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In current simulations, galaxies look like this:
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Disk galaxy at z=3: , molecular gas, atomic gas
Zemp, OG, N. Gnedin, Kravtsov (2012)




Real galaxies look like this:
(more structure, extended disks, young stars, gas emission, dust lanes)




Which results are model-dependent
and which are not?



Current power spectrum P(k) [(h~! Mpc)?]

Stronger (measured) primordial fluctuations on small scales
determine that low-mass halos form before high-mass halos
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Once the spectrum of fluctuations is known, and phases are Gaussian, cosmic
structure can be calculated without any free parameters (although DM self-
interaction could make a small difference later at centers of dwarf galaxies)



Numerical techniques are
borrowed from aerospace
engineering and well tested




Large-scale structure:
distant galaxy surveys

Blue is observations,
Red is simulations:
very similar



Missing Satellite Galaxies
Klypin et al. 1999, Moore et al. 1999
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>10° identified subhalos 25 satellite galaxies (Ly > 10°Lg)

Aquarius simulation



Matching numbers of halos and galaxies indicates that star
formation is inefficient, especially at low and high masses
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Green is good (understood)

Red is bad (nhot understood)

Gravity is the easy part. Ingredients of galaxy simulations:

CDM model: provides well-motivated initial conditions

dark matter: dominates gravitationally on scales > kpc, shapes
skeleton of the large-scale structure and galaxy potential wells,
in which baryonic drama of galaxy formation plays out

radiative cooling: shocks and UV radiation heat the baryons,
but dissipative particle collisions allow baryonic matter to radiate
away its thermal energy and sink to the center of the potential well,
where it can reach high enough density required for star formation

star formation: although we do not yet have a complete
understanding of star formation, empirically we know that stars
form in densest, molecular regions of the interstellar medium

stellar feedback: newly born stars inject energy and metals
released during thermonuclear burning back to the interstellar
medium and thus regulate formation of future stars



Young star clusters: test bed of star formation
and feedback physics

Ages of stars in Orion Nebulae Cluster
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Hartmann et. al. 2012

Lifetime of molecular clouds is set by the
formation within them of massive stars and
star clusters




Detailed structure of galaxies, their star
formation histories, number of satellites, etc.
are necessarily model-dependent.

It is work in progress for the next 10-20 years.



Cosmological hydrodynamic simulations with run-time treatment
of H, chemistry, stellar feedback, and radiative transfer

Adaptive Mesh Refinement ART
code

star formation in molecular gas,
supernovae feedback and metal
enrichment, stellar mass loss

radiative cooling and heating:
Compton, UV background, with
density and metallicity dependent
rates

3D radiative transfer
H2 formation on dust
grains/destruction by UV, with

self-shielding and shielding by
dust

(N. Gnedin & Kravtsov 2011)

z=3:

H, gas
HI gas

Zemp et al.
(2012)
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Young star clusters are dominant components of
very active star formation
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Adamo et al. 2015

Fraction of all young stars contained in massive star clusters
increases with the intensity of star formation, up to 50-60%



Spatial Distribution of Star Clusters
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Initial Mass Function of Young Clusters
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Cosmological simulation of a Milky Way sized-galaxy (Li & OG 2015):

e After a gas-rich merger event, MF of new clusters is a power law
as observed for young star clusters
 Fewer massive clusters between mergers
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Gas-rich mergers trigger massive cluster formation
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Cooling of cosmic gas changes the structure of dark

matter halos: halo s
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In the inner regions where baryons

dominate mass, halo becomes rounder
(Kazantzidis et al. 2004, and many others since)
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Inner part of DM halo is alighed with the baryon disk,
outer part retains memory of dissipationless formation
(halo twists with radius)
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More recent simulation with non-equilibrium H, chemistry,
metal-line cooling, 3D radiative transfer (Zemp et al. 2012)



In addition to change in spatial distribution,
inner dark matter gains angular momentum from the baryons
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Velocity distribution is close to isotropic,
instead of radially-biased as in N-body sims.

Dark Matter (z =2) B: without gas
cooling or star
formation

A: with cooling,
star formation,
radiative transfer,
SN feeeback

/20064



Zemp et al. (2012) with high SF threshold but weak feedback:
significant steeping of inner dark matter profile,
to approximately isothermal y=~.
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Summary

Power spectrum of primordial fluctuations is measured well
enough to calculate the emergence of cosmic structure
remaining uncertainty affects only dwarf galaxies

Predicting structure of galaxies (stars and gas) is necessarily
model-dependent

formation of stars and their feedback are very uncertain

Star clusters are dominant components of active star
formation

provide important tests for modeling baryon physics

Baryons make halo shape more round
at stellar half-light radius, but not at virial radius

Dark matter halo rotates slowly
gains angular momentum from collapsing baryons
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