
Introduction The Method of Regions A factorization approach Conclusions

The Drell-Yan process beyond threshold

Domenico Bonocore

RadCor-Loopfest 2015
UCLA, 15 June 2015

based on arXiv:1410.6406 and arXiv:1503.05156
DB, E.Laenen, L.Magnea, S.Melville, L.Vernazza, C.D.White



Introduction The Method of Regions A factorization approach Conclusions

OUTLINE

INTRODUCTION

Threshold and soft expansion
NNLO DY: double real
NNLO DY: 1 real 1 virtual

THE METHOD OF REGIONS

Basics
Results for NNLO DY

A FACTORIZATION APPROACH

Hard, Soft and Jet functions
A factorization formula
The Jet emission function
Results for NNLO DY

CONCLUSIONS



Introduction The Method of Regions A factorization approach Conclusions

THRESHOLD EXPANSION

Soft gluons generate log(ξ) that spoil perturbation theory when
ξ → 0

dσ
dξ

=
∞∑

n=0

2n−1∑
m=0

αn
s

(
anm

logm(ξ)
ξ

+ bnm logm(ξ) +O(ξ)
)

(1)

I anm: LP Logs Di→ eikonal approximation
I bnm: NLP Logs Li→ ”next-to-eikonal” or ”next-to-soft”
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WHY WE NEED NEXT-TO-SOFT

I phenomenology

I including recoil and spin interactions in soft emissions

I precision (e.g. Higgs production)

I theory

I next-to-soft theorems

I understand infrared structure of gauge and gravity theories
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A VERY RECENT STORY

I next-to-soft theorems [Cachazo, Strominger 2014, Bern,
Davis, Nohle 2014]

I SCET [Larkosky, Neill, Stewart 2014]

I N3LO Higgs via threshold expansion [Anastasiou, Duhr,
Dulat, Herzog, Mistlberger 2013]
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WHY DY?

A bottom-up approach towards an understanding of all-orders
properties of next-to-threshold corrections

I simplest application (we consider only C2
F terms)

I NNLO known for many years

I very similar to Higgs production via gluon fusion

I threshold radiation is forced to be soft
(all Log(1-z) come from soft real radiation)

I interplay between soft and collinear effects
(some Log(1-z) are affected by collinear virtual radiation )
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DOUBLE-REAL (ABELIAN-LIKE) DY
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K FACTOR FROM FULL-QCD

Result from full QCD for the K factor K(2)
2r (z) at next-to-threshold level for

the double-real (abelian) DY:

K(2)
2r (z) =

(αs

π

)2
[

32− 32D0(z)
ε3 +

80 + 128D1(z)− 128 log(1− z)
ε2

+
−256D2(z)− 320 log(1− z) + 256 log2(1− z)

ε

+ − 1024
3

log3(1− z) + 640 log2(1− z) + 32

− 1024D3(z)
3

]
(2)
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AN EFFECTIVE APPROACH

I Eikonal (E)

pµ

p · k
(3)

I Next-to-Eikonal (NE)

k2 pµ

2(p · k)2 −
/kγµ

2p · k
(4)

(pk2)pµkν1 + (pk1)kµ2 pν − (pk1)(pk2)gµν − (k1k2)pµpν

p · (k1 + k2)
(5)



Introduction The Method of Regions A factorization approach Conclusions

Both LP (Di) and NLP (Li)
are reproduced
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1 REAL 1 VIRTUAL (ABELIAN-LIKE) DY
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FULL QCD COMPUTATION

Result from full QCD for the K factor K(2)
1r1v(z) at next-to-threshold level for the

1-real 1-virtual (abelian) DY:

K(2)
1r1v(z) =

(αs

π

)2
[

2D0(z)− 2
ε3 +

−4D1(z) + 3D0(z) + 4 log(1− z)− 6
ε2

+
16D2(z)− 24D1(z) + 32D0(z)

4ε

+
−16 log2(1− z) + 52 log(1− z)− 49

4ε

− 8D3(z)
3

+ 6D2(z)− 16D1(z) + 16D0(z) +
8
3

log3(1− z)

−29
2

log2(1− z) +
103
4

log(1− z)− 51
2

]
(6)
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LP Logs (all powers of Di) and
the leading NLP (L3) are

reproduced

No matching for L2 and L1 !
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Beyond the threshold limit, an effective field theory approach
fails for 1r-1v, because the soft expansion of the real gluon’s
momentum neglect collinear effects of the virtual gluon. We
need another strategy:

We tackle the problem in two different ways:
I Method of Regions
I Factorization Approach
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The method of regions
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THE METHOD OF REGIONS

A systematic procedure for expanding loop integrals about
their singular regions. [Beneke, Smirnov 1998, Jantzen 2011]

We distinguish different regions for the momentum lµ by the
different scalings of its components

Hard : l ∼
√

ŝ (1, 1, 1)

Soft : l ∼
√

ŝ
(
λ2, λ2, λ2)

Collinear : l ∼
√

ŝ
(
1, λ, λ2)

Anticollinear : l ∼
√

ŝ
(
λ2, λ, 1

)
(7)
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DY VIA MOR: SOFT REGION

K(2)
E, s(z) = K(2)

NE, s(z) = 0 (8)
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DY VIA MOR: HARD REGION

K(2)
E, h(z) =

(αs

π

)2
[

2D0(z)
ε3 +

−4 + 3D0(z)− 4D1(z)
ε2 (9)

+
−6 + 8D0(z)− 6D1(z) + 4D2(z) + 8 log(1− z)

ε

− 16 + 16D0(z)− 16D1(z) + 6D2(z)− 8D3(z)
3

+ 12 log(1− z)− 8 log2(1− z)

]

K(2)
NE, h(z) =

(αs

π

)2
[
− 2
ε3 +

1 + 4 log(1− z)
ε2 (10)

+
−5 + 2 log(1− z)− 4 log2(1− z)

ε
− 8

+ 10 log(1− z)− 2 log2(1− z) +
8
3

log3(1− z)

]
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DY VIA MOR: (ANTI)COLLINEAR REGION

Soft emission from triangle diagrams:

K(2)
NE, c+c̄(z) =

(αs

π

)2
[
− 1

2ε2 +
3 log(1− z)

2ε
+ 1− 9

4
log2(1− z)

]
(11)

Soft emission from self energy diagrams:

K(2)
NE, c+c̄(z) =

(αs

π

)2
[
− 1

2ε2 +
−5 + 6 log(1− z)

4ε
−5

2
+

15
4

log(1−z)−9
4

log2(1−z)

]
(12)

Note it is only NE
Eikonal terms are present but they cancel
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ABOUT THE ORDER OF EXPANSION

At amplitude level

Hard :
(2p · p̄)−ε

ε2

[
E + NE + . . .

]
+O

(
ε−1
)

(13)

Collinear :
(−2p · k2)−ε

ε

[
NE + . . .

]
+O

(
ε0) (14)

(−2p · k2)−ε ∼ (1− z)−ε (15)

Such a factor would be absent if one performed the soft
expansion before the dimensional regularization expansion
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K(2)
soft(z) + K(2)

hard(z) + K(2)
coll(z) + K(2)

anti−coll(z) = K(2)
1r1v(z) (16)

With the MoR we reproduced the entire
next-to-threshold Log structure (both Di and Li)

of the NNLO DY.

Very powerful, but no insight to higher orders.
We need factorization approach
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A factorization approach
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SOFT COLLINEAR FACTORIZATION
[Dixon,Magnea,Sterman 0805.3515]

Soft S
(
β1 · β2, αs(µ2), ε

)
= 〈0|Φβ2(∞, 0)Φβ1(0,−∞)|0〉

Jet J
(

(p · n)2

n2µ2 , αs(µ2), ε
)

u(p) = 〈0|Φn(∞, 0)ψ(0)|p〉

Eik Jet J
(

(β1 · n)2

n2µ2 , αs(µ2), ε
)

= 〈0|Φn(∞, 0)Φβ1(0,−∞)|0〉
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ABOUT THE n DEPENDENCE

At one loop this becomes

Γ = H+ S +
∑

i

(Ji − Ji) (17)

I at pole level n (and β) dependence cancels among S, J, J
I H is a finite (process dependent) function defined to cancel

the residual n dependence, by matching with the full
1-loop form factor.



Introduction The Method of Regions A factorization approach Conclusions

THE JET FUNCTION WITH n2 = 0

I (a) scaless integral (UV+IR=0)
I (b) standard QCD counterterm
I (c) 0
I (d) counterterm for a.
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THE JET FUNCTION WITH n2 = 0

J(1)(n, p) = −αs

4π

(
−4πµ2e−γE

2p · n

)ε [ 2
ε2 +

3
2ε

+ 2 +
π2

6

]
(18)

Spurious collinear singularities are introduced by the choosing
n2 = 0, but this greatly simplify the calculation.

Moreover, at all orders

J(n, p)bare = 1 (19)
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THE LOW-BURNETT-KROLL THEOREM

How does a soft emission affect an amplitude? Low theorem:
express a radiative amplitude in terms of the non radiative one.

I Low: scalar particles

I Burnett and Kroll: spinor particles

I Del Duca: theorem extended to the region m2

Q2 < E < m2

(collinear region). In Low original analysis gluon energy E
is the smallest scale of the problem.
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DEL DUCA MODIFICATIONS (NUCLPHYSB345 ’90)

Del Duca generalized Low’s original analysis attaching an
extra soft gluon to the factorized amplitude (via Ward Identity)
Introduce 2 polarization tensors:

Kνµ(p, k) =
kν(2p + k)µ

k2 + 2p · k
(20)

Gνµ(p, k) = gµν − Kνµ (21)

Emission contributes with terms got via Ward identity
I K + G emission fromH
I K + G emission from S
I K emission from J

and with a contribution excluded in Low original analysis
I G emission from J
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A FACTORIZATION FORMULA

The ansatz proposed by Del Duca with modern definition ofH,
S and J (i.e. taking special care of the auxiliary vector n) offers a
factorization formula for next-to-threshold Logs at amplitude
level:

Aµ =
∑

i

[
qi

(
(2pi − k)µ

2pi · k− k2 − Gνµ ∂

∂pνi

)
A

+H(pi)S̄(βi)Gνµ

(
Jµ(pi, k)− qi

∂

∂pνi
J(pi, k)

)∏
j 6=i

J(pj)

 (22)
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A FACTORIZATION FORMULA

It is made out of 3 main ingredients

I external (scalar) emission

I derivative of the non radiative amplitude

I jet emission function Jµ



Introduction The Method of Regions A factorization approach Conclusions

BARE VS RENORMALIZED

From RG arguments for the radiative and non-radiative
amplitude, it follows that all the counterterms must vanish.

We can left the quantities unrenormalized, with great
advantage. E.g.: if J = 1 then ∂

∂µ
J = 0

Aµ =
∑

i

(
qi

(2pi − k)µ

2pi · k− k2 + qiGνµ ∂

∂pνi
+ Jµ(pi, k)

)
A (23)

In this way the comparison with the MoR (bare) is even
stronger
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THE JET EMISSION FUNCTION FOR n2 = 0

Jµ (p,n, k2) u(p) =
〈

0
∣∣∣∣∫ ddye−i(p+k2)·yΦn(y,∞)ψ(y)jµ(0)

∣∣∣∣ p〉
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RESULT

Jν(1) (p,n, k ; ε) = (2p · k)−ε
[(

2
ε

+ 4 + 8ε
)(

n · k
p · k

pν

p · n
− nν

p · n

)
−(1 + 2ε)

i kα[γαγν ]
4p · k

+
(

1
ε
− 1

2
− 3ε

)
kν

p · k

+ (1 + 3ε)
(
γν /n
p · n

− pν /k /n
p · k p · n

)]
+O(ε2, k)

(24)
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CONTRACTION WITH THE G TENSOR

The role of the G tensor is to project out
the pure spin-dependent part of the jet emission function:

Gνµ

(
− pν

p · k2
+

/k2γν
2p · k2

)
=

k2 ν [γν , γµ]
4p · k2

(25)

This term then represents the coupling of the soft gluon to the
magnetic moment of the hard leg.

It combines with the scalar external contribution, to give a full
external emission.
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FACTORIZATION APPROACH: EXTERNAL EMISSION

K(2)
ext(z) =

(αs

4π
CF

)2
{

32
ε3

[
D0(z)− 1

]
+

8
ε2

[
− 8D1(z) + 6D0(z) + 8L(z)− 14

]
+

16
ε

[
4D2(z)− 6D1(z) + 8D0(z)− 4L2(z) + 14L(z)− 14

]
− 128

3
D3(z) + 96D2(z)− 256D1(z) + 256D0(z)

+
128

3
L3(z)− 224L2(z) + 448L(z)− 512

}
. (26)

This can be achieved via an effective field theory approach.

All D ’s come from this contribution

i.e. all Eikonal bits come from external emission

i.e. Eikonal emissions factorize
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FACTORIZATION APPROACH: DERIVATIVE OF THE

FULL FORM FACTOR

K(2)
∂A(z) =

(αs

4π
CF

)2
{

32
ε2 +

16
ε

[
−4L(z)+3

]
+64L2(z)−96L(z)+128

}
(27)

This cannot be caught by a factorization effective Feynman rule
approach:
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FACTORIZATION APPROACH: THE COLLINEAR BIT

K(2)
collinear(z) =

(αs

4π
CF

)2
{
−16
ε2 +

4
ε

[
12L(z)−5

]
−72L2(z)+60L(z)−24

}
(28)



Introduction The Method of Regions A factorization approach Conclusions

K(2)
ext(z) + K(2)

∂A(z) + K(2)
collinear(z) = K(2)

1r1v (29)

All Di and Li and even the constant!

We reproduced the entire next-to-threshold Log
structure of the NNLO DY

with a factorization approach
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CONCLUSIONS

I problem
I We don’t know how to resum next-to-threshold Logs
I Important for both theory and phenomenology

I proposal
I A factorization formula has been proposed, based on

universal functions
I The Method of Regions is a powerful tool to understand

the asymptotic behavior of those functions
I Crucial to this analysis is a treatment of collinear region

(jet emission function)
I outlook

I from factorization to resummation
I non abelian generalization and Higgs production
I application to other processes (DIS, e+e−, HH)
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Thanks for your attention!
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BACKUP SLIDES: EIKONAL IDENTITY

Factorization works very easily at eikonal level.
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BACKUP SLIDES: NEXT-TO-EIKONAL IDENTITY

+ ++

=

There are correlations between pairs of gluons. Naive
factorization is broken at NE level.
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BACKUP SLIDES: NULL VS NON-NULL

Jµ(1)
n2 6=0 =

(
−
/k2γ

µ

2pk2
+

pµ

pk2

)
J(1)
n2 6=0 + Jµc+d

+ 2
kµ2
pk2

+ (2pk2)−ε
(

1
ε

+ 2
)
/k2γ

µ

pk2

+
1

pn

[
2
(

nk2

pk2
pµ − nµ

)
log
(

n2 2pk2

(2pn)2

)
− /n /k2

pk2
pµ + /nγµ

]
+O(ε) +O(k2)

(30)

Jµ(1)
n2=0 =

(
−
/k2γ

µ

2pk2
+

pµ

pk2

)
J(1)
n2=0 + Jµc+d

+ 2
kµ2
pk2

+ (2pk2)−ε
(

1
ε

+ 2
)
/k2γ

µ

pk2

+
1

pn

[
2
(

nk2

pk2
pµ − nµ

)(
−1
ε
− 1 + log (2pk2)

)
− /n /k2

pk2
pµ + /nγµ

]
+O(ε) +O(k2)

(31)

where

Jµc+d =
(2pk2)−ε

ε

(
/k2γ

µ

pk2
+

kµ2
pk2

)
+

5
2
/k2γ

µ

pk2
+

kµ2
pk2

+O(ε) +O(k2) (32)
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