



# RADCOR-LOOPFEST 2015

### LONG-DISTANCE SINGULARITIES IN MULTI-LEG SCATTERING AMPLITUDES

### EINAN GARDI

HIGGS CENTRE FOR THEORETICAL PHYSICS, EDINBURGH

NEW 3-LOOP RESULT FOR THE SOFT ANOMALOUS DIMENSION -WORK WITH ØYVIND ALMELID AND CLAUDE DUHR

19 JUNE, 2015

### LONG-DISTANCE SINGULARITIES IN MULTI-LEG SCATTERING AMPLITUDES

### Plan of the talk

- Soft singularities: fixed-angle factorization, Wilson lines, rescaling symmetry.
- The soft anomalous dimension for massless partons: the dipole formula.
- Quadrupole interaction at 3-loop.
- Special kinematics: Regge limit, collinear limit.

### THE SOFT (EIKONAL) APPROXIMATION AND RESCALING SYMMETRY

р

Eikonal Feynman rules:

Assuming  $k \ll p$  such that all M p+kk < < pcomponents of k are small:  $\bar{u}(p)\left(-\mathrm{i}g_s T^{(a)}\gamma^{\mu}\right) \frac{\mathrm{i}(\not p + \not k + m)}{(p+k)^2 - m^2 + \mathrm{i}\varepsilon} \longrightarrow \bar{u}(p)g_s T^{(a)}\frac{p^{\mu}}{p \cdot k + \mathrm{i}\varepsilon}$  $g_s T^{(a)} \frac{p^{\mu}}{p \cdot k + i\varepsilon} = g_s T^{(a)} \frac{\beta^{\mu}}{\beta \cdot k + i\varepsilon}$ **<u>Rescaling invariance</u>**: only the direction and the colour charge of the emitter matter. equivalent to emission from a Wilson line:  $\Phi_{\beta_i}(\infty, 0) \equiv P \exp\left\{ig_s \int_0^\infty d\lambda\beta \cdot A(\lambda\beta)\right\}$ 

This symmetry is realised differently for lightlike and massive Wilson lines.

# IR SINGULARITIES FROM WILSON LINES

### **Factorization at fixed angles:**

all kinematic invariants are simultaneously taken large  $p_i \cdot p_j = Q^2 \beta_i \cdot \beta_j \gg \Lambda^2$ 

Soft singularities factorise to all orders & computed from a product of Wilson lines:



$$\mathcal{M}_J(p_i, \epsilon_{\mathrm{IR}}) = \sum_K \mathcal{S}_{JK}(\gamma_{ij}, \epsilon_{\mathrm{IR}}) H_K(p_i)$$

 $\mathcal{S}$  is a product of Wilson lines:  $\mathcal{S} = \langle \phi_{\beta_1} \otimes \phi_{\beta_2} \otimes \ldots \phi_{\beta_n} \rangle$ 

Due to rescaling symmetry it only depends on angles:

 $\gamma_{ij} = \frac{2\beta_i \cdot \beta_j}{\sqrt{\beta_i^2 \, \beta_j^2}}$ 

# IR SINGULARITIES FOR AMPLITUDES WITH MASSLESS LEGS

**Exponentiation through solution of renormaliaztion-group equations:** 

$$\mathcal{M}\left(\frac{p_i}{\mu}, \alpha_s, \epsilon\right) = \exp\left\{-\frac{1}{2}\int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \Gamma\left(\lambda^2 / s_{ij}, \alpha_s(\lambda^2, \epsilon)\right)\right\} \mathcal{H}\left(\frac{p_i}{\mu}, \alpha_s\right)$$

**The Dipole Formula:** 

simple ansatz for the singularity structure of multi-leg massless amplitudes

$$\Gamma(\lambda, \alpha_s) = \frac{1}{4} \,\widehat{\gamma}_K(\alpha_s) \sum_{(i,j)} \ln\left(\frac{\lambda^2}{-s_{ij}}\right) \,\mathrm{T}_i \cdot \mathrm{T}_j \,+ \sum_{\substack{i=1 \\ \text{EG \& Magnea (2009)}}}^n \gamma_{J_i}(\alpha_s)$$

Complete two-loop calculation by Dixon, Mert-Aybat and Sterman in 2006 (confirming Catani's predictions from 1998).

Generalization to all orders motivated by constraints based on **soft/jet factorisation** and **rescaling symmetry**.



# FACTORIZATION OF AMPLITUDES WITH MASSLESS LEGS

• Fixed angle scattering  $p_i \cdot p_j = Q^2 \beta_i \cdot \beta_j \gg \Lambda^2$  with **lightlike partons**  $p_i^2 = 0$ 

• IR singularities can be factorised - all originate in soft and collinear regions

$$\mathcal{M}_{N}\left(p_{i}/\mu,\epsilon\right) = \sum_{L} \mathcal{S}_{NL}\left(\beta_{i}\cdot\beta_{j},\epsilon\right) H_{L}\left(\frac{2p_{i}\cdot p_{j}}{\mu^{2}},\frac{(2p_{i}\cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}}\right)$$
  
ightlike Wilson lines 
$$\times \prod_{i=1}^{n} J_{i}\left(\frac{(2p_{i}\cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}},\epsilon\right) \middle/ \mathcal{J}_{i}\left(\frac{2(\beta_{i}\cdot n_{i})^{2}}{n_{i}^{2}},\epsilon\right)$$
  
Jets (colour singlet)

I.

• Double counting of soft-collinear region is removed by dividing by eikonal jets.

Kinematic dependence of the soft function is now on β<sub>i</sub> · β<sub>j</sub>, violating rescaling symmetry. This collinear anomaly is restored by the eikonal jets. This implies an all-order constraint on the soft function, leading to the Dipole Formula.

Becher & Neubert, EG & Magnea (2009)

### CORRECTIONS TO THE DIPOLE FORMULA

First possible corrections to the Dipole Formula: Functions of conformally-invariant cross ratios at 3-loops, 4 legs:

$$\Gamma = \Gamma_{\text{Dip.}} + \Delta(\rho_{ijkl})$$

$$\rho_{ijkl} = \frac{(p_i \cdot p_j)(p_k \cdot p_l)}{(p_i \cdot p_k)(p_j \cdot p_l)}$$

 $\Delta(\rho_{ijkl})$  is highly constrained by: Non-Abelian exponentiation Bose symmetry Transcendental weight Collinear limits Regge limit

 $if^{abe}if^{cde}T_1^aT_2^bT_3^cT_4^d$ 

EG & Magnea, Becher & Neubert (2009) Dixon, EG & Magnea (2010) Del Duca, Duhr, EG, Magnea & White (2011) Ahrens & Neubert & Vernazza (2012) Caron-Huot (2013)

### THE STRUCTURE OF THE SOFT ANOMALOUS DIMENSION: MASSLESS VS. MASSIVE PARTONS



\* Grozin, Henn, Korchemsky & Marquard, Phys. Rev. Lett. 114, 062006 (2015)

### \*\*Almelid, Duhr, EG - to appear

### COMPUTING IR SINGULARITIES AT 3-LOOPS

### <u>Classes of three-loop webs connecting four Wilson lines</u>

Single connected subgraph Each web depends on all six angles **can form conformally-invariant cross ratios** (cicrs)

Two connected subgraphs Depends on  $\gamma_{14}$ ,  $\gamma_{23}$ ,  $\gamma_{24}$ ,  $\gamma_{34}$  only. Cannot form cicrs - yields products of logs for near lightlike kinematics

Three connected subgraphs (multiple gluon exchanges) Depends on 3 angles only! Cannot form cicrs - yields products of logs for near lightlike kinematics



### DUAL MOMENTUM BOX INTEGRAL





Parametrise the positions along the Wilson lines by  $x_i^{\mu} = \beta_i^{\mu} s_i$ 

Define auxiliary momenta  $p_i = x_i - x_{i-1}$ The z integral is a 4-mass  $Box(p_1, p_2, p_3, p_4)$ 

$$C_{4g} = T_1^a T_2^b T_3^c T_4^d \left[ f^{abe} f^{cde}(\gamma_{13}\gamma_{24} - \gamma_{14}\gamma_{23}) + f^{ade} f^{bce}(\gamma_{12}\gamma_{34} - \gamma_{13}\gamma_{24}) + f^{ace} f^{bde}(\gamma_{12}\gamma_{34} - \gamma_{14}\gamma_{23}) \right]$$

$$W_{4g} = g_s^6 \mathcal{N}^4 C_{4g} \int_0^{\infty} ds_1 ds_2 ds_3 ds_4 \operatorname{Box}(x_1 - x_4, x_2 - x_1, x_3 - x_2, x_4 - x_3)$$

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix} = \lambda \begin{pmatrix} ca \\ c(1-a) \\ (1-c)b \\ (1-c)(1-b) \end{pmatrix}$$

Integration over  $\lambda$  yields an overall  $1/\epsilon$  UV pole. Remaining integrations can be done in 4 dimensions. Ø. Almelid, C. Duhr, EG

### CONNECTED THREE-LOOP WEBS WITH TWO 3-GLUON VERTICES

Ø. Almelid, C. Duhr, EG

A similar mapping - but with a diagonal box



 $W_{4g}$  and  $W_{(3g)^2}$  may have non-trivial kinematic dependence in the limit  $\beta_i^2 \to 0$ 

$$\rho_{ijkl} = \frac{\gamma_{ij} \gamma_{kl}}{\gamma_{ik} \gamma_{jl}} = \frac{(\beta_i \cdot \beta_j) (\beta_k \cdot \beta_l)}{(\beta_i \cdot \beta_k) (\beta_j \cdot \beta_l)} \qquad \qquad \rho_{1234} = z\overline{z}$$
$$\rho_{1432} = (1-z)(1-\overline{z})$$

We extract the asymptotic near-lightlike behaviour using the Mellin-Barnes technique. The remaining MB integral is three-fold, and can be converted into an iterated parameter integral and be expressed in terms of polylogarithms.

# $\begin{aligned} & \text{CONNECTED WEBS: RESULTS AND} \\ & \text{BOSE SYMMETRY} \\ & w_{4g}^{(3,-1)} = \left(\frac{\alpha_s}{4\pi}\right)^3 \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^c \mathbf{T}_4^d \Big[ f^{abe} f^{cde} \left(z\bar{z} - z - \bar{z}\right) \\ & + f^{ade} f^{bce} \left(1 - z\bar{z}\right) + f^{ace} f^{bde} \left(1 - z - \bar{z}\right) \Big] \frac{1}{z - \bar{z}} g_1(z, \bar{z}, \{\gamma_{ij}\}) \end{aligned}$

 $\rho_{ijkl} = \frac{\gamma_{ij} \gamma_{kl}}{\gamma_{ik} \gamma_{jl}} = \frac{(\beta_i \cdot \beta_j) (\beta_k \cdot \beta_l)}{(\beta_i \cdot \beta_k) (\beta_j \cdot \beta_l)} \qquad \begin{array}{l} \rho_{1234} = z\overline{z} \\ \rho_{1432} = (1-z)(1-\overline{z}) \\ \beta_4 \end{array} \qquad \begin{array}{l} \beta_4 \end{array}$ 

The permutation symmetry of the colour factors is mapped onto the kinematics  $g_1(z, \overline{z}, \{\gamma_{ij}\})$  is symmetric  $\ln((1-z)(1-\overline{z}))$  under these transformations  $f_{abe}f_{cde} \xrightarrow{3 \leftrightarrow 4}$ 



# SUMMING THE CONNECTED WEBS RESULTS



Pure function of uniform weight 5 ( $\mathcal{N}=4$  SYM property) Symbol alphabet { $z, \overline{z}, 1 - z, 1 - \overline{z}$ } relating to collinear/Regge limits

### FROM THE CONNECTED WEBS TO THE FULL QUADRUPOLE TERM IN THE SOFT ANON. DIM.

After applying Jacobi Identity one finds

$$w_{\text{con.}}^{(3,-1)} = \left(\frac{\alpha_s}{4\pi}\right)^3 \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^c \mathbf{T}_4^d \left[ f^{ade} f^{bce} \ \mathcal{F}_1^{\text{con.}}(z,\bar{z},\{\gamma_{ij}\}) + f^{abe} f^{cde} \ \mathcal{F}_2^{\text{con.}}(z,\bar{z},\{\gamma_{ij}\}) \right]$$

and the functions <u>separate</u> into a polylogarithmic function of depending only on conformally invariant cross ratios via  $\{z, \overline{z}\}$ , and a function involving purely logarithmic dependence on individual cusp angles:

 $\mathcal{F}_n^{\operatorname{con.}}(z,\bar{z},\{\gamma_{ij}\}) = \mathcal{F}_n^{\operatorname{con.}}(z,\bar{z}) + Q_n^{\operatorname{con.}}(\{\log(\gamma_{ij})\})$ 

<u>Rescaling symmetry</u> implies that the quadrupole contribution to the light-like soft anomalous dimension would depend <u>exclusively</u> on  $\{z, \overline{z}\}$ !

Indeed, we so far put aside all non-connected webs... These, in the light-like asymptotics, <u>only involve logarithms</u>, similarly to  $Q_n^{\text{con.}}(\{\log(\gamma_{ij})\})$ . These must cancel any dependence on  $\ln(\gamma_{ij})$  which isn't rescaling invariant.

One can infer the final, rescaling-invariant answer from connected webs alone!

# REGGE LIMIT CONSTRAINTS

The high-energy limit is dominated by t-channel exchange. Large Logs of (-t/s) are summed through Reggeization:



Long-distance singularities of the Regge trajectory are controlled by

$$\alpha(t) = \frac{1}{4} (\mathbf{T}_2 + \mathbf{T}_3)^2 \int_0^{-t} \frac{d\lambda^2}{\lambda^2} \widehat{\gamma}_K(\alpha_s(\lambda^2, \epsilon))$$

Korchemskaya and Korchemsky (1996) Del Duca, Duhr, EG, Magnea & White (2011)

Reggeization is proven through NLL, and the structure of the singularities (in the real part of the amplitude) is fully explained by the dipole formula. Therefore the **quadrupole term can start contributing at**  $i\alpha_s^3 \log^2(-t/s)$  or  $\alpha_s^3 \log(-t/s)$ 

# THE QUADRUPOLE FUNCTION

$$\Delta(z,\bar{z}) = 16 \left(\frac{\alpha_s}{4\pi}\right)^3 \left[ f_{abe} f_{cde} \left(F\left(1-1/z\right) - F\left(1/z\right)\right) - f_{ace} f_{bde} \left(F(z) - F(1-z)\right) + f_{ade} f_{bce} \left(F\left(1/(1-z)\right) - F\left(1-1/(1-z)\right)\right) - F(1-1/(1-z))\right) \right]$$

$$F(z) = \mathcal{L}_{10101}(z) + 2\zeta_2 \left( \mathcal{L}_{100}(z) + \mathcal{L}_{001}(z) \right) + 6\zeta_4 \mathcal{L}_1(z)$$

Ø. Almelid, C. Duhr, EG

 $\mathcal{L}_{10...}(z)$  are the single-valued harmonic polylogarithms introduced by Francis Brown in 2009. They are defined in the region where  $\overline{z} = z^*$ 

# THE COLLINEAR LIMIT



In particular, IR singularities of the splitting amplitude are those present in L parton scattering (with 1 | 2) and not in L-1 parton scattering:

$$\Gamma_{\mathbf{Sp}} = \Gamma_L - \Gamma_{L-1}$$

# SURPRISE IN THE COLLINEAR LIMIT

<u>Previous expectation</u>: the splitting amplitude should not depend on the rest of the process, thus  $\Delta(z, \bar{z})$  should vanish in any collinear limit.



At 3-loops (beyond the planar limit — *c.f.* Kosower 1999) the splitting amplitude **resolves the colour and directions of the rest of the process**!

# CONCLUSIONS

- IR singularities of massless scattering amplitudes are now known to **3-loops**.
- The first correction to the dipole formula takes the form of a quadrupole interaction simultaneously correlating colour and kinematics of 4 patrons.
- The quadrupole term is expressed in terms of single-valued harmonic polylogarithms of weight 5, depending on {*z*, *z*}. These variables are simple algebraic functions of conformally-invariant cross ratios, and they manifest the symmetries and analytic structure of the quadruple interaction.
- Contrary to previous expectations, 3-loop splitting amplitudes acquire sensitivity to the colour flow and directions of the remaining partons.

### Many thanks to my students and collaborators!

# ANALYTIC STRUCTURE EXPLORED BY TAKING THE REGGE LIMIT



Regge limits in different channels correspond to discontinuities around  $z = 0, 1, \infty$ 

### MULTIPLE GLUON EXCHANGE WEBS

The combinations of diagrams appearing in the exponent (subtracted webs) are **much simpler** than individual diagrams:

$$\Gamma^{(n)} \ni \overline{w}^{(n,-1)} = \left(\frac{\alpha_s}{4\pi}\right)^n C_{i_1,i_2,\dots,i_{n+1}} \int dx_1 dx_2 \dots dx_n \times \prod_{k=1}^n p_0(x_k,\alpha_k) \times \mathcal{G}_{n-1}\left(x_1,x_2,\dots,x_n;q(x_1,\alpha_1),q(x_2,\alpha_2),\dots,q(x_n,\alpha_n)\right)$$

$$p_0(x,\alpha_{ij}) = \frac{2\hat{\beta}_i \cdot \hat{\beta}_j}{(x\hat{\beta}_i - (1-x)\hat{\beta}_j)^2} = r(\alpha_{ij}) \left[\frac{1}{x - \frac{1}{1 - \alpha_{ij}}} - \frac{1}{x + \frac{\alpha_{ij}}{1 - \alpha_{ij}}}\right]$$

<u>Conjecture</u>:

(1)  $\mathcal{G}_{n-1}$  is made exclusively of powers of logs and Heaviside functions.

(2)  $\overline{w}^{(n,-1)}$  is a sum of products of polylogs each depending on a single  $\alpha$ each having a Symbol with alphabet  $\{\alpha, 1 - \alpha^2\}$ EG (arXiv:1310.5268) JHEP 1404 (2014) 044

A restricted basis of harmonic polylogarithmic functions was constructed, which is conjectured to be sufficient for **all** multiple gluon exchange webs!

Falcioni, EG, Harley, Magnea, White (arXiv:1407.3477) JHEP 1410 (2014) 10

# COMPUTING IR SINGULARITIES USING NON-LIGHTLIKE WILSON LINES

Product of <u>non-lightlike</u> Wilson lines  $S = \langle \phi_{\beta_1} \otimes \phi_{\beta_2} \otimes \dots \otimes \phi_{\beta_n} \rangle$ is multiplicatively renormalizable

Arefeva, Dotsenko-Vergeles, Brandt-Neri-Sato (81)

IR - UV relation:

$$\mathcal{S}(\gamma_{ij}, \epsilon_{\mathrm{IR}}) = \underbrace{\mathcal{S}_{\mathrm{UV+IR}}}_{=1} Z(\gamma_{ij}, \epsilon_{\mathrm{UV}})$$
  
Korchemsky-Radyushkin (87)



- To determine the renormalization *Z* of a product of Wilson lines we put **an exponential IR cutoff** along the Wilson lines and compute the UV singularity in dimensional regularisation,  $D = 4 - 2\epsilon, \epsilon > 0$
- Define the soft anomalous dimension  $\frac{dZ}{d\ln\mu} = -Z\Gamma$
- The anomalous dimension is determined by the coefficient of the single  $1/\epsilon$  UV pole of Z - it is independent of the IR regularisation!

# DIAGRAMMATIC SOFT GLUON EXPONENTIATION

Webs are the diagrams contributing to w, the exponent of the corrector

$$\mathcal{S} = \exp w = \langle \phi_{\beta_1} \otimes \phi_{\beta_2} \otimes \dots \phi_{\beta_n} \rangle$$

- Abelian case (1961)
  Only connected diagrams contribute to the exponent
- Non-abelian, colour singlet (two-line) case (1983)
  Only irreducible diagrams contribute to the exponent
- Gatheral Frenkel & Taylor

Yennie-Frautchi-Suura

 Non-abelian, multi-line case (2010)
 Also reducible diagrams contribute webs are formed by sets of diagrams. EG, Leanen, Stavenga & White Mitov, Sterman & Sung

<u>Theorem</u>: all colour structures in the exponent correspond to connected graphs EG, Smillie & White (2013)

### THREE-LOOP WEB: EXAMPLE



The entire web contributes:



### THREE-LOOP WEB: EXAMPLE



$$= \begin{pmatrix} \mathcal{F}(3a) \\ \mathcal{F}(3b) \\ \mathcal{F}(3c) \\ \mathcal{F}(3d) \end{pmatrix}^{T} \begin{bmatrix} 1 & -1 & -1 & 1 \\ -2 & 2 & 2 & -2 \\ -2 & 2 & 2 & -2 \\ 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} C(3a) \\ C(3b) \\ C(3c) \\ C(3d) \end{pmatrix}$$

$$=\underbrace{\frac{1}{6}\left(\mathcal{F}(3a) - 2\mathcal{F}(3b) - 2\mathcal{F}(3c) + \mathcal{F}(3d)\right)}_{6} \times \underbrace{\left(C(3a) - C(3b) - C(3c) + C(3d)\right)}_{6}$$

subdivergences cancel



 $\mathbf{N}$ 

# THREE-LOOP WEB RESULT



Very simple structure: sum of products of polylogs of individual angles!  $\overline{w}_{1221}^{(3)} = -f^{abe} f^{cde} T_1^a T_2^b T_3^c T_4^d \left(\frac{\alpha_s}{4\pi}\right)^3 r(\alpha_{12}) r(\alpha_{23}) r(\alpha_{34}) \qquad \alpha_{ij} + \frac{1}{\alpha_{ij}} = \frac{-2\beta_i \cdot \beta_j}{\sqrt{\beta_i^2 \beta_j^2}} = -\gamma_{ij}$   $\begin{bmatrix} -8U_2(\alpha_{12}) \ln \alpha_{23} \ln \alpha_{34} - 8U_2(\alpha_{34}) \ln \alpha_{12} \ln \alpha_{23} + 16 \left(U_2(\alpha_{23}) - 2\Sigma_2(\alpha_{23})\right) \ln \alpha_{12} \ln \alpha_{34} \\ -2\ln \alpha_{12} U_1(\alpha_{23}) U_1(\alpha_{34}) - 2\ln \alpha_{34} U_1(\alpha_{12}) U_1(\alpha_{23}) + 4\ln \alpha_{23} U_1(\alpha_{12}) U_1(\alpha_{34}) \end{bmatrix}$   $= G \quad (arXiv:1310.5268)$   $S [U_1(\alpha)] = -4\alpha \otimes \frac{\alpha}{1-\alpha^2} \qquad Special points: \qquad JHEP \quad 1404 \quad (2014) \quad 044$   $\alpha = 0 \qquad \text{lightlike limit}$ 

 $\mathcal{S}\left[\Sigma_2(\alpha)\right] = 2\alpha \otimes \alpha \otimes \alpha$ 

 $\alpha = -1$  production at threshold

 $\alpha = 1$  straight line