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new 3-loop result for the soft anomalous dimension - 
 work with Øyvind Almelid and Claude Duhr



long-distance singularities  
in multi-leg scattering amplitudes

Plan of the talk!

Soft singularities: fixed-angle factorization, Wilson lines, 
rescaling symmetry.!

The soft anomalous dimension for massless partons: the 
dipole formula.!

Quadrupole interaction at 3-loop. !

Special kinematics: Regge limit, collinear limit.



The soft (Eikonal) approximation 

and rescaling symmetry

T
p

k < < pp + k

Eikonal Feynman rules:!

Assuming               such that all  
components of     are small:    
 
 
 
 
 
 

      Rescaling invariance: only the direction  
      and the colour charge of the emitter matter.  
 
     equivalent to emission from a Wilson line:  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This symmetry is realised differently for lightlike and massive Wilson lines.



IR Singularities from Wilson lines

5"hard"gluon"amplitude"" 5"Wilson"line"amplitude""
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Factorization at fixed angles:  
all kinematic invariants are simultaneously taken large pi · pj = Q2�i · �j � �2

Soft singularities factorise to all orders & computed from a product of Wilson lines:

MJ(pi, ✏IR) =
X

K

SJK (�ij , ✏IR)HK(pi)

�ij =
2�i · �jq
�2
i �

2
j

S = h��1 ⌦ ��2 ⌦ . . .��niis a product of Wilson lines:S

Due to rescaling symmetry it only depends on angles:



IR Singularities for AmplitudEs 
with massless legs
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 The Dipole Formula:   
 simple ansatz for the singularity structure of multi-leg massless amplitudes

Becher & Neubert,  
EG & Magnea (2009)

Complete two-loop calculation by  
Dixon, Mert-Aybat  and Sterman in 2006 !
(confirming Catani’s predictions from 1998).!
 !
Generalization to all orders motivated  
by constraints based on soft/jet factorisation 
and rescaling symmetry. !
!
!
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 Exponentiation through solution of renormaliaztion-group equations: 



Factorization of AmplitudEs with 
massless legs
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Fixed angle scattering                                            with lightlike partons!

IR singularities can be factorised - all originate in soft and collinear regions 
 
 
 

!

Double counting of soft-collinear region is removed by dividing by eikonal jets. !

Kinematic dependence of the soft function is now on            ,  violating rescaling  
symmetry. This collinear anomaly is restored by the eikonal jets.  
This implies an all-order constraint on the soft function,  
leading to the Dipole Formula.

pi · pj = Q2�i · �j � �2 p2i = 0

�i · �j

Becher & Neubert,  
EG & Magnea (2009)

 Jets (colour singlet)   

Lightlike Wilson lines   



Corrections to the dipole formula

 First possible corrections to the Dipole Formula:  
 Functions of conformally-invariant cross ratios at 3-loops, 4 legs:

� = �Dip. +�(⇢ijkl)

            is highly constrained by:  
    Non-Abelian exponentiation!
    Bose symmetry  
    Transcendental weight  
    Collinear limits 
    Regge limit

�(⇢ijkl)

!

EG & Magnea,   Becher & Neubert (2009)  
Dixon, EG & Magnea (2010)  
Del Duca, Duhr, EG, Magnea & White (2011)  
Ahrens & Neubert &Vernazza (2012)  
Caron-Huot (2013)	
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The structure of the Soft Anomalous 
dimension: Massless vs. Massive partons

known @ 3-loop* known @ 2-loops 
progress @ 3-loop 

starts @ 3-loop  
- in progress

known @ 3-loop forbidden  
 to all loops 3-loop done!  **
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* Grozin, Henn, Korchemsky & Marquard, Phys. Rev. Lett. 114, 062006 (2015)

**Almelid, Duhr, EG - to appear

/ planar 

cusp



Computing IR Singularities at 3-loops  

Single connected subgraph

Two connected subgraphs

Three connected subgraphs  
(multiple gluon exchanges)

Classes of three-loop webs connecting four Wilson lines
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1 2

3 4

1 2

3

4

1 2

34

1 2

3

4
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3

Each web depends on all six angles -  
can form conformally-invariant  
cross ratios (cicrs)

Depends on                                 only.
Cannot form cicrs - yields products  
of logs for near lightlike kinematics 

Depends on 3 angles only!
Cannot form cicrs - yields products  
of logs for near lightlike kinematics 

�14, �23, �24, �34



dual momentum Box integral 

x

µ
i = �

µ
i si

W4g =

Box(p1, p2, p3, p4)

Parametrise the positions  
along the Wilson lines by 
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Integration over      yields an overall         UV pole.!
Remaining integrations can be done in 4 dimensions.  
  

� 1/✏

Ø. Almelid, C. Duhr, EG
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pi = xi � xi�1Define auxiliary momenta 

z

The z integral is a 4-mass



Connected three-loop webs with two  
3-gluon vertices

 A similar mapping - but with a diagonal box

W(3g)2 =

⇢1234 = zz̄

⇢1432 = (1� z)(1� z̄)

                              may have non-trivial kinematic dependence in the limit!
!
! ! ! ! !
!
!

⇢ijkl =
�ij �kl
�ik �jl

=
(�i · �j) (�k · �l)

(�i · �k)(�j · �l)

�2
i ! 0

Ø. Almelid, C. Duhr, EG

W4g and W(3g)2

We extract the asymptotic near-lightlike behaviour using the Mellin-Barnes 
technique. The remaining MB integral is three-fold, and can be converted into !
an iterated parameter integral and be expressed in terms of polylogarithms.



Connected webs: results and  
Bose symmetry
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⇢1234 = zz̄

⇢1432 = (1� z)(1� z̄)

The permutation symmetry of the colour factors is mapped onto the kinematics

                         is symmetric 
under these transformations
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summing the Connected webs results
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cancels in the sum!
Pure function of uniform weight 5 (N=4 SYM property)
Symbol alphabet                             relating to collinear/Regge limits{z, z̄, 1� z, 1� z̄}



From the connected webs to the full 
quadrupole term in the soft anon. dim.

w(3,�1)

con. =
⇣↵s

4⇡

⌘
3
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1

Tb
2

Tc
3

Td
4

h
fadef bce F
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2
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After applying Jacobi Identity one finds

Fn
con.

(z, z̄, {�ij}) = Fn
con.

(z, z̄) +Qcon.
n ({log(�ij)})

and the functions separate into a polylogarithmic function of depending only on 
conformally invariant cross ratios via          , and a function involving purely 
logarithmic dependence on individual cusp angles:

Rescaling symmetry implies that the quadrupole contribution to the light-like 
soft anomalous dimension would depend exclusively on           !
Indeed, we so far put aside all non-connected webs…   These, in the light-like 
asymptotics,  only involve logarithms, similarly to                               . 
These must cancel any dependence on              which isn’t rescaling invariant.!
!
One can infer the final, rescaling-invariant answer from connected webs alone!!
!

Qcon.
n ({log(�ij)})

{z, z̄}

ln(�ij)

{z, z̄}



Regge limit constraints

Korchemskaya and Korchemsky (1996)	


Del Duca, Duhr, EG, Magnea & White (2011)
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The high-energy limit is dominated by t-channel exchange.  
Large Logs of (-t/s) are summed through Reggeization:

Long-distance singularities of the Regge trajectory are controlled by 

Reggeization is proven through NLL, and the structure of the singularities (in the 
real part of the amplitude) is fully explained by the dipole formula.  Therefore the 
quadrupole term can start contributing at i↵3

s log
2
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The quadrupole function

                      are the single-valued harmonic polylogarithms introduced          
      by  Francis Brown  in 2009. They are defined in the region where !

Ø. Almelid, C. Duhr, EG
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the collinear limit

ML (p1, p2, {pj};µ)
1k2�!Sp (p1, p2;µ) ML�1 (P, {pj};µ)

In particular, IR singularities of the splitting amplitude are those present in  
L parton scattering (with 1||2) and not in L-1 parton scattering:!
!

�Sp = �L � �L�1



Surprise in the collinear limit

At 3-loops (beyond the planar limit — c.f. Kosower 1999) the splitting amplitude 
resolves the colour and directions of the rest of the process!!
!

� (z, z̄)
1k2�! �

⇣
↵s

⇡

⌘3 X

j,k 6={1,2}

✓
�3⇣4 ln
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(P · pj)(P · pk)
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+ 2⇣2⇣3 + ⇣5
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[[T1 · T2, T1 · Tj ] , T2 · Tk]

Becher & Neubert (2009)  
EG & Magnea & Dixon (2010)  

Previous expectation: the splitting amplitude should not depend on the rest of 
the process, thus               should vanish in any collinear limit. !

We find, however, for
p1 ! xP

p2 ! (1� x)P

�(z, z̄)



conclusions

IR singularities of massless scattering amplitudes are now known to 3-loops.!

The first correction to the dipole formula takes the form of a quadrupole 
interaction simultaneously correlating colour and kinematics of 4 patrons. !

The quadrupole term is expressed in terms of single-valued harmonic 
polylogarithms of weight 5, depending on          . These variables are simple 
algebraic functions of conformally-invariant cross ratios, and they manifest 
the symmetries and analytic structure of the quadruple interaction.!

Contrary to previous expectations, 3-loop splitting amplitudes acquire 
sensitivity to the colour flow and directions of the remaining partons.  

{z, z̄}

Many thanks to my students and collaborators!



Analytic structure explored by taking the 
Regge limit

Euclidean                         Scattering          momentum conserving          Regge limit

analytic 
continuation

�s12 = �s34 = sei⇡

�s23 = �s14 = �t > 0

�s13 = �s14 = �u = s+ t > 0

zz̄ =
(�s12)(�s34)
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z = z̄ = s/(s+ t) z = z̄ ! 1

-2 -1 1 2
Re(z)

-2
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Regge limits in different channels correspond to discontinuities around z = 0, 1,1

ln(zz̄) �! ln(zz̄) + 2⇡i



multiple gluon exchange webs

Conjecture:       
(1)           is made exclusively of powers of logs and Heaviside functions.!
!
(2)                 is a sum of products of polylogs each depending on a single  !
   each having a Symbol with alphabet !

�(n) 3 w

(n,�1) =
⇣
↵s

4⇡

⌘n
Ci1,i2,...in+1

Z
dx1dx2 . . . dxn ⇥

nY

k=1

p0(xk,↵k)⇥

Gn�1

⇣
x1, x2, . . . , xn; q(x1,↵1), q(x2,↵2), . . . q(xn,↵n)

⌘

Gn�1

The combinations of diagrams appearing in the exponent (subtracted webs)  
 are much simpler than individual diagrams:

w(n,�1) ↵�
↵, 1� ↵2

 

EG (arXiv:1310.5268)  
JHEP 1404 (2014) 044  

A restricted basis of harmonic polylogarithmic functions was constructed,  
which is conjectured to be sufficient for all multiple gluon exchange webs!

Falcioni, EG, Harley, Magnea, White  
(arXiv:1407.3477) JHEP 1410 (2014) 10  

p0(x,↵ij) =
2�̂i · �̂j

(x�̂i � (1� x)�̂j)2
= r(↵ij)

"
1

x� 1
1�↵ij

� 1

x+ ↵ij

1�↵ij

#



Computing IR Singularities Using 
non-lightlike Wilson lines

To determine the renormalization Z of a product of Wilson lines  
we put an exponential IR cutoff along the Wilson lines and compute  
the UV singularity in dimensional regularisation,!

Define the soft anomalous dimension!

The anomalous dimension is determined by the coefficient of the single         
       UV pole of Z - it is independent of the IR regularisation!

dZ

d lnµ
= �Z�

Product of non-lightlike Wilson lines   
is multiplicatively renormalizable  

IR - UV relation:

Arefeva, Dotsenko-Vergeles, Brandt-Neri-Sato (81) 

Korchemsky-Radyushkin (87)	



S = h��1 ⌦ ��2 ⌦ . . .��ni

S (�ij , ✏IR) = SUV+IR| {z }
=1

Z (�ij , ✏UV)

1/✏

D = 4� 2✏, ✏ > 0



Diagrammatic  
SOft gluon exponentiation

Abelian	
  case	
  (1961)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   
Only connected diagrams contribute to the exponent !

Non-­‐abelian,	
  colour	
  singlet	
  (two-­‐line)	
  case	
  (1983)  
Only irreducible diagrams contribute to the exponent 	
  

Non-­‐abelian,	
  mul<-­‐line	
  case	
  (2010)	
   
Also reducible diagrams contribute -   
webs are formed by sets of diagrams. 

Yennie-Frautchi-Suura

EG, Leanen, Stavenga & White  
Mitov, Sterman & Sung

Gatheral 
Frenkel & Taylor

Theorem: all colour structures in the exponent  
                  correspond to connected graphs EG, Smillie & White (2013)  

Webs are the diagrams contributing to    , the exponent of the correctorw

S = expw = h��1 ⌦ ��2 ⌦ . . .��ni



Three-loop web: example

The entire web contributes:
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Three-loop web: example
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subdivergences cancel



three-loop web result

(a) (b) (c) (d)

EG (arXiv:1310.5268)  
JHEP 1404 (2014) 044  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special points:   
lightlike limit 
production at threshold 

straight line 

Very simple structure: sum of products of polylogs of individual angles!
↵ij +

1
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