
DIFFERENTIAL TOP PAIR 
PRODUCTION AT NNLO

Gabriel Abelof

Based on work done in collaboration with 	

R. Bonciani, O. Dekkers, A. Gehrmann-De Ridder,	


P. Maierhöfer, I. Majer, A. v. Manteuffel and S. Pozzorini 

Radcor/Loopfest - June 16, 2015 - UCLA



G. Abelof (NU-ANL) Differential top pair production at NNLO

Motivation
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Percent level experimental accuracy in top pair production is a reality at the LHC	

At inclusive level	

In differential distributions
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Precise data provides an accurate probe of the     production mechanism. Beneficial for	

New physics searches	

More pedestrian purposes: extraction of top quark pole mass, high x gluon PDF, … 

tt̄
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To match theory and experimental accuracies at the LHC, cross sections for top pair 
production must be calculated through NNLO in pQCD

To reliably interpret percent level experimental data, we need percent level theory 
predictions 	


The combination of everything that has been known for a while	


NLO QCD corrections: Ellis, Dawson, Nason; Beenakker, Kuijf, van Neerven, Smith ’89	


NLO EW corrections: Beenakker, Bernreuther, Denner, Fuecker, Hollik, Kao, Kollar, Kühn, 
Ladinsky, Mertig, Moretti, Nolten, Ross, Sack, Scharf, Si, Uwer, Wackenroth, Yuan	


Threshold resummation and Coulomb corrections: Ahrens, Banfi, Berger, Bonciani, Catani, 
Contopanagos, Czakon, Ferroglia, Frixione, Kidonakis, Kiyo, Kühn, Laenen, Mangano, Mitov, Moch, 
Nason, Neubert, Pecjak Ridolfi, Steinhauser, Sterman, Uwer, Vogt, Yang	


Yields a theoretical uncertainty ~10%

Motivation
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Top Pair Production At NNLO
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State of the art	


Total NNLO cross section known (exact, all channels included) [Czakon, Fiedler, Mitov ’13]	


Applied to constraining high x gluon distribution [Czakon, Mangano, Mitov, Rojo ’13]	


Inclusive and differential Tevatron AFB at NNLO [Czakon, Fiedler, Mitov ’14]

Our Goal: fully differential NNLO parton-level event generator that can efficiently 
compute all differential distributions for hadron colliders 

d�

dX
X = ptT , p

t⇤

T , pt1T , pt2T , yt, ptt̄T ,mtt̄, y
tt̄, ��tt̄

This talk: NNLO differential     production in the      channel (leading-color + fermionic)	


Light quark (Nl) contributions computed in [GA, Gehrmann-De Ridder ’14]	


Leading-color. New [GA, Gehrmann-De Ridder, Majer ’15]

tt̄ qq̄
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Differential Top Pair Production In The qq Channel

Cross section can be decomposed into color factors:

   : leading-color coefficient. New [GA, Gehrmann-De Ridder, Majer ’15]	


          : light quark contributions [GA, Gehrmann-De Ridder ’14]	


           : heavy quark contributions. In progress.	


         : identical quark contributions. Only enter at RR level. In progress.	


                   : IR finite. Only enter at VV level. New [GA, Gehrmann-De Ridder, Majer ’15]	


        : sub-leading-color terms. 

A

Fl, Gl

Fh, Gh

B, D

Hl, Hh, Hlh

C, E

In this talk “leading-color (LC) + fermionic” means A, Fl, Gl, Hl, Hh, Hlh

d�̂qq̄,NNLO = (N2
c � 1)


N2

c A+Nc B + C +
D

Nc
+Nl

✓
Nc Fl +

Gl

Nc

◆
+

E

N2
c

+Nh

✓
Nc Fh +

Gh

Nc

◆
+N2

l Hl + Nl Nh Hlh +N2
h Hh

�
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Differential Top Pair Production In The qq Channel
Analytic expressions for scattering amplitudes

                                                   [Bonciani, Ferroglia, Gehrmann, Maître, v. Manteuffel, Studerus] 2Re
⇣
M2

q1q̄2!t3 t̄4
M0 †

q1q̄2!t3 t̄4

⌘

                        |M1
q1q̄2!t3 t̄4

|2

                                                        obtained from OpenLoops [Cascioli, Maierhöfer,Pozzorini]2Re
⇣
M1

q1q̄2!t3 t̄4g5
M0 †

q1q̄2!t3 t̄4g5

⌘

                            ,                             |M0
q1q̄2!t3 t̄4g5g6

|2 |M0
q1q̄2!t3 t̄4q05q̄

0
6
|2

d�̂NNLO =

Z

�4

d�̂RR
NNLO +

Z

�3

✓
d�̂RV

NNLO + d�̂MF,1
NNLO

◆
+

Z

�2

✓
d�̂VV

NNLO + d�̂MF,2
NNLO

◆
Method needed to extract and cancel infrared divergences that plague partonic cross sections

Explicit poles from loop integration	

Implicit singularities from phase space integration over single and double unresolved 
real emissions 
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Antenna Subtraction At NNLO
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d�̂NNLO =

Z

�4

⇥
d�̂RR

NNLO � d�̂S
NNLO

⇤

+

Z

�3

⇥
d�̂RV

NNLO � d�̂T
NNLO

⇤

+

Z

�2

⇥
d�̂VV

NNLO � d�̂U
NNLO

⇤

Construct counter-terms               ,               and d�̂S
NNLO d�̂T

NNLO d�̂U
NNLO

             ,               approximate matrix elements in unresolved limits  d�̂S
NNLO d�̂T

NNLO

d�̂S,T
NNLO

8 {j,k},{j} unresolved��������������! d�̂RR,RV
NNLO

All explicit poles are cancelled analytically

Poles

✓
d�̂RV

NNLO � d�̂T
NNLO

◆
= 0

Poles

✓
d�̂VV

NNLO � d�̂U
NNLO

◆
= 0

Content of square brackets is finite and regular. Phase space integration can be done 
numerically in d=4.   
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Antenna Subtraction At NNLO
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Building blocks for subtraction terms:	

Antenna functions      ,       ,	


Constructed from ratios of physical matrix elements	

Smoothly interpolate all unresolved limits of a cluster of color-connected partons	


!
           and            on-shell phase space mappings for reduced matrix elements	

Phase space factorizations to define integrated subtraction terms

X0
3 X0

4 X1
3

3 ! 2 4 ! 2

Initial-state colored particles =) Final-final, initial-final, initial-initial antennae, 
mappings and phase space factorizations

Challenge: extend NNLO antenna subtraction method to treat massive quarks.	

Generalize phase space mappings and factorizations [G.A., Gehrmann-De Ridder ‘11]	

Compute and integrate massive antennae and convolutions. For                     	


              [Gehrmann-De Ridder, Ritzmann ’09; GA, Gehrmann-De Ridder ’11]	


                        [Bernreuther, Bogner, Dekkers ’11]	


                            [GA, Dekkers, Gehrmann-De Ridder ’12]	


                                                                       New [GA, Gehrmann-De Ridder, Majer ’15]

qq̄ ! tt̄+X

X0
3 , X 0

3

B0
Qqq̄Q̄, B

0
Qqq̄Q̄

B0
q,Qq0q̄0 , B0

q,Qq0q̄0

A0
q,Qgg, A0

q,Qgg, A
1
q,Qg, A1

q,Qg, [�
1
qq ⌦A0

q,Qg]

X0
3 (i, k, l)

pj!0

�! S(i, j, k) X0
3 (i, j, k)

pi||pj
�! 1

sij
Pij!l(z) X0

3 (i, j, k)
pj ||pk
�! 1

skj
Pjk!l(z)
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Initial-Final NNLO Massive Antennae

Subtraction terms for                      only require NNLO quark-antiquark antennae.	


Derived from (crossed) matrix elements for processes  	


In particular, we need initial-final antennae with one massive final-state quark

qq̄ ! tt̄+X

�⇤ ! qq̄ + partons

A1
q,Qg ⇠ Re

2

A0
q,Qgg ⇠ B0

q,Qq0q̄0 ⇠

2

(Note flavor-violating vertex           )Q�⇤q̄

Four-parton tree-level

Three-parton one-loop



G. Abelof (NU-ANL) Differential top pair production at NNLO

Integrated Initial-Final NNLO Massive Antennae
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Integrated initial-final antennae defined as inclusive phase space integrals:

X 1
i,jk =

1

C(✏)

(Q2 +m2
Q)

2⇡

Z
d�2(pj , pk; pi, q)X

1
i,jk

X 0
i,jkl =

1

C(✏)

(Q2 +m2
Q)

2⇡

Z
d�3(pj , pk, pl; pi, q)X

0
i,jkl

DIS-like                  kinematics with a massive final-state particle 	


!
!
Three-scale problem: 	


Trade dependence on                   for dimensionless	


!

pi + q ! pj + pk(+pl) p2i = p2j (= p2l ) = 0 p2k = m2
Q q2 = �Q2 < 0

2 ! 2 (3)

Q2, m2
Q, pi · q

m2
Q, pi · q

=) X = X (Q2
, x, x0, ✏)

Parametrizes 	

mass dependence

Bjorken x

x =
Q

2 +m

2
Q

2pi · q| {z }
x0 =

Q

2

Q

2 +m

2
Q| {z }

x0, x
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Integrated Initial-Final NNLO Massive Antennae
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Integrated integrals computed analytically using reverse unitarity:	


Express phase space integrals as cuts of two-loop four point functions in forward 
scattering kinematics with two off-shell legs. Reduce to master integrals. 	


Singular factors                      kept unexpanded in masters integrals	

!

!
!
!

Single power of             in pure phase space integrals for	

In general, multiple powers of              in mixed loop and phase space integrals for           	


Integrated antennae take the form  	

!
!
!
!
Singular factors expanded in distributions                                                                        

(1� x)�1�n✏ = ��(1� x)

n✏

+
1X

m=0

(�n✏)m

m!
Dm(x)

Regular as
x ! 1

X (x, x0, ✏) =
X

n

(1� x)�1�n✏ R(n)
X (x, x0, ✏)| {z }

Regular as
x ! 1

I↵(x, x0, ✏) =
X

n

(1� x)m�n✏
R

(n)
↵ (x, x0, ✏)| {z }

(1� x) X 0
i,jkl

X 1
i,jk(1� x)

(1� x)m�n✏

Dm(x) =

✓
ln(1� x)

1� x

◆

+
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Integrated Initial-Final NNLO Massive Antennae
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Integrated NNLO massive initial-final antennae are distributions in x	


Poles starting at        	


Expressed in terms of HPLs and genuine GPLs with trascendentality up to 3 and 4 
respectively. Re-written in terms of Logs and Lin (n=2,3,4) for numerical implementation 

(no Li22 needed)

(a) I[0], I[�8] (b) I[4] (c) I[4,8]

(d) I[4,5,8] (e) I[4,7,8]

Figure 1: Master integrals for A0
q,Qgg. Integrals are labelled according to the denominators

involved (see eq.(2.19)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

level A0
4(1Q, 3g, 4g, 2̂q) contains double soft and triple collinear singular limits, which are

employed to reproduce the singular behaviour of the double real contributions associated

to the partonic process qq̄ ! tt̄gg. The integrated antenna can be written in terms of

harmonic polylogarithms (HPLs) with arguments xi or x0 and generalised harmonic poly-

logarithms (GPLs) of argument x0 and weights involving 1/xi. GPLs and HPLs appear

with up to trascendentality three and four respectively. Given its length, the full expression

of this antenna up to O(✏0) is given in the ancillary file attached to the arXiv submission

of this paper. The deepest poles read

A0
q,Qgg(✏, Q

2 + m2
Q, x, x0) = (Q2 + m2

Q)�2✏

⇥
⇢

1

4✏4
�(1 � x) +

1

2✏3



1 + x + �(1 � x)

✓

35

24
+ G(1; x0)

◆

� 2D0(x)

�

+
1

✏2



(11x2
0x

3 + 59x2
0x

2 � 22x0x2 � 118x0x + 2x + 68)

24(1 � x0x)2
� (9 + 11x2)

8(1 � x)
G(0; x)

�2(1 + x)G(1; x) +
(7 � x2)

4(1 � x)
G(1; x0) +

3(1 + x2)

4(1 � x)
G

✓

1

x
; x0

◆

+�(1 � x)

✓

331

144
� 13⇡2

48
+

35

24
G(1; x0) + G(1, 1; x0)

◆

� D0(x)

✓

35

12
+ 2G(1; x0)

◆

+4D1(x)

�

+ O(✏�1)

�

.

(2.20)

– 9 –

1/✏4
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Integrated Initial-Final NNLO Massive Antennae
Master integrals for 

(a) I[0], I[�8] (b) I[4] (c) I[4,8]

(d) I[4,5,8] (e) I[4,7,8]

Figure 1: Master integrals for A0
q,Qgg. Integrals are labelled according to the denominators

involved (see eq.(2.19)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

Integral Needed in the hard region to Deepest pole

I[0] ✏3 ✏0

I[�8] ✏3 ✏0

I[4] ✏2 ✏0

I[4,8] ✏0 ✏0

I[4,5,8] ✏0 ✏�3

I[4,7,8] ✏0 ✏�3

Table 1: Deepest poles and highest order in ✏ needed for each master integral in A0
q,Qgg.

level A0
4(1Q, 3g, 4g, 2̂q) contains double soft and triple collinear singular limits, which are

employed to reproduce the singular behaviour of the double real contributions associated

to the partonic process qq̄ ! tt̄gg. The integrated antenna can be written in terms of

harmonic polylogarithms (HPLs) with arguments xi or x0 and generalised harmonic poly-

logarithms (GPLs) of argument x0 and weights involving 1/xi. GPLs and HPLs appear

with up to trascendentality three and four respectively. Given its length, the full expression

of this antenna up to O(✏0) is given in the ancillary file attached to the arXiv submission

of this paper. The deepest poles read

A0
q,Qgg(✏, sīj , xi) = s�2✏

īj

⇥
⇢

1

4✏4
�(1 � xi) +

1

2✏3



1 + xi + �(1 � xi)

✓

35

24
+ G(1; x0)

◆

� 2D0(xi)

�

+
1

✏2



(11x2
0x

3
i + 59x2

0x
2
i � 22x0x2

i � 118x0xi + 2xi + 68)

24(1 � x0xi)2
� (9 + 11x2

i )

8(1 � xi)
G(0; xi)

– 9 –
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external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.
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to the partonic process qq̄ ! tt̄gg. The integrated antenna can be written in terms of

harmonic polylogarithms (HPLs) with arguments xi or x0 and generalised harmonic poly-

logarithms (GPLs) of argument x0 and weights involving 1/xi. GPLs and HPLs appear

with up to trascendentality three and four respectively. Given its length, the full expression

of this antenna up to O(✏0) is given in the ancillary file attached to the arXiv submission

of this paper. The deepest poles read

A0
q,Qgg(✏, sīj , xi) = s�2✏

īj

⇥
⇢

1

4✏4
�(1 � xi) +

1

2✏3



1 + xi + �(1 � xi)

✓

35

24
+ G(1; x0)

◆

� 2D0(xi)

�

+
1

✏2



(11x2
0x

3
i + 59x2

0x
2
i � 22x0x2

i � 118x0xi + 2xi + 68)

24(1 � x0xi)2
� (9 + 11x2

i )

8(1 � xi)
G(0; xi)

– 9 –

               ,      known [Gehrmann-De Ridder, Ritzmann ’09; GA, Dekkers, Gehrmann-De Ridder ’12]    	

                                new. Computed with diff. eqs. [GA, Gehrmann-De Ridder, Majer ’15]	


Diff. eqs. only decouple order by order in   	

Integration constants fixed by 	


Demanding regularity of                     in soft limit            after factoring out singular 
factor                  coming from phase space. Need to go one order higher in     	

Direct all-order evaluation of            in the soft limit. New parametrization of DIS-
like phase space with a massive final-state particle 

I[0], I[�8] I[4]
I[4,8], I[4,5,8], I[4,7,8]

I[4,8], I[4,7,8] x ! 1
(1� x)�4✏

✏

✏

I[4,7,8]

A0
q,Qgg0 , B0

q,Qq0q̄0
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Integrated Initial-Final NNLO Massive Antennae
Master integrals for           . All new [GA, Gehrmann-De Ridder, Majer ’15] A1

q,Qg

(a) I[3] (b) I[3,5] (c) I[3,6]

(d) I[4,6] (e) I[3,4,6] (f) I[3,4,5,6]

(g) I[3,4,6,7]

Figure 2: Master integrals for A1,lc
q,Qg. Integrals are labelled according to the denominators

involved (see eq.(2.23)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

was computed in [21]. This integral is brought about by the phase space integration of the

mass and strong coupling renormalisation counter-terms.

The evaluation of the loop integrals I[3], I[3,5], I[3,6] and I[4,6] is rather straightforward.

It can be done to all orders in ✏ by integrating the underlying loop integrals over the phase

space. The remaining three master integrals, namely I[3,4,6], I[3,4,5,6] and I[3,4,6,7], cannot be

computed in this way. Instead, we calculated them using di↵erential equations. Unlike the

case of the master integrals needed for A0
q,Qgg, the integration constants cannot be in this

case fixed by imposing regularity conditions on the integrals. This impossibility is due to

the fact that each integral contains several di↵erent powers of (1 � x). Therefore, in order

to determine the integration constants, we employed in this case independently computed

soft limits as boundary conditions. For I[3,4,5,6] we used the soft limit of the underlying

one-loop box given in [35], whereas for I[3,4,6] and I[3,4,6,7] we calculated the soft limit of

the one-loop triangle to all orders in ✏ using a Mellin-Barnes representation. More details

on these derivations are given in appendix C.

Like the integrated four-parton antenna presented above, A1,lc
q,Qg has its deepest pole at

– 11 –

(a) I[3] (b) I[3,5] (c) I[3,6]

(d) I[4,6] (e) I[3,4,6] (f) I[3,4,5,6]

(g) I[3,4,6,7]

Figure 2: Master integrals for A1,lc
q,Qg. Integrals are labelled according to the denominators

involved (see eq.(2.23)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

was computed in [21]. This integral is brought about by the phase space integration of the

mass and strong coupling renormalisation counter-terms.

The evaluation of the loop integrals I[3], I[3,5], I[3,6] and I[4,6] is rather straightforward.

It can be done to all orders in ✏ by integrating the underlying loop integrals over the phase

space. The remaining three master integrals, namely I[3,4,6], I[3,4,5,6] and I[3,4,6,7], cannot be

computed in this way. Instead, we calculated them using di↵erential equations. Unlike the

case of the master integrals needed for A0
q,Qgg, the integration constants cannot be in this

case fixed by imposing regularity conditions on the integrals. This impossibility is due to

the fact that each integral contains several di↵erent powers of (1 � x). Therefore, in order

to determine the integration constants, we employed in this case independently computed

soft limits as boundary conditions. For I[3,4,5,6] we used the soft limit of the underlying

one-loop box given in [35], whereas for I[3,4,6] and I[3,4,6,7] we calculated the soft limit of

the one-loop triangle to all orders in ✏ using a Mellin-Barnes representation. More details

on these derivations are given in appendix C.

Like the integrated four-parton antenna presented above, A1,lc
q,Qg has its deepest pole at

– 11 –

(a) I[3] (b) I[3,5] (c) I[3,6]

(d) I[4,6] (e) I[3,4,6] (f) I[3,4,5,6]

(g) I[3,4,6,7]

Figure 2: Master integrals for A1,lc
q,Qg. Integrals are labelled according to the denominators

involved (see eq.(2.23)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

was computed in [21]. This integral is brought about by the phase space integration of the

mass and strong coupling renormalisation counter-terms.

The evaluation of the loop integrals I[3], I[3,5], I[3,6] and I[4,6] is rather straightforward.

It can be done to all orders in ✏ by integrating the underlying loop integrals over the phase

space. The remaining three master integrals, namely I[3,4,6], I[3,4,5,6] and I[3,4,6,7], cannot be

computed in this way. Instead, we calculated them using di↵erential equations. Unlike the

case of the master integrals needed for A0
q,Qgg, the integration constants cannot be in this

case fixed by imposing regularity conditions on the integrals. This impossibility is due to

the fact that each integral contains several di↵erent powers of (1 � x). Therefore, in order

to determine the integration constants, we employed in this case independently computed

soft limits as boundary conditions. For I[3,4,5,6] we used the soft limit of the underlying

one-loop box given in [35], whereas for I[3,4,6] and I[3,4,6,7] we calculated the soft limit of

the one-loop triangle to all orders in ✏ using a Mellin-Barnes representation. More details

on these derivations are given in appendix C.

Like the integrated four-parton antenna presented above, A1,lc
q,Qg has its deepest pole at

– 11 –

(a) I[3] (b) I[3,5] (c) I[3,6]

(d) I[4,6] (e) I[3,4,6] (f) I[3,4,5,6]

(g) I[3,4,6,7]

Figure 2: Master integrals for A1,lc
q,Qg. Integrals are labelled according to the denominators

involved (see eq.(2.23)). Bold (thin) lines are massive (massless). The double line in the

external states represents the o↵-shell momentum q with q2 = �Q2. The cut propagators

are the ones intersected by the dashed lines.

was computed in [21]. This integral is brought about by the phase space integration of the

mass and strong coupling renormalisation counter-terms.

The evaluation of the loop integrals I[3], I[3,5], I[3,6] and I[4,6] is rather straightforward.

It can be done to all orders in ✏ by integrating the underlying loop integrals over the phase

space. The remaining three master integrals, namely I[3,4,6], I[3,4,5,6] and I[3,4,6,7], cannot be

computed in this way. Instead, we calculated them using di↵erential equations. Unlike the

case of the master integrals needed for A0
q,Qgg, the integration constants cannot be in this

case fixed by imposing regularity conditions on the integrals. This impossibility is due to

the fact that each integral contains several di↵erent powers of (1 � x). Therefore, in order

to determine the integration constants, we employed in this case independently computed

soft limits as boundary conditions. For I[3,4,5,6] we used the soft limit of the underlying

one-loop box given in [35], whereas for I[3,4,6] and I[3,4,6,7] we calculated the soft limit of

the one-loop triangle to all orders in ✏ using a Mellin-Barnes representation. More details

on these derivations are given in appendix C.

Like the integrated four-parton antenna presented above, A1,lc
q,Qg has its deepest pole at

– 11 –

                                   evaluated directly using all-order expressions of underlying loop-
integrals and phase space parametrization in [GA, Gehrmann-De Ridder ’11]	


                                       computed with differential equations. 	


Integration constants fixed with independently derived soft limits. Need soft limits of 
underlying loop integrals	


             soft limit of box integral known [Brucherseifer, Caola, Melnikov ’13]	


                        soft limit of one-loop triangle derived with Mellin-Barnes expansion

I[3], I[3,5], I[3,6], I[4,6]

I[3,4,6], I[3,4,5,6], I[3,4,6,7]

I[3,4,5,6]
I[3,4,6], I[3,4,6,7]
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Check of convergence [GA, Gehrmann-De Ridder, Maierhöfer, Pozzorini ’14]	

Generate events near every singular region of               and  	

Control proximity to singularities with a control variable    (specific to each limit)	

For each event, compute	
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histograms in        (       )
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Integration is stable	


R has a plateau for	


Strong check of our subtraction terms	


We can run with                     . Only 
~0.01% points require quadruple 
precision.	


Efficient evaluation in double             
precision for the vast majority of          
points

y
cut
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cut
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ycut ⇠ 10�4

Z

d�3

✓
d�̂RV

NNLO � d�̂T
NNLO

◆

Precision test in real-virtual contributions [GA, Gehrmann-De Ridder, Maierhöfer, Pozzorini ’14]	

Only “bad points” are (re)evaluated by OpenLoops in quadruple precision	


Fraction of quadruple precision evaluations in                                     ? 	


Is the integration stable? 
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Pointwise cancellation of explicit IR poles check analytically for leading-color and light-
quark contributions [GA, Gehrmann-De Ridder ’14; GA, Gehrmann-De Ridder, Majer ’15]

Poles

✓
d�̂RV

NNLO � d�̂T
NNLO

◆
= 0

Poles

✓
d�̂VV

NNLO � d�̂U
NNLO

◆
= 0

Non-trivial check on new integrated massive antennae	


Proves applicability of NNLO antenna subtraction to reactions with massive fermions

(Note importance of analytic expressions for matrix elements in this check)
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Numerical Implementation
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Fully differential event generator written in Fortran	

LO, NLO: all channels, all color factors	

NNLO: so far only      channel, leading-color + fermionic contributions

Runtime for NNLO contributions on 176 cores per choice of {
p
s, m

top

, µ,PDF set}

qq̄

A couple of (unrelated) remarks:	

All distributions computed in a single run	

Improved numerical stability and performance in                with threshold expansion of 
matrix elements         
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As expected, mild impact of NNLO corrections to the qq channel (leading-color + 
fermionic), except in very forward and backward regions of the rapidity spectrum	


Slight reduction in scale dependence
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More pronounced impact of NNLO 
corrections to the qq channel (leading + 
fermionic) in all distributions	


Substantial reduction in scale dependence
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Radiative corrections in the      and      channels induce an asymmetry between the number of 
top quarks produced forwards and backwards in      collisions	


Experimentally measured as	


NLO: first non-vanishing order. NNLO: first correction

Results: Differential AFB At Tevatron 
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We computed the NNLO corrections to                      with antenna subtraction including 
leading-color and most fermionic contributions	


All necessary massive antennae computed and integrated	


Subtraction terms derived and tested	

Verified convergence of               and               to                and	

Demonstrated analytic cancellation of all IR singularities	


We constructed a fully differential parton-level event generator	


All differential distributions can be efficiently obtained in a single run

d�̂RR
NNLOd�̂S

NNLO d�̂T
NNLO d�̂RV

NNLO

Summary

Outlook

Complete remaining fermionic contributions: Nh and identical-quark	

Complete remaining partonic channels: gg, qg, qq0

qq̄ ! tt̄+X


