NNLO Corrections to Dijet Production

James Currie (IPPP Durham)

in direct collaboration with:

Nigel Glover (IPPP), João Pires (Milan) and Steven Wells (IPPP)

European Research Council

Supporting top researchers from anywhere in the world

Jets at the LHC

Ubiquitous and accurately measured at the LHC

• ~1% JES corresponds to <10% uncertainty on single inclusive x-sec

Provides a rigorous test of QCD across a huge range of kinematic variables

Jets and PDFs

LHC is mainly a gluon collider but gluon PDF is not well known:

- LHC jets probe a wide range of x
- gluon PDF directly sensitive to jet data, especially at large x
- would like to consistently include NNLO jet data in NNLO PDF fits without using kinematically limited approximations

Jets and α_s

Can use the single inclusive jet cross section to determine [CMS-PAS-SMP-12-028]:

• $\alpha_s(M_Z)$ and running coupling from single experiment

model independent probe of new physics

Why NNLO?

NNLO Subtraction

Unphysical intermediate quantities are divergent

• need to regulate with RR, RV and VV subtraction terms

$$d\sigma_{ab,NNLO} = \int_{\Phi_{m+2}} d\sigma_{ab,NNLO}^{RR} + \int_{\Phi_{m+1}} d\sigma_{ab,NNLO}^{RV} + d\sigma_{ab,NNLO}^{MF,1} + \int_{\Phi_m} d\sigma_{ab,NNLO}^{VV} + d\sigma_{ab,NNLO}^{MF,2}$$

NNLO Subtraction

Unphysical intermediate quantities are divergent

• need to regulate with RR, RV and VV subtraction terms

$$d\sigma_{ab,NNLO} = \int_{\Phi_{m+2}} \left[d\sigma_{ab,NNLO}^{RR} - d\sigma_{ab,NNLO}^{S} \right] \\ + \int_{\Phi_{m+1}} \left[d\sigma_{ab,NNLO}^{RV} - d\sigma_{ab,NNLO}^{T} \right] \\ + \int_{\Phi_{m}} \left[d\sigma_{ab,NNLO}^{VV} - d\sigma_{ab,NNLO}^{U} \right]$$

Antenna Subtraction

Antenna functions built from matrix elements:

Where to start?

 $pp \Rightarrow 2j$ at NNLO is a complicated calculation:

- many crossings and colour factors to consider
- up to four massless partons in the final state means a large number of (overlapping) unresolved limits

Start by considering:

- what are the most important channels?
- what are the most important colour factors in each channel?

Channels

At low to moderate p_T the gluonic initial-states (gg+qg) dominate

At high p_T quark scattering becomes important

In this talk we will focus on gg+qg; qq results in preparation

gg channel

Start with the double real all-gluon contribution [Glover, Pires '10]:

• six gluon matrix element [Mangano, Parke, Xu '87; Berends, Giele '87]:

$$|\mathcal{M}_6^0|^2 = \sum_{\text{parma}} A_6^0(1, 2, i, j, k, l)$$

perms

• "single unresolved" subtraction term:

$$f_3^0(2,i,j) \ A_5^0(1,\bar{2},(\widetilde{ij}),k,l)$$

• "double unresolved" subtraction term:

$$F_4^0(2, i, j, k) \ A_4^0(1, \overline{2}, (\widetilde{ijk}), l)$$

• "spurious unresolved" subtraction term:

$$f_3^0(2,i,j) \ f_3^0((\widetilde{ij}),k,l) \ A_4^0(1,\overline{2},((\widetilde{ij})(kl)))$$

Real-virtual correction [Glover, Pires '12]:

• one-loop five gluon matrix element [Bern, Dixon, Kosower '93]

$$|\mathcal{M}_5^1|^2 = \sum_{\text{perms}} A_5^1(1, 2, i, j, k)$$

• pole subtraction term:

$$\boldsymbol{J}^{(1)}(1,2,i,j,k) \; A_5^0(1,2,i,j,k)$$

• single unresolved subtraction term:

$$f_3^0(2,i,j) \ A_4^1(1,\bar{2},(\widetilde{ij}),k) + f_3^1(2,i,j) \ A_4^0(1,\bar{2},(\widetilde{ij}),k)$$

• spurious pole/single unresolved subtraction term:

$$J^{(1)}(2,i) f^0_3(i,j,k) A^0_4(1,\overline{2},(\widetilde{ij}),(\widetilde{jk}))$$

Double virtual correction [Gehrmann, Gehrmann de-Ridder, Glover, Pires '13]

• two-loop matrix elements [Glover, Oleari, Tejeda-Yeomans '01]

$$|\mathcal{M}_4^2|^2 = \sum_{\text{perms}} A_4^2(1,2,i,j)$$

• double virtual subtraction term:

$$\begin{split} &+ \boldsymbol{J}^{(1)}(1,2,i,j) \ A^1_4(1,2,i,j) \\ &+ \frac{1}{2} \boldsymbol{J}^{(1)}(1,2,i,j) \otimes \boldsymbol{J}^{(1)}(1,2,i,j) \ A^0_4(1,2,i,j) \\ &+ \boldsymbol{J}^{(2)}(1,2,i,j) \ A^0_4(1,2,i,j) \end{split}$$

- analogous to well known IR pole structure [Catani '98]
- structure is universal and generalizable to higher multiplicities

Sub-leading colour all-gluon correction [JC, Glover, Pires '14]:

- posed an interesting theoretical challenge
- antenna subtraction designed for squared partial amplitudes
- sub-leading colour RR and RV gluon scattering built from interferences

$$\mathcal{A}_6^{0,\dagger}(\sigma) \left[\mathcal{A}_6^0(\sigma') + \mathcal{A}_6^0(\sigma'') + \mathcal{A}_6^0(\sigma''') \right]$$

 $\mathcal{A}_5^{0,\dagger}(\sigma) \ \mathcal{A}_5^1(\sigma')$

The method worked well and produced a small correction

qg channel

Very important channel over a wide range of p_T :

• main missing component for jets up to ~1 TeV

Also presents interesting theoretical challenges:

- antennae interpolate between many limits with a smooth momentum map
- not always desirable when factoring onto physically different matrix elements

 $\times M_{qq}$ or $M_{q\bar{q}}$

Limits can be disentangled successfully and systematically

Results

The following results are for $gg+qg+q\overline{q} \Rightarrow 2j$ at 13 TeV

Setup:

- NNPDF2.3_NNLO
- accept jets with $p_T > 80 \text{ GeV}$
- rapidity cut |y| < 4.4
- scale $\mu = \mu_F = p_T$ rather than p_{T1}
- anti- k_T jet algorithm R=0.4

 p_{T3}

K-factors

Where to go now?

Like · Comment · Share

S people like this.
Joey Huston 2066. So that's the final prediction when the inclusive jet cross
section will be finished?
Like ⋅ Reply ⋅ 1 2 ⋅ 11 June at 08:36

A few things remain to be included in our study:

- quark scattering for high p_T jets (results in preparation)
- leading N_F corrections in all channels (in preparation)
- sub-leading colour probably insignificant and can be dropped without compromising phenomenology
- updated scale variation (in preparation)
- upgrade of the Monte Carlo and interface to APPLgrid/n-tuples

Summary

Antenna subtraction is a flexible and powerful IR subtraction scheme

We have used this method to calculate the NNLO correction to jet production at the LHC:

- updated gluon scattering results at 13 TeV
- added the new and significant quark-gluon channel
- we observe that the new qg channel dominates for moderate p_{T}
- NNLO corrections up to ~8% of the NLO decreasing with $p_{\rm T}$
- quark-quark channel and N_F results in preparation