+ \sum_{\substack{\text{OCD} \\ \text{dipoles}}} \sum_{\substack{I,J \\ \text{dipoles}}} d\sigma_{\text{PA}}^{0} \otimes dV_{\text{dip}} \otimes dV_{\text{dip},IJ}^{\text{ew}} \right\} \end{split}$$

- QCD subtraction term for $V + \gamma$
- EW subtraction term for V + jet
- compensate over-subtraction in double-unresolved limit

$$\begin{split} \hat{\sigma}_{\text{fact. ini-fin}}^{\text{QCD}\otimes\text{EW}} &= \int_{3} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{R}_{\text{S}}} + \int_{2} 4\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{0} + \int_{2} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{C}_{\text{S}}} \\ &+ \iint_{3+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{S}}\otimes\text{R}_{\text{ew}}} + \iint_{2+\gamma} 2\operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{\text{R}_{\text{ew}}} + \iint_{2+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{C}_{\text{S}}\otimes\text{R}_{\text{ew}}} \end{split}$$

Example: double-real corrections

$$\begin{split} \widetilde{\sigma}_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} &= \iint_{3+\gamma} \left\{ \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} - \sum_{\substack{\text{QCD}\\\text{dipoles}}} \mathrm{d}\sigma_{\text{dec}}^{\text{R}_{\text{ew}}} \otimes \mathrm{d}V_{\text{dip}} - \sum_{\substack{I,J\\I \neq J}} \mathrm{d}\sigma_{\text{PA}}^{\text{R}_{\text{s}}} \otimes \mathrm{d}V_{\text{dip},IJ}^{\text{ew}} \right. \\ &+ \sum_{\substack{\text{QCD}\\\text{dipoles}}} \sum_{\substack{I,J\\I \neq J}} \mathrm{d}\sigma_{\text{PA}}^{0} \otimes \mathrm{d}V_{\text{dip}} \otimes \mathrm{d}V_{\text{dip},IJ}^{\text{ew}} \right\} \end{split}$$

- QCD subtraction term for $V + \gamma$
- EW subtraction term for V + jet
- compensate over-subtraction in double-unresolved limit

$$\begin{split} \hat{\sigma}_{\text{fact. ini-fin}}^{\text{QCD}\otimes\text{EW}} &= \int_{3} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{R}_{\text{S}}} + \int_{2} 4\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} \operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{0} + \int_{2} 2\operatorname{Re}\left\{\delta_{\text{Vew}}^{V\bar{\ell}_{1}\ell_{2}}\right\} d\sigma^{\text{C}_{\text{S}}} \\ &+ \iint_{3+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{S}}\otimes\text{R}_{\text{ew}}} + \iint_{2+\gamma} 2\operatorname{Re}\left\{\delta_{\text{Vs}}^{V\bar{q}_{a}q_{b}}\right\} d\sigma^{\text{R}_{\text{ew}}} + \iint_{2+\gamma} d\sigma_{\text{fact. ini-fin}}^{\text{C}_{\text{S}}\otimes\text{R}_{\text{ew}}} \end{split}$$

Example: double-real corrections

$$\begin{split} \widetilde{\sigma}_{\text{fact. ini-fin}}^{\text{R}_{\text{S}}\otimes\text{R}_{\text{ew}}} &= \iint_{3+\gamma} \left\{ \mathrm{d}\sigma_{\text{fact. ini-fin}}^{\text{R}_{\text{s}}\otimes\text{R}_{\text{ew}}} - \sum_{\substack{\text{QCD} \\ \text{dipoles}}} \mathrm{d}\sigma_{\text{dec}}^{\text{R}_{\text{ew}}} \otimes \mathrm{d}V_{\text{dip}} - \sum_{\substack{I,J \\ I \neq J}} \mathrm{d}\sigma_{\text{PA}}^{\text{R}_{\text{s}}} \otimes \mathrm{d}V_{\text{dip},IJ}^{\text{ew}} \right. \\ &+ \sum_{\substack{\text{QCD} \\ \text{dipoles}}} \sum_{\substack{I,J \\ I \neq J}} \mathrm{d}\sigma_{\text{PA}}^{0} \otimes \mathrm{d}V_{\text{dip}} \otimes \mathrm{d}V_{\text{dip},IJ}^{\text{ew}} \right\} \end{split}$$

- QCD subtraction term for $V + \gamma$
- EW subtraction term for V + jet
- compensate over-subtraction in double-unresolved limit

W^+ distributions @ NNLO $\mathcal{O}(\alpha_{\mathrm{s}}\alpha)$ (factorizable initial–final)

- δ^{prod×dec}_{α_sα} well approximated by naive products
- M_{T,ℓν} insensitive to ISR effects → small differences in naive products
- enhancement from large QCD corrections
- sensitive to ISR

 → naive factorization fails

(naive sum $\rightsquigarrow 0$)

Z distributions @ NNLO $\mathcal{O}(\alpha_{s}\alpha)$ (factorizable initial–final)

observable insensitive to ISR \Rightarrow naive products work? \rightsquigarrow No!

- $M_{\ell\ell}$ unaffected by ISR \leftrightarrow naive products practically identical
- naive products <u>completely fail</u> already a little away from the resonance
- large corrections below resonance
 - \hookrightarrow reconstructed $M_{\ell\ell}$ shifted to lower values by final-state radiation

Z distributions @ NNLO $\mathcal{O}(\alpha_{s}\alpha)$ (factorizable initial–final)

observable insensitive to ISR \Rightarrow naive products work? \rightsquigarrow No!

comparison with MC approaches:

······ "(NLO QCD) \otimes LL1FSR"

structure function: $\Gamma_{\ell\ell}^{\text{LL},1}(z) = \frac{\alpha}{2\pi} \left(\frac{1+z^2}{1-z}\right)_+ \left[\ln\left(\frac{Q^2}{m_{\ell}^2}\right) - 1\right]$

--- "(NLO QCD) \otimes Photos" γ shower (restricted to at most one emission)

Impact on $M_{\rm W}$ extraction

► bin-by-bin
$$\chi^2$$
 fit

$$\chi^2 = \sum_{i \in \text{bins}} \frac{\left[\sigma_i^{\text{data}}(M) - \sigma_i^{\text{template}}(M + \Delta M)\right]^2}{2\Delta \sigma_i^2}$$

- ► "templates": LO with M_W = 80.085...80.785 GeV
- ► "pseudo-data": HO with M_W = 80.385 GeV
- ► distributions <u>normalized</u> in fit interval M_{T,ℓν} ∈ [65, 90] GeV

LO \rightarrow NLO(EW) *

 $\Delta M_{\rm W} \approx -90 \; {\rm MeV}$

```
NLO(EW+QCD) \rightarrow NNLO(EW\timesQCD)^*
```

 $\Delta M_{\rm W} \approx -10 \; {\rm MeV}$

Largest theoretical unknown in Drell–Yan processes: $\mathcal{O}(\alpha_s \alpha)$ Important around resonance \rightsquigarrow Pole approximation

Pole approximation @ $\mathcal{O}(\alpha_s \alpha)$

- ► calculation of non-factorizable corrections \rightsquigarrow negligible \hookrightarrow only factorizable corrections are relevant at $O(\alpha_s \alpha)$
- ► $\mathcal{O}(\alpha_{s}\alpha)$ corrections to $V \rightarrow \ell_{1}\bar{\ell}_{2}$ decay \hookrightarrow only a small constant off-set \rightsquigarrow irrelevant for resonance shape
- (QCD to $\bar{q}_a q_b \rightarrow V$) × (EW to $V \rightarrow \ell_1 \bar{\ell}_2$)
 - \hookrightarrow expected to be the dominant contributions \hookrightarrow mass shift $\approx 10 \text{ MeV}$
- todo: $\mathcal{O}(\alpha_{s}\alpha)$ corrections to $\bar{q}_{a}q_{b} \rightarrow V$ production \hookrightarrow no significant shape distortion expected

Largest theoretical unknown in Drell–Yan processes: $\mathcal{O}(\alpha_s \alpha)$ Important around resonance \rightsquigarrow Pole approximation

Pole approximation @ $\mathcal{O}(\alpha_{\rm s}\alpha)$

- ► calculation of non-factorizable corrections \rightsquigarrow negligible \hookrightarrow only factorizable corrections are relevant at $O(\alpha_s \alpha)$
- ► $\mathcal{O}(\alpha_{s}\alpha)$ corrections to $V \rightarrow \ell_{1}\bar{\ell}_{2}$ decay \hookrightarrow only a small constant off-set \rightsquigarrow irrelevant for resonance shape
- (QCD to $\bar{q}_a q_b \rightarrow V$) × (EW to $V \rightarrow \ell_1 \bar{\ell}_2$)
 - \hookrightarrow expected to be the dominant contributions \hookrightarrow mass shift $\approx 10 \text{ MeV}$

todo: $\mathcal{O}(\alpha_{s}\alpha)$ corrections to $\bar{q}_{a}q_{b} \rightarrow V$ production \hookrightarrow no significant shape distortion expected

Thank you

Backup Slides

Calculational setup

LHC @ 14 ${\rm TeV}$

$$p + p \rightarrow W^+ \rightarrow \nu_{\mu} + \mu^+$$

 $p + p \rightarrow Z (\gamma^*) \rightarrow \mu^- + \mu^+$

Event selection cuts

$$\begin{array}{l} p_{\mathrm{T},\ell\pm} > 25 \ \mathrm{GeV} \\ |\eta_{\ell\pm}| < 2.5 \\ E_{\mathrm{T}}^{\mathsf{miss}} > 25 \ \mathrm{GeV} \quad \text{(charged-current DY)} \\ M_{\ell\ell} > 50 \ \mathrm{GeV} \quad (\mathsf{neutral-current DY}) \end{array}$$

Photon recombination ~~ "dressed" leptons

Merge photons "collinear" to the charged leptons:

$$\Delta R_{\ell\gamma} < 0.1, \qquad R_{\ell\gamma} = \sqrt{(\eta_{\ell} - \eta_{\gamma})^2 + (\phi_{\ell} - \phi_{\gamma})^2}$$

 \hookrightarrow corrections independent of the lepton flavour

Z distributions @ NLO & PA $\mathcal{O}(\alpha)$

Z distributions @ NLO & PA $\mathcal{O}(\alpha)$

Z distributions @ NNLO $O(\alpha_s \alpha)$ (non-factorizable)

- almost perfect cancellation between different contributions
- tiny & flat corrections!
- Z: even smaller: δ_{nf} anti-symmetric \rightsquigarrow suppression
- \Rightarrow dominant contributions at $\mathcal{O}(\alpha_s \alpha)$ from the factorizable corrections!

Initial-final factorizable corrections

