Evolution of Scalar Fields in the Early Universe

Louis Yang

Department of Physics and Astronomy
University of California, Los Angeles

PACIFIC 2015
September 17th, 2015

Advisor: Alexander Kusenko
Collaborator: Lauren Pearce
The Motivation

- The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The Motivation

- The recent discovery of the Higgs boson with mass
 \[M_h = 125.7 \pm 0.4 \text{ GeV} \]
 [Particle Data Group 2014]
- \[V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \] for \(\phi \gg 100 \text{ GeV} \)

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The Motivation

- The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)

- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)
- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE

\(\Rightarrow \) a meta-stable electroweak vacuum

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)

- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE

\(\Rightarrow \) a meta-stable electroweak vacuum

\(\Rightarrow \) a shallow potential at high scale

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The Motivation

- The recent discovery of the Higgs boson with mass
 \[M_h = 125.7 \pm 0.4 \text{ GeV} \]
 [Particle Data Group 2014]
- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)
- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE
 \(\Rightarrow \) a meta-stable electroweak vacuum
 \(\Rightarrow \) a shallow potential at high scale
- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).
The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)
- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE
 - a meta-stable electroweak vacuum
 - a shallow potential at high scale
- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).
- Post-inflationary Higgs field relaxation

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
The recent discovery of the Higgs boson with mass

\[M_h = 125.7 \pm 0.4 \text{ GeV} \]

[Particle Data Group 2014]

- \(V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \) for \(\phi \gg 100 \text{ GeV} \)

- Very small or negative \(\lambda_{\text{eff}} \) at high scale from RGE
 - \(\Rightarrow \) a meta-stable electroweak vacuum
 - \(\Rightarrow \) a shallow potential at high scale

- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).

- Post-inflationary Higgs field relaxation
 - \(\Rightarrow \) possibility for Leptogenesis

[Dario Buttazzo et al. JHEP 1312 (2013) 089]
Outline

1. Quantum Fluctuations in the Inflationary Universe
2. Classical Motion of Scalar Fields
3. Possible New Physics
4. Issue with Isocurvature Perturbations
Quantum Fluctuations in the Inflationary Universe
Quantum fluctuations in the inflationary universe

During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
Quantum fluctuations in the inflationary universe

- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
Quantum fluctuations in the inflationary universe

- During inflation, scalar fields can obtain a large VEV through **quantum fluctuations**.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by

[Figure from A. Linde - arXiv: 0503203]
Quantum fluctuations in the inflationary universe

- During inflation, scalar fields can obtain a large VEV through **quantum fluctuations**.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by a long correlation length l.
Quantum fluctuations in the inflationary universe

- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by
 1. long correlation length l
 2. large occupation number n_k for low k

[Figure from A. Linde - arXiv: 0503203]
Quantum fluctuations in the inflationary universe

- During inflation, scalar fields can obtain a large VEV through **quantum fluctuations**.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by:
 1. long correlation length \(l \)
 2. large occupation number \(n_k \) for low \(k \)

=> behave like (quasi) classical field.

[Figure from A. Linde - arXiv: 0503203]
Quantum fluctuations in the inflationary universe

- The VEV of the field can be computed through the dispersion of the fluctuation $\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle}$
The VEV of the field can be computed through the dispersion of the fluctuation $\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle}$

In a pure de Sitter spacetime, a scalar field with mass m can obtain a large VEV

$$\langle \phi^2 \rangle = \frac{3H^4}{8\pi^2 m^2} \quad \text{for } m^2 \ll H^2.$$

Quantum fluctuations in the inflationary universe

- The VEV of the field can be computed through the dispersion of the fluctuation \(\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle} \)
- In a pure de Sitter spacetime, a scalar field with mass \(m \) can obtain a large VEV

\[
\langle \phi^2 \rangle = \frac{3H^4}{8\pi^2m^2} \quad \text{for } m^2 \ll H^2.
\]

- In the inflationary universe, the exponential expansion period exists for a finite time \(t \)

\[
\langle \phi^2 \rangle \approx \frac{H^2}{2(2\pi)^3} \int_{H-e^{-Ht}}^H \frac{d^3k}{k} = \frac{H^3}{4\pi^2}t \approx \frac{H^2}{4\pi^2}N
\]

for \(m^2 = 0 \) or \(m^2 \ll H^2 \) with \(t \lesssim 3H/m^2 \). \(N \approx Ht \) is the number of e-folds. [A. Linde, Phys. Lett. B116, 335 (1982)]
One can also understand the fluctuation as both the **scalar field** $\phi(x)$ and the **metric** $g_{\mu\nu}(x)$ experience quantum jumps.

\[V(\phi) = A e^{S_{\text{Eu}}(\phi_i) - S_{\text{Eu}}(\phi_f)}, \]

where $S_{\text{Eu}}(\phi)$ is the Euclidean action and A is some $O(m^4)$ prefactor.
One can also understand the fluctuation as both the **scalar field** \(\phi(x) \) and the **metric** \(g_{\mu\nu}(x) \) experience quantum jumps.

The Hawking-Moss instanton

\[
\Gamma(\phi_i \rightarrow \phi_f) = A e^{S_E(\phi_i) - S_E(\phi_f)}, \quad \text{where} \quad S_E(\phi) = -\frac{3m_4^4}{8V(\phi)}
\]

is the Euclidean action and \(A \) is some \(\mathcal{O}(m^4) \) prefactor.
One can also understand the fluctuation as both the **scalar field** $\phi(x)$ and the **metric** $g_{\mu\nu}(x)$ experience quantum jumps.

The Hawking-Moss instanton

$$\Gamma(\phi_i \rightarrow \phi_f) = Ae^{S_E(\phi_i) - S_E(\phi_f)}, \quad \text{where} \quad S_E(\phi) = -\frac{3m^4_{pl}}{8V(\phi)}$$

is the Euclidean action and A is some $O(m^4)$ prefactor.

The entire process can then be viewed as the fields are underdoing **Brownian motion** and can be described by **diffusion equation**.
Stochastic approach & Hawking-Moss tunneling

- $P_c(\phi, t)$: the probability distribution of finding ϕ at time t
- Diffusion equation

\[
\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi}
\quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{3H} \frac{dV}{d\phi}
\]

[A. A. Starobinsky (1982); A. Vilenkin (1982)]

Evolution of Scalar Fields in the Early Universe (slide 8)
Stochastic approach & Hawking-Moss tunneling

- \(P_c(\phi, t) \): the probability distribution of finding \(\phi \) at time \(t \)
- Diffusion equation

\[
\frac{\partial P_c}{\partial t} = - \frac{\partial j_c}{\partial \phi} \quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{3H} \frac{dV}{d\phi}
\]

[A. A. Starobinsky (1982); A. Vilenkin (1982)]

- In equilibrium \(\frac{\partial P_c}{\partial t} = 0, j_c = 0 \). One obtain the distribution

\[
P_c(\phi) = e^{S_E(\phi_{\text{min}}) - S_E(\phi)} \\
\approx \exp \left[\frac{-3m_{pl}^4}{8} \Delta V(\phi) \frac{V(\phi_{\text{min}})^2}{V(\phi) - V(\phi_{\text{min}})} \right]
\]

for \(\Delta V = V(\phi) - V(\phi_{\text{min}}) \ll V(\phi_{\text{min}}) \).
Stochastic approach & Hawking-Moss tunneling

- $P_c(\phi, t)$: the probability distribution of finding ϕ at time t
- Diffusion equation

$$\frac{\partial P_c}{\partial t} = - \frac{\partial j_c}{\partial \phi}$$
where
$$- j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{3H} \frac{dV}{d\phi}$$

[A. A. Starobinsky (1982); A. Vilenkin (1982)]

- In equilibrium $\partial P_c/\partial t = 0, j_c = 0$. One obtain the distribution

$$P_c(\phi) = e^{S_E(\phi_{\text{min}}) - S_E(\phi)}$$

$$\approx \exp \left[- \frac{3m_{pl}^4}{8} \frac{\Delta V(\phi)}{V(\phi_{\text{min}})^2} \right]$$

for $\Delta V = V(\phi) - V(\phi_{\text{min}}) \ll V(\phi_{\text{min}})$.

- The fluctuation is not suppressed if

$$\Delta V(\phi) < \frac{8V(\phi_{\text{min}})^2}{3m_{pl}^4}$$
Stochastic approach & Hawking-Moss tunneling

- \(P_c(\phi, t) \): the probability distribution of finding \(\phi \) at time \(t \)
- Diffusion equation

\[
\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi}
\]

where

\[
- j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{3H} \frac{dV}{d\phi}
\]

[A. A. Starobinsky (1982); A. Vilenkin (1982)]

- In equilibrium \(\partial P_c/\partial t = 0, j_c = 0 \). One obtain the distribution

\[
P_c(\phi) = e^{S_E(\phi_{\text{min}}) - S_E(\phi)}
\]

\[
\approx \exp \left[-\frac{3m_{\text{pl}}^4}{8} \frac{\Delta V(\phi)}{V(\phi_{\text{min}})^2} \right]
\]

for \(\Delta V = V(\phi) - V(\phi_{\text{min}}) \ll V(\phi_{\text{min}}) \).

- The fluctuation is not suppressed if

\[
\Delta V(\phi) < \frac{8V(\phi_{\text{min}})^2}{3m_{\text{pl}}^4}
\]

- The variance of the fluctuation is

\[
\langle \phi^2 \rangle = \frac{\int \phi^2 P_c(\phi)d\phi}{\int P_c(\phi)d\phi}
\]
Quantum fluctuation of the Higgs field

- Example: the Higgs field ϕ on the inflationary background (inflaton I).

$$V(\phi, I) = V_H(\phi) + V_I(I) + ... \approx \frac{1}{4} \lambda_{\text{eff}} \phi^4 + \Lambda_I^4 + ...$$
Quantum fluctuation of the Higgs field

- Example: the Higgs field ϕ on the inflationary background (inflaton I).

\[V(\phi, I) = V_H(\phi) + V_I(I) + \ldots \approx \frac{1}{4} \lambda_{\text{eff}} \phi^4 + \Lambda_I^4 + \ldots \]

- The quantum transition of the Higgs field from 0 to ϕ is not suppressed if

\[\frac{1}{4} \lambda_{\text{eff}} \phi^4 < \frac{8}{3} \left(\frac{\Lambda_I^2}{m_{\text{pl}}} \right)^4 \sim H_I^4 \Rightarrow |\phi| < 0.62 \lambda_{\text{eff}}^{-1/4} H_I \]
Quantum fluctuation of the Higgs field

Example: the Higgs field ϕ on the inflationary background (inflaton I).

$$V(\phi, I) = V_H(\phi) + V_I(I) + \ldots \approx \frac{1}{4}\lambda_{\text{eff}}\phi^4 + \Lambda_I^4 + \ldots$$

The quantum transition of the Higgs field from 0 to ϕ is not suppressed if

$$\frac{1}{4}\lambda_{\text{eff}}\phi^4 < \frac{8}{3}\left(\frac{\Lambda_I^2}{m_{\text{pl}}^2}\right)^4 \sim H_I^4 \quad \Rightarrow \quad |\phi| < 0.62\lambda_{\text{eff}}^{-1/4}H_I$$

Even though $\langle\phi\rangle = 0$ due to the even potential, the variance of the fluctuation of ϕ is not zero.

$$\phi_0 = \sqrt{\langle\phi^2\rangle} \approx 0.36\lambda_{\text{eff}}^{-1/4}H_I$$
Quantum fluctuation of the Higgs field

- Example: the Higgs field ϕ on the inflationary background (inflaton I).

$$ V(\phi, I) = V_H(\phi) + V_I(I) + ... \approx \frac{1}{4} \lambda_{\text{eff}} \phi^4 + \Lambda^4_I + ... $$

- The quantum transition of the Higgs field from 0 to ϕ is not suppressed if

$$ \frac{1}{4} \lambda_{\text{eff}} \phi^4 < \frac{8}{3} \left(\frac{\Lambda^2_I}{m_{\text{pl}}} \right)^4 \sim H_I^4 \quad \Rightarrow \quad |\phi| < 0.62 \lambda_{\text{eff}}^{-1/4} H_I $$

- Even though $\langle \phi \rangle = 0$ due to the even potential, the variance of the fluctuation of ϕ is not zero.

$$ \phi_0 = \sqrt{\langle \phi^2 \rangle} \approx 0.36 \lambda_{\text{eff}}^{-1/4} H_I $$

- Generally, during inflation, we expect the scalar field to obtain a large VEV ϕ_0 such that

$$ V_H(\phi_0) \sim H_I^4 $$
Classical Motion of Scalar Fields
Slow rolling during inflation

- Scalar field in an expanding universe

\[
\ddot{\phi} + 3H\dot{\phi} + \Gamma_\phi\dot{\phi} + \frac{\partial V}{\partial \phi} = 0
\]
Slow rolling during inflation

■ Scalar field in an expanding universe

\[\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi\phi} + \frac{\partial V}{\partial \phi} = 0 \]

■ During inflation, the scalar field can be in slow-roll.

\[\dot{\phi} \ll \frac{\partial V}{\partial \phi} \quad \text{and} \quad \dot{\phi}^2 \ll V \]
Slow rolling during inflation

- Scalar field in an expanding universe
 \[\dddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial \phi} = 0 \]

- During inflation, the scalar field can be in \textit{slow-roll}.
 \[\ddot{\phi} \ll \frac{\partial V}{\partial \phi} \quad \text{and} \quad \dot{\phi}^2 \ll V \]

- The slow-roll conditions are
 \[9H^2 \gg \frac{\partial^2 V (\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2 (\phi) \quad \text{and} \quad \sqrt{48\pi} \frac{V(\phi, I)}{m_{\text{pl}}} \gg \left| \frac{\partial V (\phi, I)}{\partial \phi} \right| . \]
Slow rolling during inflation

- Scalar field in an expanding universe
 \[\ddot{\phi} + 3H \dot{\phi} + \Gamma \phi + \frac{\partial V}{\partial \phi} = 0 \]

- During inflation, the scalar field can be in **slow-roll**.
 \[\ddot{\phi} \ll \frac{\partial V}{\partial \phi} \quad \text{and} \quad \dot{\phi}^2 \ll V \]

- The slow-roll conditions are
 \[9H^2 \gg \frac{\partial^2 V(\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2(\phi) \quad \text{and} \quad \sqrt{48\pi} \frac{V(\phi, I)}{m_{\text{pl}}} \gg \left| \frac{\partial V(\phi, I)}{\partial \phi} \right|. \]

- The first condition can be understood as the time scale for rolling down
 \[\tau \sim m_{\text{eff}}^{-1} = \left(\sqrt{\frac{\partial^2 V}{\partial \phi^2}} \right)^{-1} \gg H^{-1}. \]
Slow rolling during inflation

- Scalar field in an expanding universe

\[
\ddot{\phi} + 3H \dot{\phi} + \Gamma \dot{\phi} + \frac{\partial V}{\partial \phi} = 0
\]

- During inflation, the scalar field can be in **slow-roll**.

\[
\ddot{\phi} \ll \frac{\partial V}{\partial \phi} \quad \text{and} \quad \dot{\phi}^2 \ll V
\]

- The slow-roll conditions are

\[
9H^2 \gg \frac{\partial^2 V (\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2 (\phi) \quad \text{and} \quad \sqrt{48 \pi} \frac{V (\phi, I)}{m_{\text{pl}}} \gg \left| \frac{\partial V (\phi, I)}{\partial \phi} \right|.
\]

- The first condition can be understood as the time scale for rolling down

\[
\tau \sim m_{\text{eff}}^{-1} = \left(\sqrt{\frac{\partial^2 V}{\partial \phi^2}} \right)^{-1} \gg H^{-1}.
\]

- As long as \(m_{\text{eff}} (\phi) \ll H \), there is insufficient time for the scalar field to roll down.
For $\frac{1}{4} \lambda \phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3 \lambda_{\text{eff}}^{-1/2} H_I \quad \text{and} \quad |\phi| \ll \left(\frac{27}{4 \pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} (m_{\text{pl}} H_I^2)^{1/3}.$$
Slow rolling of the Higgs field

- For $\frac{1}{4} \lambda \phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3 \lambda_{\text{eff}}^{-1/2} H_I \quad \text{and} \quad |\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{\text{pl}} H_I^2\right)^{1/3}.$$

- The conditions for all the quantum fluctuations to be unable to roll are:

$$\lambda_{\text{eff}} \ll 4800 \quad \text{and} \quad \lambda_{\text{eff}} \ll 3 \times 10^5 \left(\frac{m_{\text{pl}}}{\Lambda_I}\right)^2,$$

which are easily satisfied when $\Lambda_I < m_{\text{pl}}$.

⇒ a large Higgs VEV is developed.
The slow rolling of the Higgs field

For $\frac{1}{4} \lambda \phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3\lambda_{\text{eff}}^{-1/2} H_I \quad \text{and} \quad |\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} (m_{\text{pl}} H_I^2)^{1/3}.$$

The conditions for all the quantum fluctuations to be unable to roll are:

$$\lambda_{\text{eff}} \ll 4800 \quad \text{and} \quad \lambda_{\text{eff}} \ll 3 \times 10^5 \left(\frac{m_{\text{pl}}}{\Lambda_I}\right)^2,$$

which are easily satisfied when $\Lambda_I < m_{\text{pl}}$.

In other words, during inflation, the Higgs field can jump quantum mechanically but cannot roll down classically.
Slow rolling of the Higgs field

- For $\frac{1}{4} \lambda \phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3 \lambda_{\text{eff}}^{-1/2} H_I \quad \text{and} \quad |\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{\text{pl}} H_I^2\right)^{1/3}.$$

- The conditions for all the quantum fluctuations to be unable to roll are:

$$\lambda_{\text{eff}} \ll 4800 \quad \text{and} \quad \lambda_{\text{eff}} \ll 3 \times 10^5 \left(\frac{m_{\text{pl}}}{\Lambda_I}\right)^2,$$

which are easily satisfied when $\Lambda_I < m_{\text{pl}}$.

In other words, during inflation, the Higgs field can jump quantum mechanically but cannot roll down classically.

\Rightarrow a large Higgs VEV is developed.
Brief summary

Quantum fluctuation

Brings the field to a VEV ϕ_0 such that

$$V_\phi (\phi_0) \sim H^4$$

Slow rolling

The field won’t roll down if

$$m_{\text{eff}}^2 \ll H^2$$
As inflation ends, the inflaton enters the coherent oscillations regime, $H < m_{\text{eff}}(\phi_0)$. The Higgs field is no longer in slow-roll.
Relaxation of the Higgs field after inflation

- As inflation ends, the inflaton enters the coherent oscillations regime, $H < m_{\text{eff}}(\phi_0)$. The Higgs field is no longer in slow-roll.
- The Higgs then rolls down and oscillates around $\phi = 0$ with decreasing amplitude within $\tau_{\text{roll}} \sim H^{-1}$.

$\Lambda_I = 10^{16}$ GeV
$\Gamma_I = 10^3$ GeV
$T_{\text{max}} = 6.4 \times 10^{12}$ GeV
$\lambda_{\text{eff}} = 0.003$
$\phi_0 = 3.7 \times 10^{13}$ GeV
$H_I = 2.4 \times 10^{13}$ GeV
Relaxation of the Higgs field after inflation

- During the oscillation of the Higgs field, the Higgs condensate can decay into several product particles:
 - Non-perturbative decay: W and Z bosons.

\[\Lambda_I = 10^{15} \text{ GeV and } \Gamma_I = 10^9 \text{ GeV for IC-1} \]

- Perturbative decay (thermalization): top quark.
- Those decay channels do affect the oscillation of the Higgs field but they become important only after several oscillations.
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
The relaxation from such large VEV opens a great channel for
many interesting physics including matter-antimatter
asymmetry (Leptogenesis or Baryogenesis).

Sakharov conditions:

1. C and CP violations
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

 - Sakharov conditions:
 1. C and CP violations
 2. Out of thermal equilibrium

Similar idea for axion

Evolution of Scalar Fields in the Early Universe (slide 16) PACIFIC 2015
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

- Sakharov conditions:
 1. C and CP violations
 2. Out of thermal equilibrium
 3. Lepton/Baryon number violations
The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

Sakharov conditions:

1. C and CP violations
2. Out of thermal equilibrium
3. Lepton/Baryon number violations

\uparrow Time-dependent background Higgs field + ...

Similar idea for axion
The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

Sakharov conditions:

1. C and CP violations
2. Out of thermal equilibrium
3. Lepton/Baryon number violations

\equiv Time-dependent background Higgs field + ...

\equiv Roll down of the Higgs field
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

- Sakharov conditions:
 1. C and CP violations
 2. Out of thermal equilibrium
 3. Lepton/Baryon number violations

 \implies Time-dependent background Higgs field + ...

 \implies Roll down of the Higgs field

 \implies Next talk by Lauren Pearce
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 1. C and CP violations ➣ Time-dependent background Higgs field + ...
 2. Out of thermal equilibrium ➣ Roll down of the Higgs field
 3. Lepton/Baryon number violations ➣ Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

Sakharov conditions:

1. C and CP violations \leftarrow Time-dependent background Higgs field + ...
2. Out of thermal equilibrium \leftarrow Roll down of the Higgs field
3. Lepton/Baryon number violations \leftarrow Next talk by Lauren Pearce

One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$

The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

Sakharov conditions:

1. C and CP violations \leftarrow Time-dependent background Higgs field + ...
2. Out of thermal equilibrium \leftarrow Roll down of the Higgs field
3. Lepton/Baryon number violations \leftarrow Next talk by Lauren Pearce

One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$

Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

- Sakharov conditions:
 1. \(C \) and \(CP \) violations
 2. Out of thermal equilibrium
 3. Lepton/Baryon number violations

- One possibility is to have the lepton asymmetry \(L \propto \partial_0 |\phi^2| \)

Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

- Sakharov conditions:
 1. C and CP violations \leftrightarrow Time-dependent background Higgs field + ...
 2. Out of thermal equilibrium \leftrightarrow Roll down of the Higgs field
 3. Lepton/Baryon number violations \leftrightarrow Next talk by Lauren Pearce

- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi|^2$

- Similar idea for axion
Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

- Sakharov conditions:
 1. \(C \) and \(CP \) violations \(\leftarrow \) Time-dependent background Higgs field + ...
 2. Out of thermal equilibrium \(\leftarrow \) Roll down of the Higgs field
 3. Lepton/Baryon number violations \(\leftarrow \) Next talk by Lauren Pearce

- One possibility is to have the lepton asymmetry \(L \propto \partial_0 |\phi^2| \)

- Similar idea for axion
Issue with Isocurvature Perturbations
One issue for applying to Leptogenesis

\[\phi_0 = \sqrt{\langle \phi^2 \rangle} \]

is the average over several Hubble volumes. Each Hubble volume has different initial \(\phi_0 \) value. When inflation ends, each patch of the observable universe began with different value of \(\phi \).

If \[L \propto \partial_0 \left| \phi^2 \right| \]

\(\Rightarrow \)

Different asymmetry in each Hubble volume \(\Rightarrow \) Large isocurvature perturbations, which are constrained by current CMB observation.

[Figure from Lauren Pearce]
Isocurvature perturbations

- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the average over several Hubble volumes.

[Figure from Lauren Pearce]
One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the average over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.
Isocurvature perturbations

- One issue for applying to Leptogenesis
- \(\phi_0 = \sqrt{\langle \phi^2 \rangle} \) is the **average** over several Hubble volumes.
- Each Hubble volume has different initial \(\phi_0 \) value.
- When inflation end, each patch of the observable universe began with **different value of** \(\phi_0 \).

[Figure from Lauren Pearce]
Isocurvature perturbations

- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.
- When inflation end, each patch of the observable universe began with **different value of** ϕ_0.
- If $L \propto \partial_0 |\phi^2| \Rightarrow$ Different asymmetry in each Hubble volume

[Figure from Lauren Pearce]
One issue for applying to Leptogenesis

$\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.

Each Hubble volume has different initial ϕ_0 value.

When inflation end, each patch of the observable universe began with **different value of** ϕ_0.

If $L \propto \partial_0 |\phi|^2 \Rightarrow$ Different asymmetry in each Hubble volume

\Rightarrow Large **isocurvature perturbations**, which are constrained by current CMB observation.
Solutions to the isocurvature perturbation issue

Solutions:

1. IC-1: Second Minimum at Large VEVs
 \[\phi \gg v_{EW} \]
 Example:
 \[L_{\text{lift}} = \phi^{10} \Lambda^{6} \]

2. IC-2: Inflaton-Higgs coupling
 Example:
 \[L_{\Phi I} = - \frac{1}{2} I^{2} n_{M}^{2} - 2 \phi^{2} \]
Solutions to the isocurvature perturbation issue

Solutions:

1. IC-1: Second Minimum at Large VEVs
 \(\phi \gg v_{EW} \) E.g.
 \[
 \mathcal{L}_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^6}
 \]

2. IC-2: Inflaton-Higgs coupling
 E.g.
 \[
 L_{\Phi I} = -\frac{1}{2} I^2 n^2 M_n^2 - \phi^2
 \]
Solutions to the isocurvature perturbation issue

Solutions:

1. **IC-1: Second Minimum at Large VEVs**

 \(\phi \gg v_{EW} \)

 E.g.

 \[
 L_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^6}
 \]

2. **IC-2: Inflaton-Higgs coupling**

 E.g.

 \[
 L_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2
 \]
IC-1: Second minimum at large VEV

- **Motivations:**

 1. At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

 \[L_{\text{lift}} = \phi^{10} \Lambda^6 \]

 2. There seems to be a Planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.

 3. A higher-dimensional operator can lift the possible Planckian minimum and stabilize our EW vacuum. The second minimum becomes metastable and higher than the EW vacuum.
IC-1: Second minimum at large VEV

Motivations:

1. At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

\[\mathcal{L}_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^6} \]
IC-1: Second minimum at large VEV

Motivations:

1. At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

\[\mathcal{L}_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^6} \]

2. There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.
IC-1: Second minimum at large VEV

Motivations:

1. At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

\[\mathcal{L}_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^6} \]

2. There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.

3. A higher-dimensional operator can lift the possible planckian minimum and stabilize our EW vacuum.
IC-1: Second minimum at large VEV

Motivations:

1. At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

\[\mathcal{L}_{\text{lift}} = \frac{\phi^{10}}{\Lambda_{\text{lift}}^{6}} \]

2. There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.

3. A higher-dimensional operator can lift the possible planckian minimum and stabilize our EW vacuum.

The second minimum becomes metastable and higher than the EW vacuum.
IC-1: Second minimum at large VEV

The scenario:

1. Large VEV at early stage of inflation
IC-1: Second minimum at large VEV

The scenario:

1. Large VEV at early stage of inflation
2. The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.
IC-1: Second minimum at large VEV

The scenario:

1. Large VEV at early stage of inflation
2. The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.
3. Reheating destabilize the quasi-stable vacuum.
IC-1: Second minimum at large VEV

The scenario:

1. Large VEV at early stage of inflation
2. The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.
3. Reheating destabilize the quasi-stable vacuum.
4. Higgs field rolls down from the second minimum.
IC-1: Second minimum at large VEV

$\Lambda_I = 10^{15} \text{ GeV}$
$\Gamma_I = 10^9 \text{ GeV}$
$\phi_0 = 10^{15} \text{ GeV}$
IC-2: Inflaton-Higgs coupling

- Introduce coupling between the Higgs and inflaton field. E.g.

\[\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2. \]
IC-2: Inflaton-Higgs coupling

- Introduce coupling between the Higgs and inflaton field. E.g.
 \[\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2. \]

- Motivations: This could be obtained by integrating out heavy states in loops.
IC-2: Inflaton-Higgs coupling

- Introduce coupling between the Higgs and inflaton field. E.g.

\[\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2. \]

- Motivations: This could be obtained by integrating out heavy states in loops.

- Induces an large effective mass

\[m_{\text{eff},\phi}(\langle I \rangle) = \langle I \rangle^n / M^{n-1} \]

for the Higgs field when \(\langle I \rangle \) is large.
IC-2: Inflaton-Higgs coupling

- Introduce coupling between the Higgs and inflaton field. E.g.

\[\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2. \]

- Motivations: This could be obtained by integrating out heavy states in loops.

- Induces an large effective mass

\[m_{\text{eff},\phi}(\langle I \rangle) = \langle I \rangle^n / M^{n-1} \]

for the Higgs field when \(\langle I \rangle \) is large.

- If \(m_{\text{eff},\phi}(\langle I \rangle) \gg H \) in the early stage of inflation, the slow roll condition is not satisfied.
IC-2: Inflaton-Higgs coupling

1 In the early stage of inflation, \(\langle I \rangle \) is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at \(\phi = 0 \).

\[
\langle \phi^2 \rangle \sim 0 \\
\text{Quantum jumps} \\
\text{Rolls down classically} \\
\text{Early stage of inflation} \\
V(\phi) \\
H^4
\]
1. In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.

2. At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow, m_{\text{eff},\phi}(\langle I \rangle) < H_I$, Higgs VEV starts to develop.
IC-2: Inflaton-Higgs coupling

1. In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.

2. At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow, m_{\text{eff},\phi} (\langle I \rangle) < H_I$, Higgs VEV starts to develop.

3. At the end of inflation, the Higgs field has obtained a VEV

$$\phi_0 = \sqrt{\langle \phi^2 \rangle} = \frac{H_I}{2\pi} \sqrt{N_{\text{last}}}.$$
IC-2: Inflaton-Higgs coupling

1. In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.

2. At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow, m_{\text{eff,}\phi} (\langle I \rangle) < H_I$, Higgs VEV starts to develop.

3. At the end of inflation, the Higgs field has obtained a VEV

$$\phi_0 = \sqrt{\langle \phi^2 \rangle} = \frac{H_I}{2\pi} \sqrt{N_{\text{last}}}.$$

4. The Higgs VEV then rolls down from ϕ_0.
IC-2: Inflaton-Higgs coupling

- For $N_{\text{last}} = 5 - 8$, the isocurvature perturbation only develops on the small angular scales which are not yet constrained.

\[
< \text{IC2} > \\
\Lambda_I = 10^{17} \text{ GeV} \\
\Gamma_I = 10^8 \text{ GeV} \\
N_{\text{last}} = 8 \\
\phi_0 = 10^{15} \text{ GeV}
\]
Summary

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.

As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
Summary

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
- As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
- Through the relaxation of the Higgs or other scalar fields, Leptogenesis and Baryogenesis are possible.
Summary

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
- As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
- Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible.
- Possible issue with isocurvature perturbation can be solved by introducing higher dimensional operators.
During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.

As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.

Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible.

Possible issue with isocurvature perturbation can be solved by introducing higher dimensional operators.

Thank you for your listening!
The Universe appears to be almost homogeneous and isotropic today
⇒ Inflation
Inflation

- The Universe appears to be almost homogeneous and isotropic today
 ⇒ **Inflation**

- In the early universe, the energy density was dominated by vacuum energy.
The Universe appears to be almost homogeneous and isotropic today ⇒ Inflation

In the early universe, the energy density was dominated by vacuum energy.

Inflation from a real scalar field: Inflaton \(I(x) \)

\[
\mathcal{L}_I = \frac{1}{2} g^{\mu\nu} \partial_\mu I \partial_\nu I - V_I(I)
\]
The Universe appears to be almost homogeneous and isotropic today
⇒ Inflation

In the early universe, the energy density was dominated by vacuum energy.

Inflation from a real scalar field: Inflaton $I(x)$

$$\mathcal{L}_I = \frac{1}{2} g^\mu\nu \partial_\mu I \partial_\nu I - V_I (I)$$

The equation of motion is

$$\ddot{I} + 3H \dot{I} + \Gamma_I \dot{I} + \frac{dV_I (I)}{dI} = 0, \quad \text{with} \quad H^2 \equiv \left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi}{3m^2_{pl}} (\rho_I + \rho_{other})$$

where we assume a uniform field configuration and a FRW spacetime

$$ds^2 = dt^2 - a(t)^2 (dr^2 + r^2 d\Omega^2).$$
1 **Slow-roll** (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.

- **Slow-Roll**
 - $V(I)$
 - Λ_I
 - I
 - **Coherent Oscillations**

- **Radiation-dominated regime**
 - $a(t) \propto (t - t_i)^{1/2}$
 - At $t = 1/\Gamma_I$, most of the inflatons decay into ρ_R, and the reheating is complete.

- **End of Inflation**
 - $t = 1/\Gamma_I$
 - T_R max

- **Evolution of Scalar Fields in the Early Universe (slide 28)**
1 **Slow-roll** (inflation) regime: \(\ddot{I} \ll \frac{dV}{dI} \) and \(\dot{I}^2 \ll V \).

- \(\Gamma_I \) is not active.

\[3H\dot{I} \approx -\frac{dV}{dI}, \quad \text{and} \quad H^2 \approx \frac{8\pi}{3m_{pl}^2} V_I(I) \]

\[a(t) \propto e^{Ht} \]

Coherent Oscillations regime: \(a(t) \propto (t-t_i)^{2/3} \)

Inflaton acts like a non-relativistic particle. The Universe is matter-dominated.

Inflaton then decays into relativistic particles \(\rho_R \).

\[\dot{\rho}_I + 3H\rho_I + \Gamma_I \rho_I = 0 \]

\[\rho_I(t) = \Lambda I a(t)^3 e^{-\Gamma_I t} \]

Radiation-dominated regime: \(a(t) \propto (t-t_i)^{1/2} \)

At \(t = 1/\Gamma_I \), most of the inflatons decay into \(\rho_R \), and the reheating is complete.
Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.

- Γ_I is not active.

\[
3H\dot{I} \approx -\frac{dV}{dI}, \quad \text{and} \quad H^2 \approx \frac{8\pi}{3m_{pl}^2} V_I(I)
\]

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$

Evolution of Scalar Fields in the Early Universe (slide 28) PACIFIC 2015
1. **Slow-roll** (inflation) regime: \(\ddot{I} \ll \frac{dV}{dI} \) and \(\dot{I}^2 \ll V \).
 - \(\Gamma_I \) is not active.

 \[
 3H \dot{I} \approx -\frac{dV}{dI}, \quad \text{and} \quad H^2 \approx \frac{8\pi}{3m^2_{pl}} V_I(I)
 \]

 - Inflaton acts like vacuum energy. \(a(t) \propto e^{Ht} \)

2. **Coherent oscillations** regime: \(a(t) \propto (t - t_i)^{2/3} \)
1. **Slow-roll** (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.

 $$3H\dot{I} \approx -\frac{dV}{dI}, \quad \text{and} \quad H^2 \approx \frac{8\pi}{3m_{pl}^2} V_I(I)$$
 - Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$

2. **Coherent oscillations** regime: $a(t) \propto (t - t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
1. **Slow-roll** (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.
 - $3H\dot{I} \approx -\frac{dV}{dI}$, and $H^2 \approx \frac{8\pi}{3m^2_{\text{pl}}} V_I(I)$
 - Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$

2. **Coherent oscillations** regime: $a(t) \propto (t - t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles ρ_R.
 - $\dot{\rho}_I + 3H\rho_I + \Gamma_I \rho_I = 0 \Rightarrow \rho_I(t) = \frac{\Lambda^4_I}{a(t)^3} e^{-\Gamma_I t}$
The Brief History of the Early Universe

1. **Slow-roll** (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.

 $$3HI \approx -\frac{dV}{dI}, \quad \text{and} \quad H^2 \approx \frac{8\pi}{3m_{pl}^2} V_I(I)$$

 - Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$

2. **Coherent oscillations** regime: $a(t) \propto (t - t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles ρ_R.

 $$\dot{\rho}_I + 3H\rho_I + \Gamma_I\rho_I = 0 \quad \Rightarrow \quad \rho_I(t) = \frac{\Lambda^4 I}{a(t)^3} e^{-\Gamma_I t}$$

3. **Radiation-dominated** regime: $a(t) \propto (t - t_i)^{1/2}$
The Brief History of the Early Universe

1 **Slow-roll** (inflation) regime: \(\ddot{I} \ll \frac{dV}{dI} \) and \(\dot{I}^2 \ll V \).
 - \(\Gamma_I \) is not active.
 - Inflaton acts like vacuum energy. \(a(t) \propto e^{Ht} \)

2 **Coherent oscillations** regime: \(a(t) \propto (t - t_i)^{2/3} \)
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles \(\rho_R \).

\[
\dot{\rho}_I + 3H\rho_I + \Gamma_I\rho_I = 0 \quad \Rightarrow \quad \rho_I(t) = \frac{\Lambda_I^4}{a(t)^3} e^{-\Gamma_I t}
\]

3 **Radiation-dominated** regime: \(a(t) \propto (t - t_i)^{1/2} \)
 - At \(t = 1/\Gamma_I \), most of the inflatons decay into \(\rho_R \), and the reheating is complete.
If $|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)$, we have

$$S_E(\phi_i) - S_E(\phi_f) = -\frac{3m_{pl}^4}{8} \left[\frac{1}{V(\phi_i)} - \frac{1}{V(\phi_f)} \right] \approx -\frac{3m_{pl}^4}{8} \frac{V(\phi_f) - V(\phi_i)}{V(\phi_i)^2}$$
If \(|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)\), we have

\[
S_E(\phi_i) - S_E(\phi_f) = -\frac{3m_{pl}^4}{8} \left[\frac{1}{V(\phi_i)} - \frac{1}{V(\phi_f)} \right] \approx -\frac{3m_{pl}^4}{8} \frac{V(\phi_f) - V(\phi_i)}{V(\phi_i)^2}
\]

The transition rate is then

\[
\frac{\Gamma}{V} \propto \exp \left(-\frac{3m_{pl}^4}{8} \frac{V(\phi_f) - V(\phi_i)}{V(\phi_i)^2} \right)
\]
The Hawking-Moss Tunneling

- If \(|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)|\), we have

\[
S_E(\phi_i) - S_E(\phi_f) = -\frac{3m_{pl}^4}{8} \left[\frac{1}{V(\phi_i)} - \frac{1}{V(\phi_f)} \right] \approx -\frac{3m_{pl}^4}{8} \frac{V(\phi_f) - V(\phi_i)}{V(\phi_i)^2}
\]

- The transition rate is then

\[
\frac{\Gamma}{V} \propto \exp \left(-\frac{3m_{pl}^4}{8} \frac{V(\phi_f) - V(\phi_i)}{V(\phi_i)^2} \right)
\]

- Thus, the transition is not suppressed as long as

\[
V(\phi_f) - V(\phi_i) < \frac{8}{3m_{pl}^4} V(\phi_i)^2
\]
As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

$$\ddot{\phi} + 3H \dot{\phi} + \Gamma_\phi \dot{\phi} = - \frac{\partial V_H (\phi)}{\partial \phi}.$$
Reheating

- As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

\[\ddot{\phi} + 3H \dot{\phi} + \Gamma \dot{\phi} = -\frac{\partial V_H (\phi)}{\partial \phi}. \]

- The Hubble parameter and the temperature of the plasma are determined by

\[\dot{\rho}_r + 4H \rho_r = \Gamma_I \rho_I, \]

\[H^2 = \frac{8\pi G}{3} (\rho_I + \rho_r), \]

\[\rho_r = \frac{\pi^2}{30} g^* T^4. \]
Reheating

- As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

\[\ddot{\phi} + 3H \dot{\phi} + \Gamma \phi \dot{\phi} = -\frac{\partial V_H(\phi)}{\partial \phi}. \]

- The Hubble parameter and the temperature of the plasma are determined by

\[\dot{\rho}_r + 4H \rho_r = \Gamma_I \rho_I, \]

\[H^2 = \frac{8\pi G}{3} (\rho_I + \rho_r), \]

\[\rho_r = \frac{\pi^2}{30} g_* T^4. \]

- While the decay of Higgs may produce some non-zero lepton number by itself, most of the plasma are generated by the decay of inflaton.
Perturbative decay (thermalization) to top quark

- Thermalization rate is comparable to the Hubble parameter only after the maximum reheating has been reached.

$H(t)$ vs $\Gamma_H(t)$ through top quark for IC-1, with the parameters $\Lambda_I = 10^{15}$ GeV and $\Gamma_I = 10^9$ GeV. The vertical lines: the first time the Higgs VEV crosses zero, and the time of maximum reheating, from left to right.