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Outline of the Talk

Introduction: particle acceleration
In supernova remnants

- SNRs as Cosmic Ray accelerators

- SNR structure and evolution

3D numerical simulations
- hydro+kinetic code (Ramses+Blasi)
- thermal emission
- hon-thermal emission
- perspetives



The 3 dimensions of Cosmic Radiation

mass spectrum

10° Ty
10"4 \
m'!.‘i‘. o— Solar System |
o LTI o GCR !
$ 1.1! ‘ !
o 10
n 1'\'! ' i'Y’ \‘ S “ }
TC.3 ‘.J-'! .‘J ’\ L ‘!
‘;; 13"! Be ‘ A,A n- ’,‘ & 1
¢ 0] o
7 1 ve 1
&) 10.! 4
10'1 1
10‘1 ]
10 emrarripars i G

Atomic Number (Z)

999% of nucleons
+ 1% e-

quasi-solar abundance,
with particularities

log(FLUX m?s'sreV")

-10

Balloon ond
« Satellite experiments
a8 > EAS experiments
- .
-
I~ y
- )
! !
20 | P
20 ] ‘o\
_ Vi 8
28 |- Knee A"
Z
0~ 2nd Knee e
Ankle /
,” -
I speculoted GZK cutoff
bl laas Lonaalian Losaslonanlasnadaans

energy spectrum

" 12 13 14 15 16 " 18 19 20 21

log(ENERGY eV)

power-law, with breaks

> 10 orders of magnitude

In energy !

angular spectrum

100
10
S i ’
o A
E 1
=
£ —tl
0.1 : :
¢ 00
0.01 - 2 3 4 5 6 7 8 9 .20
10t 104 102 10" 10" 10 107 10" 102 107

primary energy [eV]

isotropic radiation
(random walk in B)

even at the highest energies?



(12 Particle acceleration in the Universe

Engines of acceleration : massive stars, compact objects
Physics of shocks, of accretion/ejection, of magnetic fields
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@ The structure of a young supernova remnant

TYChO'S SNR Warren et al 2005
seen by Chandra 0.95 — 1.26 keV
(at age 433 yr)
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The evolution of a supernova remnant
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SNRs as a key link between stars and the ISM

enrichment in heavy elements
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Supernova Remnants as Galactic CR sources

mass spectrum energy spectrum angular spectrum
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SNR broad-band emission
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synchrotron Balmer lines atomic lines of Inverse Compton ?
in B field forbidden lines heavy elements pion decay ?
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2.1, Modelling DSA at different scales
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4 )

shock wave cosmic-rays
(thermal magnetized (non-thermal
plasma) population)

" J

conservation laws particle distribution:
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(23] Numerical simulations with Ramses

slice of log(density)

parameters: Tycho (SN Ia)

tgn = 440 years
Egn = 10°t erg
n="7, M =14Mg

s=0, NH,ISM = 0.1 cm™°

un-modified shock (back-reaction off)

-~ ™ 4 _ ™\
SNR initialization: SNR evolution:
self-similar profiles 3D hydro code
. Ferrand et al 2010
\from Cheval 1er/ . ramses ’ = TN KT
shock back-reaction: §
diagnostics varying gamma e
g
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particle acceleration: ke
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non-linear model =
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@ Hydro- and thermodynamics of the plasma

Thermal emission in each cell depends on:

o n2

* electron temperature 7T,

progressive equilibration
with protons temperature 1,
via Coulomb interactions

. fi(Z)
computation of non-equilibrium ionization
with the exponentiation method

t
n:/nWMﬂ

ts

Note: all these parameters depend

slices att = 500 yr from a
- . 3 o . . .
on the h|sto|-y of the material 10243 simulation with particle

: back-reaction
after it was shocked.




Thermal emission
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(2.6 Magnetic field and radiative losses

Non-thermal emission in each cell depends on:

* pion decay: plasma density n(z,t)

* synchrotron: magnetic field B(x,t)
(amplified at the shock, then frozen in the flow)
* Compton: ambiant photon fields (CMB)

Note: the acceleration model gives the CR spectra
just behind the shock f,(p, z,t), fc(p,x,t)
they must be transported to account for losses:

p(x,t) slices at t = 500 yr from a
10243 simulation without
,0(1'5, ts) particle back-reaction
and MF amplification

* adiabatic decompression o =

/
° @oc/ B2a3dt
ts




Non-thermal emission
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simulations

test-particle case

modified shock
with magnetic field amplification

observations

Thermal + non-thermal emission

Energetic protons,
accelerated at the
shock front, don't
radiate as efficiently
as electrons, however:

1/ they impact the
dynamics of the shock
wave, and therefore
the thermal
emission from the
shell (optical, X-rays)

2/ they impact the
evolution of the
magnetic field,

and therefore the
non-thermal
emission from the
electrons (radio — X-

rays — y-rays)



(2.0 Perspectives: the shock in context

e impact of the progenitor : ‘ ejecta profiles (stratification, asymmetries)
stellar wind (for core-collapse)

e impact of the environment : ‘ molecular clouds (radiative? ionized?)
ISM turbulence (hydro + mag)

/progenitor wind
ejectak




