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Results from 
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* Can mean either fixed order or resummed 

Perturbative calculations Event generators

Can typically be performed with 
higher accuracy

Are fully differential, more similar to 
experimental data

Typically, observables have to be 
chosen before running code

Can just generate events, define 
observables later

Intrinsically, has only information on 
partonic final states

By attaching hadronization model, 
provides fully hadronized final state

There	  are	  two	  very	  different	  ways	  of	  making	  theore5cal	  
predic5ons:	  perturba5ve*	  calcula5ons	  and	  event	  generators



There	  are	  two	  very	  different	  ways	  of	  making	  theore5cal	  
predic5ons:	  perturba5ve*	  calcula5ons	  and	  event	  generators

3

Goal of GENEVA is to generate fully hadronized 
events that have both higher fixed order and 

higher resummation accuracy. All results should 
have realistic event-by-event uncertainties.

* Can mean either fixed order or resummed 



For	  Higgs	  produc5on,	  resumma5on	  is	  crucial	  reduces	  
uncertain5es	  by	  factor	  of	  2

4

Many experimental analyses split Higgs events into jet 
bins to deal with different background systematics17
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.
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ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

1205.3806, 
1206.4998, 
1307.1808

Resummation crucial for restricted regions of phase space



The	  accuracy	  of	  GENEVA	  is	  at	  least	  as	  good	  as	  the	  compe55on	  
in	  most	  cases.	  

5

Powheg / 
MC@NLO NNLOPS Sherpa UNLOPS GENEVA

FO Z NLO NNLO NLO NNLO NNLO

FO Zj LO NLO NLO NLO NLO

FO Zjj - LO NLO LO LO

Resummed
Z (N)LL (N)LL (N)LL (N)LL NNLL’

Uncertainties only FO only FO only FO only FO FO and 
resummed

0709.2092 
1002.2581 1309.0017 1207.5030 1405.3607
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The physics in GENEVA

Results
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The physics in GENEVA
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The	  main	  spirit	  of	  GENEVA	  is	  to	  calculate	  physical	  jet	  cross-‐
sec5ons

8

Don’t	  count	  number	  of	  partons,	  count	  number	  of	  jets

Do	  calcula4ons	  for	  jet	  cross-‐sec4ons,	  and	  use	  shower	  to	  fill	  out	  jet

Partonic	  cross-‐sec4ons	  are	  ill-‐defined	  beyond	  LO	  in	  standard	  perturba4on	  theory

This	  problem	  is	  well	  known,	  and	  always	  measure	  and	  calculate	  jet	  cross-‐sec4ons



9

• Create phase 
space for jet 
event

• Calculate 
cross section 
and assign to 
partonic event

• Let parton 
shower fill jets 
with radiation

In	  contrast	  to	  most	  other	  Monte-‐Carlo	  generators,	  Geneva	  
calculates	  physical	  jet	  cross-‐sec5ons

Φ0 Φ1 Φ2



To	  obtain	  logarithmic	  resumma5on	  requires	  a	  fully	  
factorizable	  jet	  defini5on

10

TN � 0

TN � Q

TN = 2
X

k

min{q̂1 · pk, q̂2 · pk, · · · , q̂N · pk}

q̂1

q̂2

q̂3

A very convenient jet definition is called n-jettiness

:  N pencil-like jets
:  more than N jets

TN < Tcut :  Veto > N jets
Note that Τ2 = τ = 1-T

Factorization theorem can be proven to all orders

Systematic method to resum logarithms at arbitrary order

1004.2489



This	  allows	  us	  to	  separate	  the	  total	  hadronic	  event	  into	  
different	  jet	  mul5plici5es

11

+ · · ·

Calculate each jet cross section to desired fixed and resummed 
accuracy, and use shower to fill out jets with radiation

Φ0 Φ1 Φ2 4
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By equating this to be equal to the inclusive 1-jet result given we find
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The above expressions completely define the fully di↵erential jet cross-sections. In the next section we will provide
some additional details on the specific implementation of the various pieces in GENEVA. Before doing so, however,
there is one additional feature of the above equations that should be mentioned. It concerns the phase space map that
is used to map a partonic phase space point �2 point with T1 < T cut

1 onto the jet phase space point �1. While there
are many IR safe maps available (for example the FKS map �̃1(�2) that is used in the subtractions in the second term
of Eq. (18)), there is one additional constraint on the map �T

1 (�2) used in the first term of Eq. (18). As discussed
below Eq. (4), the fact that we are projecting partonic �2 phase space points with T1 < T cut

1 onto jet �1 phase space
points leaves an e↵ect on calculated observables. In particular, it changes the T0 distribution by an amount of order
↵2
sT cut

1 /T0. For small values of T0 ⇠ T cut
1 this would destroy the NNLL’ accuracy of the T0 spectrum. To avoid this,

we define a special phase space map that is discussed in the next section.

B. Details of the GENEVA implementation

There are still several choices that can be made when implementing the above formulas. In this section we provide
some additional details about the specific choices that were made in the GENEVA implementation.

1. Choice of the jet resolution variables

We choose N -Jettiness as the jet resolution variables. N -Jettiness is defined as

TN =
2

Q2

X

k

min {qA · pk, qB · pk, q1 · pk, . . . , qN · pk} . (19)

For the original definition of N -Jettiness and definitions of the reference vectors qµi see [? ]. From this definition
it is immediately obvious that N -jettiness is a sensible jet resolution variable and that it is IR safe. What makes
the particular choice of jet resolution variable appealing theoretically is that it is a completely inclusive event shape
variable, which makes it very well defined theoretically.

2. The T0 spectrum at NNLL’ from SCET

An all orders factorization theorem can be proven for N -Jettiness [? ], which for N = 0 can be written in schematic
form as

d�SCET

d�0dT0 =
d�ij

d�0
Hij(Q

2, µ)

⇥Bi(xa, µ)⌦Bj(xb, µ)⌦ S(µ) . (20)

An important property of this factorization formula is that each factorization ingredient depends only on a single
characteristic scale. Therefore, there are no large logarithms in the perturbative expansion of each ingredient if it is
evaluated at its characteristic scale, whose canonical values are given by

µH = Q µB =
p

QT0 , µS = T0 . (21)
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where we have defined a normalized splitting probability P(�1) which satisfies
Z

d�1

d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
1(�1, T cut

1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).

Given the identity

U1(�1, T cut
1 ) +

Z
d�2

d�1
U 0
1(�1, T1)P (�2)✓(T1 < T cut

1 ) = 1 (16)
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T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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The resummed can be written as
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where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
1(�1, T cut

1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).
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one immediately obtains
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
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exclusive 1-jet:
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inclusive 2-jet:
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1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as
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where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed
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d�1
= d�2 � [�1 � �1(�2)] . (3)

This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by
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where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as
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Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write
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The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as
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where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed
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This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by
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where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as
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Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write
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The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into
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Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as
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where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed
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This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by
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where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [8]. However, we will come back
to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [8] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as
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Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write

d�mc
0

d�0
(T cut

0 ) =
d�NNLL0

0

d�0
(T cut

0 ) +
d�nons

0

d�0
(T cut

0 ) , (6)

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�1
(T0 > T cut

0 )

+
d�nons

�1

d�1
(T0 > T cut

0 ) . (7)

The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as
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The jet cross-sections are written as

Any observable can be calculated from them

For general NNLO matching, see 1311.0286
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+

Z
d�2

d�1

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) (2)

We will first focus on the 0-jet cross-section and the  
inclusive 1-jet cross-section
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+

Z
d�2

d�1

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) (2)

,

with the inclusive 1-jet rate defined as
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2

where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed

d�2

d�1
= d�2 �[�1 � �1(�2) . (3)

This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by

�(X) =

Z
d�0

d�mc
0

d�0
(T cut

0 )MX(�0) (4)

+

Z
d�1

d�mc
1

d�1
(T0 > T cut

0 ; T cut
1 )MX(�1)

+

Z
d�2

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 )MX(�2) .

where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as

d�mc
0

d�0
(T cut

0 ) =
d�resum

0

d�0
(T cut

0 ) +
d�singmatch

0

d�0
(T cut

0 ) +
d�nonsmatch

0

d�0
(T cut

0 ) ,

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�resum

�1

d�1
(T0 > T cut

0 ) +
d�singmatch

�1

d�1
(T0 > T cut

0 ) +
d�nonsmatch

�1

d�1
(T0 > T cut

0 ) . (5)

Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write

d�mc
0

d�0
(T cut

0 ) =
d�NNLL0

0

d�0
(T cut

0 ) +
d�nons

0

d�0
(T cut

0 ) , (6)

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�1
(T0 > T cut

0 ) +
d�nons

�1

d�1
(T0 > T cut

0 ) . (7)

The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as

d�NNLL0

�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�0dT0 P(�1) (8)

We take the resummed result at NNLL’ and match it to a fixed 
order result

The matching is given by a standard result

3

where we have defined a normalized splitting probability P(�1) which satisfies
Z

d�1

d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as

d�nons
0

d�0
(T cut

0 ) =
d�NNLO

0

d�0
(T cut

0 )�
"
d�NNLL0

0

d�0
(T cut

0 )

#

NNLO

(10)

d�nons
�1

d�1
(T0 > T cut

0 ) =

(
d�NLO

�1

d�1
�
"
d�NNLL0

0

d�1

#

NLO

P(�1)

)
✓(T0 > T cut

0 ) (11)

As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution

d�mc
1

d�1
(T0 > T cut

0 ; T cut
1 ) =

d�resum
1

d�1
(T0 > T cut

0 ; T cut
1 ) +

d�nons
1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) =

d�resum
�2

d�2
(T0 > T cut

0 ) ✓(T1 > T cut
1 ) +

d�nons
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) . (12)

The resummed can be written as

d�resum
1

d�1
(T0 > T cut

0 ; T cut
1 ) =

d�C
�1

d�1
(T0 > T cut

0 )U1(�1, T cut
1 ) ,

d�resum
�2

d�2
(T0 > T cut

0 ) =
d�C

�1

d�1
(T0 > T cut

0 )U 0
1(�1, T1)

����
�

1

=�T
1

(�
2

)

P(�2) ✓(T1 > T cut
1 ) , (13)

where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
1(�1, T cut

1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as

d�nons
1

d�1
(T cut

1 ) =

Z
d�2


B2(�2)

d�T
1

✓(T0 > T cut
0 )✓(T1 < T cut

1 )� C2(�2)

d�̃1

✓(T̃0 > T cut
0 )

�

�B1(�1)U
(1)
1 (�1, T cut

1 ) , (14)

d�nons
�2

d�2
(T1 > T cut

1 ) =
�
B2(�2) [1�⇥T (�2) ✓(T1 < T cut

1 )]

�B1(�
T
1 )U

(1)0
1 (�T

1 , T1)P(�2) ✓(T1 > T cut
1 )

 
✓(T0 > T cut

0 ) , (15)

where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).

Given the identity

U1(�1, T cut
1 ) +

Z
d�2

d�1
U 0
1(�1, T1)P (�2)✓(T1 < T cut

1 ) = 1 (16)

one immediately obtains



17

While	  the	  equa5ons	  for	  the	  jet	  cross-‐sec5ons	  are	  a	  liSle	  
lengthy,	  the	  physics	  is	  quite	  easy	  to	  understand

Since the NNLL’ resummation includes 2-loop singular 
terms, actual NNLO terms power suppressed

2

where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed

d�2

d�1
= d�2 �[�1 � �1(�2) . (3)

This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by

�(X) =

Z
d�0

d�mc
0

d�0
(T cut

0 )MX(�0) (4)

+

Z
d�1

d�mc
1
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(T0 > T cut
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1 )MX(�1)

+

Z
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d�mc
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0 , T1 > T cut
1 )MX(�2) .

where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as
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Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write
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The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as

d�NNLL0

�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�0dT0 P(�1) (8)

5

Of course, in the end all ingredients have to be evaluated at a common renormalization scale, and the renormalization
group can be used to relate each factorization ingredient at its characteristic scale to the common scale µ. This gives

d�NNLL0

d�0dT0 =
d�ij

d�0
Hij(Q

2, µH)UH(µH , µ)

⇥Bi(xa, µB)⌦ UB(µB , µ)

⌦Bj(xb, µB)⌦ UB(µB , µ)

⌦ S(µS)⌦ US(µS , µ) . (22)

Evaluating the ingredients to a given order in ↵s gives the matching coe�cients, while the renormalization group
Kernels UX(µX , µ) resum the large logarithmic terms. To go to NNLL’ accuracy, one needs the matching to 2-loop
order, and the running to 3(2)-loops in the (non)cusp anomalous dimension. All required expressions are known in
the literature.

In practice, one usually does not choose the canonical scales given in Eq. (21), since they do not turn o↵ resummation
fast enough leading to a very poor behavior in the tail region where T0 ⇠ Q. Instead, one uses so-called profile scales
which smoothly turn o↵ resummation for T0 ⇠ Q. The uncertainties from the resummation can be estimated by
choosing di↵erent sets of profile scales, which provide a sensible variation around the central scale choice. Profile
scales and their variations to obtain resummation uncertainties are used in many SCET predictions for resummed
observables, and details can be found in []. One additional ingredient is that our profile scales depend on the underlying
�0 point, in particular the resummation is turned o↵ earlier for forward events.

The same formalism can be used to obtain an expression for the cumulant of the T0 spectrum

d�NNLL0

d�0
(T cut

0 ) =

Z T cut

0

0

dT0 d�NNLL0

d�0dT0 . (23)

To obtain the resummed , one integrates the factorization theorem for the T0 distribution, and chooses the canonical
scales to be

µH = Q µB =
q

QT cut
0 , µS = T cut

0 . (24)

Since the order of integrating the factorization theorem and choosing the scales does not commute with one another,
the resulting expression for the cumulant is not exactly equal to the integral of the T0 spectrum. While it is the same
to the order one is working (to NNLL’ in our case), there are di↵erence at higher orders.

One could enforce Eq. (23) exactly, by simply defining the T0 spectrum as the derivative of the T cut
0 cumulant.

However, profile scales that give a decent error estimate for the cumulant will severely underestimate the uncertainties
in the spectrum define this way. In Geneva we circumvent these problems by adding to the T0 spectrum for a given
profile scale the quantity

(T0)
"

d

dT0
d�NNLL0

d�0
(T0)� d�NNLL0

d�0dT0

#
, (25)

at the central scale. Here (⌧0) is a function that smoothly interpolates from 1 for T0 ⌧ Q, to zero for T0 ⇠ Q. This
ensures that for the central scale choice we are interpolating between the derivative of the cumulant at small values
of T0 and the spectrum at large values of T0, while maintaining the uncertainties of the spectrum.

3. Getting NNLO results through the NNLL’ resummation

As already mentioned before Eq. (12), the fact that we are resumming the T0 spectrum and cumulant to NNLL’
accuracy implies that there are no singular term in the matching to the fixed order NNLO calculation. This implies
that the the non-singular 0-jet rate is proportional to T cut

0

d�NNLO
0

d�0
(T cut

0 )�
"
d�NNLL0

0

d�0
(T cut

0 )

#

NNLO

! ⇥
↵sf1(T cut

0 ,�0) + ↵2
sf2(T cut

0 ,�0)
⇤ T cut

0 (26)

The functions fk(T0,�0) can still have divergences as T0 ! 0, but these divergences are at most logarithmic. We show
the size of the correction terms

R
d�0 fk(T0,�0) normalized to the total inclusive cross-section in Fig. ??. For small

enough T cut
0 these non-singular matching corrections can be neglected, allowing to obtain NNLO accuracy without

doing an actual full theory NNLO calculation (which would determine the function f2(�0)). In GENEVA we include
the full dependence on f1(�2, T cut

0 ), and since the function f2 can be can be evaluated from the known dependence
on T cut

0 , we include it through a simple rescaling of the cross-section below T cut
0 .

This is same idea that is now being used in the N-
jettiness subtraction 

See next talk
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lengthy,	  the	  physics	  is	  quite	  easy	  to	  understand

3

where we have defined a normalized splitting probability P(�1) which satisfies
Z

d�1

d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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0 ) (11)

As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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The resummed can be written as
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d�1
(T0 > T cut
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0 )U 0
1(�1, T1)
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=�T
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(�
2
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P(�2) ✓(T1 > T cut
1 ) , (13)

where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
1(�1, T cut

1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as
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Z
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1 )U
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).

Given the identity

U1(�1, T cut
1 ) +

Z
d�2

d�1
U 0
1(�1, T1)P (�2)✓(T1 < T cut

1 ) = 1 (16)

one immediately obtains

Now we have exclusive 0-jet and inclusive 1-jet, and 
we split up the inclusive 1-jet into an exclusive 1-jet 

and inclusive 2-jet result

2

where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed

d�2

d�1
= d�2 �[�1 � �1(�2) . (3)

This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by

�(X) =

Z
d�0

d�mc
0

d�0
(T cut

0 )MX(�0) (4)

+

Z
d�1

d�mc
1

d�1
(T0 > T cut

0 ; T cut
1 )MX(�1)

+

Z
d�2

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 )MX(�2) .

where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as

d�mc
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(T cut

0 ) =
d�resum
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0 ) +
d�singmatch

0
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0 ) ,
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d�resum
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0 ) +
d�singmatch

�1

d�1
(T0 > T cut

0 ) +
d�nonsmatch

�1

d�1
(T0 > T cut

0 ) . (5)

Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write

d�mc
0

d�0
(T cut

0 ) =
d�NNLL0

0

d�0
(T cut

0 ) +
d�nons

0

d�0
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0 ) , (6)

d�mc
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0 ) =
d�NNLL0

�1

d�1
(T0 > T cut

0 ) +
d�nons

�1

d�1
(T0 > T cut

0 ) . (7)

The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as

d�NNLL0

�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�0dT0 P(�1) (8)
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where we have defined a normalized splitting probability P(�1) which satisfies
Z

d�1

d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
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1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).

Given the identity
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1 ) = 1 (16)

one immediately obtains
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where we have defined a normalized splitting probability P(�1) which satisfies
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d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
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1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
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1 ) Sudakov factor or its derivative is denoted by U (1)(0)
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1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).
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By equating this to be equal to the inclusive 1-jet result given we find
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The above expressions completely define the fully di↵erential jet cross-sections. In the next section we will provide
some additional details on the specific implementation of the various pieces in GENEVA. Before doing so, however,
there is one additional feature of the above equations that should be mentioned. It concerns the phase space map that
is used to map a partonic phase space point �2 point with T1 < T cut

1 onto the jet phase space point �1. While there
are many IR safe maps available (for example the FKS map �̃1(�2) that is used in the subtractions in the second term
of Eq. (18)), there is one additional constraint on the map �T

1 (�2) used in the first term of Eq. (18). As discussed
below Eq. (4), the fact that we are projecting partonic �2 phase space points with T1 < T cut

1 onto jet �1 phase space
points leaves an e↵ect on calculated observables. In particular, it changes the T0 distribution by an amount of order
↵2
sT cut

1 /T0. For small values of T0 ⇠ T cut
1 this would destroy the NNLL’ accuracy of the T0 spectrum. To avoid this,

we define a special phase space map that is discussed in the next section.

B. Details of the GENEVA implementation

There are still several choices that can be made when implementing the above formulas. In this section we provide
some additional details about the specific choices that were made in the GENEVA implementation.

1. Choice of the jet resolution variables

We choose N -Jettiness as the jet resolution variables. N -Jettiness is defined as

TN =
2

Q2

X

k

min {qA · pk, qB · pk, q1 · pk, . . . , qN · pk} . (19)

For the original definition of N -Jettiness and definitions of the reference vectors qµi see [? ]. From this definition
it is immediately obvious that N -jettiness is a sensible jet resolution variable and that it is IR safe. What makes
the particular choice of jet resolution variable appealing theoretically is that it is a completely inclusive event shape
variable, which makes it very well defined theoretically.

2. The T0 spectrum at NNLL’ from SCET

An all orders factorization theorem can be proven for N -Jettiness [? ], which for N = 0 can be written in schematic
form as

d�SCET

d�0dT0 =
d�ij

d�0
Hij(Q

2, µ)

⇥Bi(xa, µ)⌦Bj(xb, µ)⌦ S(µ) . (20)

An important property of this factorization formula is that each factorization ingredient depends only on a single
characteristic scale. Therefore, there are no large logarithms in the perturbative expansion of each ingredient if it is
evaluated at its characteristic scale, whose canonical values are given by

µH = Q µB =
p

QT0 , µS = T0 . (21)

with

Non-singular

Resummed
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TABLE I: Table showing how the di↵erent partonic phase space points are contributing to the di↵erent jet multi-
plicities. Here we have defined ✓TN (�M ) ⌘ ✓[TN (�M ) < T cut

N ], ✓TN (�M ) ⌘ ✓[TN (�M ) > T cut
N ], ✓map(�0;�1) ⌘

[�1 projects onto�0], ✓map(�1;�2) ⌘ [�2 projects onto�1], ✓map(�1) ⌘ [�1 does not project onto any�0], ✓map(�2) ⌘
[�2 does not project onto any�1]

�0 �1 �2 �N
d�mc

0

d�
0

All ✓T
0

(�1) and ✓map(�0;�1) ✓T
0

(�2) ✓T
0

(�N )
d�mc

1

d�
1

– ✓T
0

(�1) or ✓map(�1) ✓T
0

(�2) and ✓T
1

(�2) and ✓map(�1;�2) ✓T
0

(�N ) and ✓T
1

(�N )
d�mc

�2

d�
2

– – ✓T
0

(�2) and
⇥
✓T

1

(�2) or ✓map(�2)
⇤

✓T
0

(�N ) and ✓T
1

(�N )

with APsp(z,�) denoting the Altarelli-Parisi splitting fuction. This function is normalized according to

Z
d�N+1

d�NdTN P(�N+1)

=
X

sp

Z
dzd�

fsp(z,�)P
sp

R z
max

z
min

dz fsp(z,�)

= 1 . (31)

5. T1 resummation

The Sudakov factor U1(T max
1 , T1) resums the T1 dependence to LL accuracy. We use the expression that is obtained

from a fatorization theorem very similar to the one given for T0 in Eq. (20), where all factorization ingredients are
calculated at tree-level, and the running is performed at LL (which means only including the 1-loop cusp anomalous
dimension). The expansion of this Sudakov factor has a very simple expression

U (1)
1 (T max

1 , T1) = �↵s(T max
1 )(2CF + CA)

2⇡
ln2

T1
T max
1

(32)

6. Phase space maps

As discussed at the end of Sec. 2B, we need to construct a special phase space map which ensures that the fact
that �2 points with T1 < T cut

1 only contribute to the projected �1 point, does not destroy the NNLL’ accuracy on
the T0 spectrum we have included. 1 Therefore, we construct a phase space map for which T0(�2) = T0(�T

1 (�2)) and
qµ(�2) = qµ(�T

1 (�2)), where qµ is the momentum of the vector boson. This ensures that our phase space map does
not a↵ect the NNLL’ accuracy of the distribution d�/d�0dT0. While this map does not cover all of �2 phase space,
it does cover the singular region, since it is IR safe. The regions of phase space that are not covered (denoted by
1� ✓T (�2) in Eq. (15)) are therefore by definition non-signular and are included in the d�nons

�2 /d�2.

3. INTERFACING WITH A PARTON SHOWER

In the previous section we gave all required formulas for the jet cross-sections d�mc
0 , d�mc

1 and d�mc
�2. As discussed

in detail in the previous section, these jet cross-section include the contributions of higher multiplicity phase space
points, as long as the jet resolution variable for these points in phase space is below the T cut

k value. In Table I we
summarize how the phase space space points of di↵erent multiplicities contribute to the given jet cross-section.

1
To be precise, we hold a recursive definition of T0 fixed T FR

0 (�2) = T FR
0 (�1). If the two closest particles include an initial state particle,

this recursive definition is identical to the original definition of T0. For two final state particles being the closest, the recursive definition

first combines the two closest paricles, and then calculates T0 on that clustered o↵-shell phase space point. The recursive definition

therefore only di↵ers from the standard definition of T0 if the clustering happens accross the hemisphere boundary, and one can show

that the logarithmic dependence on these two variables is the same.

The parton shower should fill the jets with radiation, but that 
means it needs to know about our definition of jets

Here is a table with all info that went into our jet definition

Important point is that up to Φ2, fixed order calculation 
demands carefully defined jets. Beyond that accuracy, only 

knows about values of jet resolution variable
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Important point is that up to Φ2, fixed order calculation 
demands carefully defined jets. Beyond that accuracy, only 

knows about values of jet resolution variable

This is not an issue for showering 0-jet events, where Pythia is 
respecting our definition well. 

But for 1-jet events we perform the first emission analytically, 
and only then hand the event to Pythia

Only constraint we put on Pythia is that τN < τNcut 
(since we don’t have shower with evolution variable τN)





23

In	  summary,	  Geneva	  implements	  the	  following	  results	  for	  the	  
fully	  differen5al	  jet	  cross-‐sec5ons

Fully Di↵erential Drell-Yan Production at NNLL0+NNLO Matched to Parton Showers

Simone Alioli,1 Christian W. Bauer,2 Frank J. Tackmann,3 Jonathan R. Walsh,2 and Calvin Berggren4

1CERN Theory Division, CH-1211, Geneva 23, Switzerland
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

3Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
4Texas Lutheran University, TX 78155

(Dated: June 12, 2015)

We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
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1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+

Z
d�2

d�1

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) (2)

Fully Di↵erential Drell-Yan Production at NNLL0+NNLO Matched to Parton Showers

Simone Alioli,1 Christian W. Bauer,2 Frank J. Tackmann,3 Jonathan R. Walsh,2 and Calvin Berggren4

1CERN Theory Division, CH-1211, Geneva 23, Switzerland
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

3Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
4Texas Lutheran University, TX 78155

(Dated: June 12, 2015)

We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+

Z
d�2

d�1

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) (2)

Fully Di↵erential Drell-Yan Production at NNLL0+NNLO Matched to Parton Showers

Simone Alioli,1 Christian W. Bauer,2 Frank J. Tackmann,3 Jonathan R. Walsh,2 and Calvin Berggren4

1CERN Theory Division, CH-1211, Geneva 23, Switzerland
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

3Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
4Texas Lutheran University, TX 78155

(Dated: June 12, 2015)

We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into

exclusive 0-jet:
d�mc

0

d�0
(T cut

0 ) , (1)

exclusive 1-jet:
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 ) ,

inclusive 2-jet:
d�mc

�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) .

Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
0 and T1 > T cut

1 .
We can also define an inclusive 1-jet cross-section which can be written as

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�mc

1

d�1
(T0 > T cut

0 ; T cut
1 )

+

Z
d�2

d�1

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 ) (2)

@ NNLO / NNLL’

@ NLO / NNLL’ / LL

@ LO / NNLL’ / LL



24

Results

6/3/15, 10:59 AM./plots - CMS_2013_I1258128

Page 3 of 8http://portal.nersc.gov/project/theory/alioli/Geneva/rivet_plots_1…r_constrainTau0andqT_as_p118_pT0ref_4/CMS_2013_I1258128/index.html

⚓⚓⌘ d04-x01-y01:



Let me begin by showing 
comparisons to perturbative 

calculations



Fully	  inclusive	  Z	  boson	  spectra	  agree	  with	  NNLO	  fixed	  order	  
calcula5on



��� ��� ��� ��� ��� ����

���

���

���

���

Fully	  inclusive	  Z	  boson	  spectra	  agree	  with	  NNLO	  fixed	  order	  
calcula5on

��� ��� ��� ��� ��� ���

-����

-����

����

����

����

0903.2120



Fully	  inclusive	  Z	  boson	  spectra	  agree	  with	  NNLO	  fixed	  order	  
calcula5on

� �� �� �� �� ����

��

��

��

��

� �� �� �� �� ���-���

-���

���

���

���

���
0903.2120



Resummed	  observables	  are	  predicted	  with	  accuracies	  which	  
compare	  well	  with	  dedicated	  NNLL	  calcula5ons



Resummed	  observables	  are	  predicted	  with	  accuracies	  which	  
compare	  well	  with	  dedicated	  NNLL	  calcula5ons

-���

-���

���

���

���

1007.2351



Resummed	  observables	  are	  predicted	  with	  accuracies	  which	  
compare	  well	  with	  dedicated	  NNLL	  calcula5ons



Resummed	  observables	  are	  predicted	  with	  accuracies	  which	  
compare	  well	  with	  dedicated	  NNLL	  calcula5ons

� �� �� �� �� ����

���

���

���

���

����

� �� �� �� �� ���-����

-����

����

����

����
1206.4998



Now let me compare to data from 
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Measurement of the rapidity and transverse momentum distributions of Z bosons
in pp collisions at

ffiffi
ð

p
sÞ¼7 TeV

S. Chatrchyan et al.*

(CMS Collaboration)
(Received 23 October 2011; published 7 February 2012)

Measurements of the normalized rapidity (y) and transverse-momentum (qT) distributions of Drell–Yan
muon and electron pairs in the Z-boson mass region (60<M‘‘ < 120 GeV) are reported. The results are
obtained using a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by

the CMS experiment at the Large Hadron Collider (LHC), corresponding to an integrated luminosity of

36 pb#1. The distributions are measured over the ranges jyj< 3:5 and qT < 600 GeV and compared with

quantum chromodynamics (QCD) calculations using recent parton distribution functions to model the

momenta of the quarks and gluons in the protons. Overall agreement is observed between the models and

data for the rapidity distribution, while no single model describes the Z transverse-momentum distribution

over the full range.

DOI: 10.1103/PhysRevD.85.032002 PACS numbers: 13.60.Hb, 13.38.Dg, 13.85.Qk

I. INTRODUCTION

The production of Z and W bosons, which may be
identified through their leptonic decays, is theoretically
well described within the framework of the standard
model. Total and differential cross sections have been
calculated to next-to-next-to-leading-order (NNLO) [1,2].
The dominant uncertainties in the calculations arise from
imperfect knowledge of the parton distribution functions
(PDFs), from the uncertainty in the strong-interaction
coupling !s, and from the choice of quantum chromody-
namics (QCD) renormalization and factorization scales.
Measurements of the inclusive Z and W production cross
sections performed by the Compact Muon Solenoid (CMS)
experiment [3] show agreement with the latest theoretical
predictions both for the absolute values and for the ratios
Wþ=W# and W=Z. Likewise, agreement is found for the
measurement of the dilepton mass distribution over a wide
range [4].

In this paper, we present measurements of the rapidity
and transverse-momentum distributions for Drell–Yan
muon and electron pairs in the Z-boson mass region (60<
M‘‘ < 120 GeV). The results are obtained from a sample
of proton-proton collisions at a center-of-mass energy of
7 TeV, recorded by the CMS detector at the Large Hadron
Collider (LHC) in 2010, which correspond to an integrated
luminosity of 35:9% 1:4 pb#1. The measurement of the
rapidity (y) and transverse-momentum (qT) distributions of
the Z-boson provides new information about the dynamics
of proton collisions at high energies. The y distribution of

Z bosons is sensitive to the PDFs, particularly when mea-
sured in the forward region (jyj> 2:5), as done in this
paper. The qT spectrum provides a better understanding
of the underlying collision process at low transverse mo-
mentum, and tests NNLO perturbative QCD predictions at
high transverse-momentum. The distributions for y and Z
are normalized by total cross sections within acceptance
regions described below.
The rapidity is defined as y ¼ 1

2 ln½ðEþ qLÞ=ðE# qLÞ(,
whereE is the energy of the Z-boson candidate and qL is its
longitudinal momentum along the anticlockwise beam axis
(the z axis of the detector). The Z-boson y and qT are
determined from the lepton momenta, which can be mea-
sured with high precision in the CMS detector. The mea-
sured differential dimuon and dielectron cross sections are
normalized to the inclusive Z cross section, thereby can-
celing several sources of systematic uncertainties.
The Z-boson y and qT distributions have been measured

by the Tevatron experiments [5–10]. In this paper, we
report measurements which cover the range in rapidity
up to 3.5 and in transverse momentum up to 600 GeV, a
similar range to results recently reported by the ATLAS
experiment [11,12]. The rapidity measurement is sensitive
to the PDFs for proton momentum fractions (x) between
4) 10#4 and 0.43.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the field volume are a
silicon pixel and strip tracker, a crystal electromagnetic
calorimeter (ECAL), and a brass/scintillator hadron calo-
rimeter (HCAL). The inner tracker measures charged par-
ticle trajectories in the pseudorapidity range j"j< 2:5 and
provides a transverse-momentum (pT) resolution of about
1–2% for charged particles with pT up to 100 GeV. The

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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Rapidity of the vector boson

Fig. 3. The number of degrees of freedom (ndof) is 34. The
MSTW2008 [25] PDF set has a !2 of 18.3 for its base
prediction, and the eigenvector-dependent changes shown
in Fig. 4. For both sets, several eigenvectors show signifi-
cant sensitivity to our result, with CT10 showing a gen-
erally larger sensitivity. The HERAPDF 1.5 [26] PDF set,
which has a !2 of 18.4 for its base prediction, provides both
eigenvectors and model dependencies as part of the PDF
set. The changes in !2 for both are shown in Fig. 5. The
largest model dependencies with our measurement are the
strange-quark PDF as a fraction of the down-quark-sea
PDF. For the NNPDF 2.0 PDF set [27], the base prediction
has a !2 of 18.4. The NNPDF formalism does not use
eigenvectors, but rather replica PDFs sampled from the
same space. In comparing our result with the 100 standard

NNPDF 2.0 replicas, the majority have !2 similar to the
base, but some have !2 values up to 34.5, indicating that
these replicas are disfavored significantly by the new
measurement.
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FIG. 2 (color online). The normalized differential cross section
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Figure 8. (a) Measured cross section for Z (! ``) + jets as a function of the transverse momentum
of the Z candidate, p``T , in events with at least one jet with pjetT > 30 GeV and |yjet| < 4.4 in the final
state and (b) as a function of p``T in events with exactly one jet. The cross sections are normalized
to the inclusive Z (! ``) cross section. The other details are as in figure 3.

veto on a third jet in the central region (|⌘| < 2.4) as a function of the minimum transverse

momentum of the veto jet, referred to as ‘jet veto e�ciency’ in the following. The results

are shown at detector level, separately for the Z ! ee and the Z ! µµ channel. The over-

estimate of R
3/2 in ALPGEN (see figure 4) leads to an underestimate of the veto e�ciency,

particularly for the low-pjet
T

regime. SHERPA predicts the veto e�ciencies better.

10.5 Inclusive quantities

Quantities based on inclusive p
T

sums of final-state objects, such as H
T

or S
T

, are often

employed in searches in order to enrich final states resulting from the decay of heavy

particles. Reference [47] reports a discrepancy between fixed-order pQCD calculations and

data for moderate energy regimes in W + jets events which can be mitigated by including

higher jet multiplicities in the theoretical calculations by means of ‘exclusive sums’ [48].

Di↵erential cross sections of Z (+ � 1 jet) events as a function of H
T

and S
T

, nor-

malized to the inclusive Z (! ``) cross section, are presented in figure 15. ALPGEN

predicts slightly too hard spectra for both variables in line with the too hard spectrum

for pjet
T

. SHERPA predictions show an o↵set of 10–15% to the data. The softer spectra

from BlackHat+SHERPA, based on a Z (+ � 1 jet) fixed-order NLO calculation, deviate

– 22 –
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Figure 5. (a) Measured cross section for Z (! ``) + jets as a function of the transverse momentum,
pjetT , of the leading jet for events with at least one jet with pjetT > 30 GeV and |yjet| < 4.4 in the
final state and (b) as a function of pjetT of the second leading jet for events with at least two jets.
The cross sections are normalized to the inclusive Z (! ``) cross section. The other details are as
in figure 2.

Figure 7(a) shows the cross section as a function of pjet
T

of the leading jet, normalized

to the inclusive Z (! ``) cross section, when a veto on a second jet is applied. A better

agreement between the predicted and observed cross-sections is observed. For events with

at least two jets, figure 7(b) shows the cross section as a function of the pjet
T

ratio of the two

leading jets, normalized to the inclusive Z (! ``) cross section. ALPGEN overestimates the

cross section for events with a pjet
T

ratio of the leading jets in the range of 0.1–0.2. SHERPA

underestimates the cross section as a function of the pjet
T

ratio by ⇡15%, consistent with

the results presented in figure 2(a).

In a complementary approach, the cross section is measured as a function of the p
T

of

the recoiling Z boson, reconstructed from the momenta of the two leptons. The results are

presented in figure 8 for both the inclusive and the exclusive Z (+1 jet) selection, normal-

ized to the inclusive Z (! ``) cross section. Both ALPGEN and SHERPA predict a too

hard p``
T

spectrum, in particular in the inclusive case. The discrepancy with the data is

comparable to the expected higher-order electroweak corrections [46] although higher-order

QCD corrections could equally account for this. The BlackHat+SHERPA Z (+ � 1 jet)

fixed-order calculation for the inclusive final state is too soft whereas for the exclusive final

– 19 –
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Figure 7. Left: comparison of the pZT distributions predicted by different computations: Fewz
and Dynnlo (top), ResBos (middle) and the NNLO+NNLL calculation of ref. [21] (bottom) with
the Born-level combined measurement, inclusively in yZ . Right: ratios between these predictions
and the combined measurement.

a similar transverse momentum range. The measurement inclusive in rapidity is used for

the tuning, and the compatibility of the tuned predictions with the data in the separate

rapidity bins is then evaluated.

For Pythia8, the parton shower model components under consideration include the

strong coupling constant used for the parton shower evolution αISR
S (mZ), and the parton

shower lower cut-off pT0 in the non-perturbative regime, implemented as a smooth damping

factor p2T/(p
2
T0 + p2T). To populate the region below pT0, the partons initiating the hard

scattering process are assumed to have a primordial transverse momentum kT following

– 20 –
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Figure 7. Left: comparison of the pZT distributions predicted by different computations: Fewz
and Dynnlo (top), ResBos (middle) and the NNLO+NNLL calculation of ref. [21] (bottom) with
the Born-level combined measurement, inclusively in yZ . Right: ratios between these predictions
and the combined measurement.

a similar transverse momentum range. The measurement inclusive in rapidity is used for

the tuning, and the compatibility of the tuned predictions with the data in the separate

rapidity bins is then evaluated.

For Pythia8, the parton shower model components under consideration include the

strong coupling constant used for the parton shower evolution αISR
S (mZ), and the parton

shower lower cut-off pT0 in the non-perturbative regime, implemented as a smooth damping

factor p2T/(p
2
T0 + p2T). To populate the region below pT0, the partons initiating the hard

scattering process are assumed to have a primordial transverse momentum kT following
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Figure 8. Ratio of the pZT distribution predicted by different MC generators to the Born-level
combined measurement, for the inclusive measurement and for 0 ≤ |yZ | < 1, 1 ≤ |yZ | < 2 and
2 ≤ |yZ | < 2.4.

a Gaussian distribution with tunable width. The Pythia8 parton shower also includes

QED emissions, but the corresponding cut-off values and coupling strength are left to the

program defaults. The steerable parameters not used in the tuning are set to the values

defined by the tune 4C [35].

Powheg calculates the hardest (highest pT) QCD radiation provided that it is above a

transverse momentum threshold p2T,min, which is a steerable parameter in the program. Be-

low p2T,min, Powheg generates events without extra radiation and the phase space is popu-

lated by Pythia8. Therefore, the upper limit of the Pythia8 parton shower should match

the Powheg cut-off value. The tunes are performed using p2T,min = 4GeV2, corresponding

to pZT = 2GeV. In addition, in order to avoid discontinuities in the matched spectrum, the

αS(mZ) value used to calculate the QCD radiation in Powheg should match αISR
S (mZ) in

Pythia; αS(mZ) = 0.118 is used as in the CT10 PDFs. Correspondingly the running of αS

in the parton shower calculation is set to NLO. The tuning of Powheg+Pythia8 hence

only varies the shower cut-off and the primordial kT in Pythia8. The other steerable

parameters not used in the tuning are set to the values defined by the 4C tune.

The tunes are performed using the Professor [52] package, which interpolates the de-

pendence of MC predictions on the model parameters as originally proposed in ref. [53].

Predictions for the pZT distribution are generated at randomly chosen parameter settings
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Figure 8. Ratio of the pZT distribution predicted by different MC generators to the Born-level
combined measurement, for the inclusive measurement and for 0 ≤ |yZ | < 1, 1 ≤ |yZ | < 2 and
2 ≤ |yZ | < 2.4.

a Gaussian distribution with tunable width. The Pythia8 parton shower also includes

QED emissions, but the corresponding cut-off values and coupling strength are left to the

program defaults. The steerable parameters not used in the tuning are set to the values

defined by the tune 4C [35].

Powheg calculates the hardest (highest pT) QCD radiation provided that it is above a

transverse momentum threshold p2T,min, which is a steerable parameter in the program. Be-

low p2T,min, Powheg generates events without extra radiation and the phase space is popu-

lated by Pythia8. Therefore, the upper limit of the Pythia8 parton shower should match

the Powheg cut-off value. The tunes are performed using p2T,min = 4GeV2, corresponding

to pZT = 2GeV. In addition, in order to avoid discontinuities in the matched spectrum, the

αS(mZ) value used to calculate the QCD radiation in Powheg should match αISR
S (mZ) in

Pythia; αS(mZ) = 0.118 is used as in the CT10 PDFs. Correspondingly the running of αS

in the parton shower calculation is set to NLO. The tuning of Powheg+Pythia8 hence

only varies the shower cut-off and the primordial kT in Pythia8. The other steerable

parameters not used in the tuning are set to the values defined by the 4C tune.

The tunes are performed using the Professor [52] package, which interpolates the de-

pendence of MC predictions on the model parameters as originally proposed in ref. [53].

Predictions for the pZT distribution are generated at randomly chosen parameter settings
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Figure 8. Ratio of the pZT distribution predicted by different MC generators to the Born-level
combined measurement, for the inclusive measurement and for 0 ≤ |yZ | < 1, 1 ≤ |yZ | < 2 and
2 ≤ |yZ | < 2.4.

a Gaussian distribution with tunable width. The Pythia8 parton shower also includes

QED emissions, but the corresponding cut-off values and coupling strength are left to the

program defaults. The steerable parameters not used in the tuning are set to the values

defined by the tune 4C [35].

Powheg calculates the hardest (highest pT) QCD radiation provided that it is above a

transverse momentum threshold p2T,min, which is a steerable parameter in the program. Be-

low p2T,min, Powheg generates events without extra radiation and the phase space is popu-

lated by Pythia8. Therefore, the upper limit of the Pythia8 parton shower should match

the Powheg cut-off value. The tunes are performed using p2T,min = 4GeV2, corresponding

to pZT = 2GeV. In addition, in order to avoid discontinuities in the matched spectrum, the

αS(mZ) value used to calculate the QCD radiation in Powheg should match αISR
S (mZ) in

Pythia; αS(mZ) = 0.118 is used as in the CT10 PDFs. Correspondingly the running of αS

in the parton shower calculation is set to NLO. The tuning of Powheg+Pythia8 hence

only varies the shower cut-off and the primordial kT in Pythia8. The other steerable

parameters not used in the tuning are set to the values defined by the 4C tune.

The tunes are performed using the Professor [52] package, which interpolates the de-

pendence of MC predictions on the model parameters as originally proposed in ref. [53].

Predictions for the pZT distribution are generated at randomly chosen parameter settings
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In	  conclusion,	  GENEVA	  is	  a	  fully	  exclusive	  event	  generator	  
with	  the	  best	  available	  perturba5ve	  accuracy

The method is easily extendable to processes  
other than Z + jets

Very good agreement with dedicated perturbative  
calculations

QUESTIONS?


