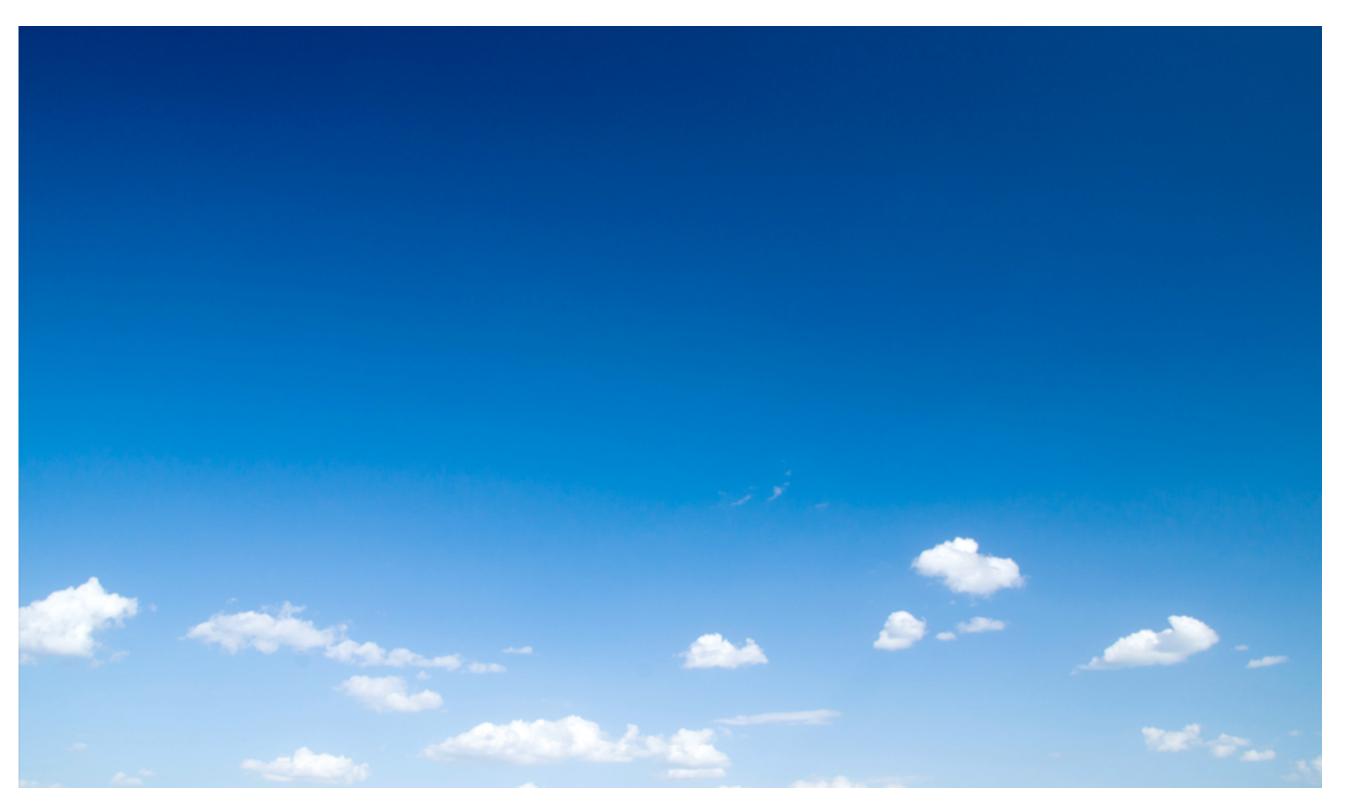


Towards a four loop form factor

in progress with Bernd Kniehl and Gang Yang

> Rutger Boels University of Hamburg

What this talk is



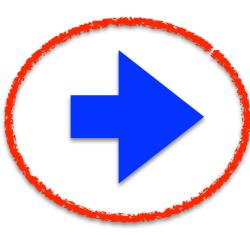
What this talk is

• a status report / teaser

• a cry for help

about the wrong approach to compute an interesting quantity

What this talk is



lightlike cusp anomalous dimension

unique maximal supersymmetric • about the wrong gauge theory in intorgsting quantit

$$\mathcal{L} = \mathcal{L}(A_{\mu}, \psi^{I}, \phi^{[IJ]})$$

universal function compute an In IR divergences

 $\gamma_{\rm cusp}(g_{\rm ym}, N_c)$

Longer term goals

• computational overhead quickly disastrously large, both in QCD as in N=4 \rightarrow techniques to combat both

three loops: [Gehrmann et.al, 06] basis of masters [Baikov et.al, 09] first integration [Gehrmann et.al, 10] cross-check

- N=4 \Leftrightarrow max transcendental part QCD?
- in N=4, planar limit known as solution to [Beisert-Eden-Staudacher, 04] equation (AdS/CFT, integrability)
- first non-planar correction at four loops

 $\gamma_{\text{cusp}} = \sum_{l} g^{2l} \gamma_{\text{cusp}}^{(l)} = a_1 g^2 C_A + a_2 g^4 C_A^2 + a_3 g^6 C_A^3 + g^8 \left(a_4^P C_A^4 + a_4^{NP} d_{44} \right) + \mathcal{O}(g^9) \,,$

• ideally, eventually, determine BES for non-planar $C_A = N_c \ d_{44} = N_c^4 + 36 N_c^2$

Wise words

"small problems at high loop orders are not small problems" $(\leq [Bern])$

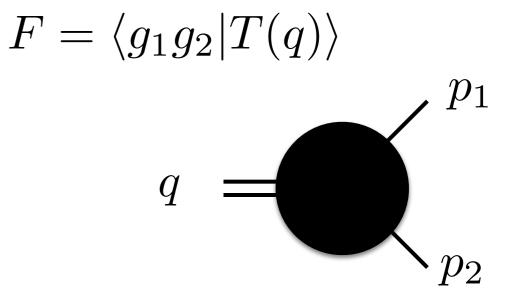
- $\gamma color factor is involve 8 structure constants (only Padjoint) g^9),$
- DiaGen to generate graphs, $C_A = N_c$ $d_{44} = N_c^4 + 36N_c^2$
- COLOR to compute color factors (works to 8 loops)

Cusp from Sudakov form factor

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

cf electromagnetic form factors in basic QFT

(simplicity: single scale problem)



 $p_1^2 = p_2^2 = 0$

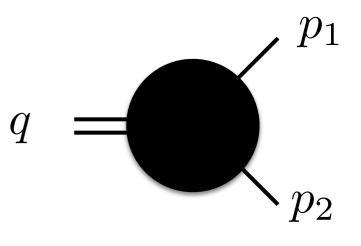
- arises in IR divergences: two internal/external momenta collinear or one momentum soft
- must cancel out in total cross-sections: imposes severe restrictions on observables (long story)

Sudakov form factor

IR divergences 'exponentiate', roughly:

 $A_l \propto e^{\frac{g_{\rm ym}^{2l}}{\epsilon^{2l}}h(g_{\rm ym},N_c,\epsilon)}\tilde{A}$

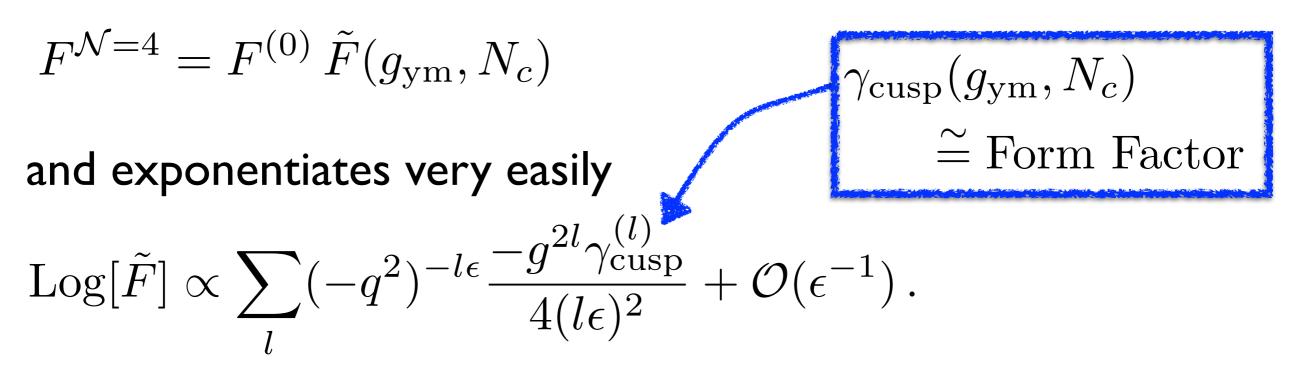
 $F = \langle g_1 g_2 | T(q) \rangle$



 $p_1^2 = p_2^2 = 0$

involves universal functions, e.g $\gamma_{\rm cusp}$

• N=4 form factor factorises off a tree by SUSY,



dim reg

Sudakov form factor at four loops

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 09]

"when in doubt, compute"

- integrand generation
- IBP reduction
- (numerical) integration

[RB-Kniehl-Tarasov-Yang, 12]
[this talk, with caveats]
[this talk, partly]

Feynman graphs generate high powers of irreducible numerators (will be out of reach)

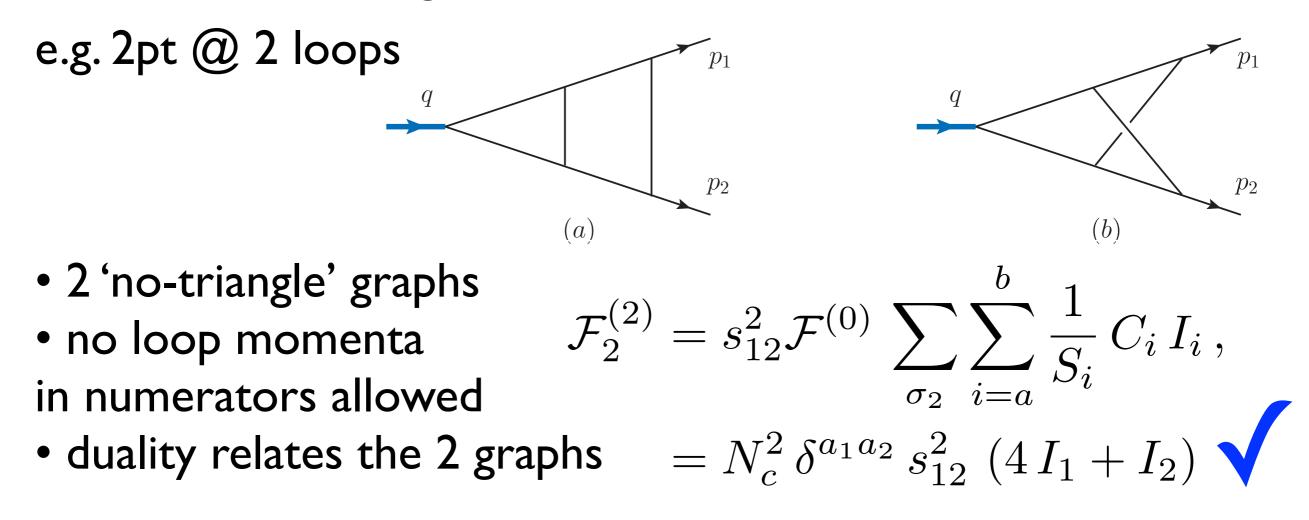
 \rightarrow need other method

"small problems at high loop orders are not small problems" $(\leq [Bern])$

Integrand generation (N=4 case)

inspired by amplitude computation [Bern-et.al, 12]:

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
 feed in expectations about answer: UV divergences, absence of
- one-loop triangle graphs, symmetries
 - check Ansatz using multicuts

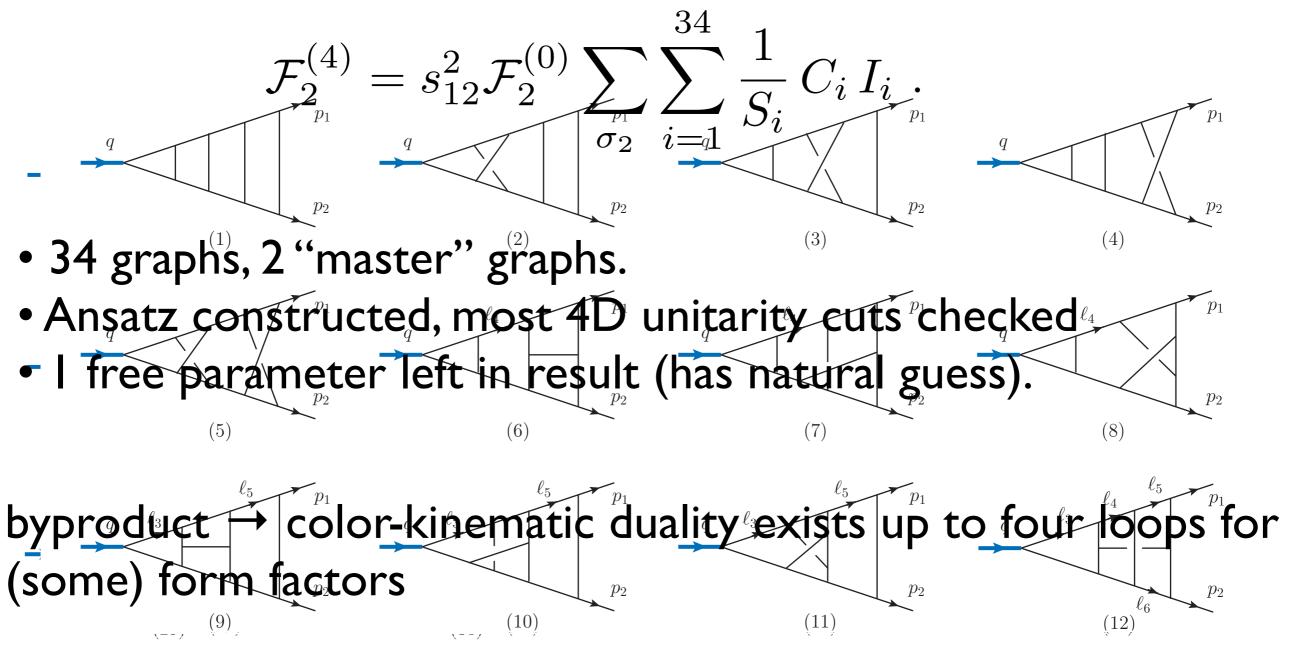


JHH itti

Integrand generation

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:



UHU iiii

Integrand for N=4, published so far

Integral statistics after generation:

- 34 integrals, non-planar topologies rampant
- 13 have a non-planar color part
- I0 are purely non-planar color
- many up to quadratic in irreducible numerators

q

 ℓ_5

66

26

 p_1

 \mathcal{D}_2

• topology 26: no internal boxes

- several have one or more graph symmetries
- generically, 18 independent propagators, 6 irreducible numerators / graph topology

non-planar topology integrals with up-to quadratic numerators are hard to integrate \rightarrow need simpler integrals

integrals obey many relations, e.g. IBPs: $\int d^D l_i \partial_{l_i^{\mu}} X = 0$

massive linear system \rightarrow solve by mapping to matrix & rowreducing [Laporta, xx] requires order on integrals

output: reduction + minimal basis of masters

here: for each integral pick 12 'propagators' to match topology \rightarrow choose 6 'numerators' to make basis:

$$\forall x, y \in \{p_1, p_2, l_1, l_2, l_3, l_4\} \quad \exists \alpha_i \, | \, x \cdot y = \sum_i \alpha_i b_i$$

IBP reduction

IBPs implemented in many ways. Public:

- AIR [Anastasiou, Lazopoulos, 04],
- FIRE [Smirnov(s), 06, 13, 14], talk here at this workshop,
- Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
- LiteRed [Lee, 12,13]

problems here: intermediate expression swell, extreme memory requirements, angry fellow users, crashes, etc, etc.

→ none work out of the box for all integrals (try 26)

Reduze works after fixing disk access pile-up problem

• two choices of numerators (simplest vs most symmetric) tried, only simplest seems to work (?)

runtime: 4-5 months, regular interruptions, LARGE memory use

IBP reduction

Large memory use on single machine:

	11031	boels	20	0	18.9g	18g	16m	R	64.2	1.9	6147:50 reduze
	11024	boels	20	0	16.6g	16g	16m	R	53.4	1.6	5864:25 reduze
	11032	boels	20	0	15.7g	15g	20m	R	63.2	1.6	6058:05 reduze
	11093	boels	20	0	15.3g	15g	25m	R	99.3	1.5	5997:52 reduze
	11038	boels	20	0	14.5g	14g	24m	R	100.0	1.4	6444:40 reduze
	11044	boels	20	0	14.5g	14g	12m	R	100.0	1.4	5258:38 reduze
	11087	boels	20	0	14.5g	14g	16m	R	98.3	1.4	5519:41 reduze
	11035	boels	20	0	14.4g	14g	13m	R	100.0	1.4	5660:43 reduze
	11091	boels	20	0	14.4g	14g	22m	R	75.7	1.4	6635:26 reduze
	11036	boels	20	0	14.3g	14g	14m	R	62.3	1.4	6230:30 reduze
	11085	boels	20	0	14.3g	14g	13m	R	69.5	1.4	6133:47 reduze
	11030	boels	20	0	13.7g	13g	21m	R	93.7	1.4	5396:21 reduze
	11041	boels	20	0	13.6g	13g	12m	R	100.0	1.3	6550:45 reduze
	11027	boels	20	0	13.5g	13g	15m	R	60.3	1.3	5835:31 reduze
	11088	boels	20	0	13.2g	13g	10m	R	100.0	1.3	5135:12 reduze
	11025	boels	20	0	12.7g	12g	23m	R	67.8	1.3	5784:08 reduze
	11028	boels	20	0	12.6g	12g	12m	R	51.4	1.2	6609:43 reduze
	11042	boels	20	0	12.3g	12g	14m	R	51.4	1.2	5718:09 reduze
	11090	boels	20	0	12.3g	12g	12m	R	100.0	1.2	6565:02 reduze
	11095	boels	20	0	11.7g	11g	25m	R	91.4	1.2	5593:43 reduze
	11043	boels	20	0	11.7g	11g	19m	R	65.5	1.2	5523:44 reduze
	11039	boels	20	0	11.5g	11g	12m	R	100.0	1.1	6213:14 reduze
	11033	boels	20	0	11.3g	11g	11m	R	65.2	1.1	5780:59 reduze
	11029	boels	20	0	11.2g	10g	14m	R	99.6	1.1	5996:48 reduze
	11086	boels	20	0	10.6g	10g	11m	R	94.7	1.0	5672:34 reduze
	11023	boels	20	0	9.9g	9.7g	14m	R	79.0	1.0	6489:06 reduze
	11136	boels	20	0	9798m	9.4g	27m	R	91.8	0.9	6417:35 reduze
	11026	boels	20	0	9308m	9.0g	27m	R	90.4	0.9	6421:29 reduze
V	11037	boels	20	0	9022m	8.7g	19m	R	59.0	0.9	5713:30 reduze
	11040	boels	20	0	8876m	8.5g	14m	R	57.3	0.9	6139:33 reduze
	11092	boels	20	0	8431m	_		s	100.0	0.8	6483:24 reduze
	11089	boels	20	0	7900m	7.6g	21m	R	69.5	0.8	6322:00 reduze
	11116	boels	20	0	7044m	6.7g	26m	R	100.0	0.7	6417:08 reduze
	11034	boels	20	Ø	7042m	6.70	20m	R	100.0	0.7	6022:42 reduze

IBP reduction: Reduze

Reduze

- +++ works on the problem at hand+ scales well with number of topologies+ enables large scale parallel computing
- requires much disk space, memory
- parallel increase saturates ~10-100 processes
- does not scale well with numerator or propagator power

IBP reduction: choice of numerators

take e.g. topology 26:

has graph symmetry of order 4

(graph has one more symmetry exchanging gluon and q) numerators can be chosen to either simple or symmetric: simple symmetric

$$(l_3 - l_5)^2,$$

 $(l_3 - l_6)^2,$
 $(l_5 - l_6)^2,$
 $(l_4 - p_1)^2,$
 $(l_4 - p_2)^2,$
 $(l_5 - p_2)^2.$

 ℓ_5

 p_2

 ℓ_4

26

 ℓ_3

$$(l_3 + 2l_5 - 3p_1)^2, (-l_3 + 2l_6 + p_2)^2, (l_3 - 2l_6 - p_1 + 2p_2)^2, (l_3 + 2l_5 - p_2)^2, (l_3 - l_4 + l_5 - p_2)^2, (l_4 - l_6 - p_1 + p_2)^2.$$

Wise words

"small problems at high loop orders are not small problems" $(\leq [Bern])$

generating symmetric numerators is not easy, choices involved, fews days of work

нн Ĥ

IBP reduction: output

Reduze solves finite ranges of identities: choice up to 2 numerator powers, up to 12 denominator powers (extension to 13 under way, beyond unrealistic)

one unreduced master detected (file size) \rightarrow obtained from symmetry

Table 1: Master integral statistics of obtained IBP reduction

(a) p	lanar for	rm fact	or		(b) non-planar form factor						
# props	s = 0	s=1	s = 2		# props	s = 0	s=1	s=2			
12	8	6	0		12	10	10	1			
11	18	2	× 0		11	13	3	0			
10	43	9	0		10	34	10	0			
9	49	1	0	hardest	9	29	1	0			
8	51	4	1	nardest	8	32	3	1			
7	25	0	0		7	13	0	0			
6	8	0	0		6	7	0	0			
5	0	0	0		5	1	0	0			
sum	203	22	1		sum	139	27	2			

Wise words

"small problems at high loop orders are not small problems" $(\leq [Bern])$

how do you know the answer makes sense? \rightarrow crosscheck

Basis check from MINT

observation [Lee, Pomeransky, 13]: "number of master integrals in given sector from algebraic geometry"

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- Mathematica
- hard → compute Gröbner basis
 Macaulay 2
 - Singular
- further processing for hard cases as in [Lee, Pomeransky, 13]
- number of masters allows a choice of basis (typically corner)
- obtained a complete basis for all topologies (caveat)

Cross checks & integration

- MINT favors doubled up propagators, Reduze numerators
- checked all single basis integrals agree between MINT and Reduze, beyond numbers close

 p_1

 p_2

 ℓ_6

(26)

 ℓ_3

 hardest integral topology seems integral 26 involving quadratic numerator

choose numerator
$$(l3 \cdot (p_1 - p_2))^2$$

$$= (-0.032986 \pm 2.16391 \cdot 10^{-7}) \, \epsilon^{-8} + (0.0694456 \pm 1.00572 \cdot 10^{-5}) \, \epsilon^{-7}$$

$$+ \left(1.3506 \pm 0.000193163
ight) \epsilon^{-6} + \left(-2.68804 \pm 0.00316693
ight) \epsilon^{-5}$$

 $+\left(-6.23707\pm0.0401289\right)\epsilon^{-4}+\left(12.6763\pm2.0782\right)\epsilon^{-3}$

+ $(1234.49 \pm 32.9661) \epsilon^{-2} + \mathcal{O}(\epsilon^{-1})$. (FIESTA)

Integration status

- Mellin-Barnes for non-planar at four loops open problem
- AMBRE & MB & Cuba still useful for some integrals
- sector_decomposition, secdec 2.x insufficient here
- FIESTA can do most integrals for planar form factor

 up to three 12 propagator integrals
 2x integral 25, 1 x integral 30
- likely that precision is a problem observed order 0.1

(Reduze+FIESTA give the three loop cusp in ~ 2 days up to percent level)

progress reported toward four loop form factors (any theory)

basis of masters

cross-checks in place

most definitely the wrong way to compute!

- better basis? Von Manteuffel talk
- solve IBPs with four dots to open more possibilities

Your Idea Here?