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Inflationary Cosmology

[Guth, Linde, Albrecht & Steinhardt, Starobinsky, Mukhanov, Hawking, . . . ]

Successful Primordial Inflation should:

Explain flatness, isotropy;

Provide origin of δT
T ;

Offer testable predictions for ns, r, dns/d ln k;

Recover Hot Big Bang Cosmology;

Explain the observed baryon asymmetry;

Offer plausible CDM candidate;

Physics Beyond the SM?



Slow-roll Inflation

Inflation is driven by some potential V (φ):

Slow-roll parameters:
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m2
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)
.

The spectral index ns and the tensor to scalar ratio r are
given by

ns − 1 ≡ d ln ∆2
R

d ln k , r ≡ ∆2
h

∆2
R

,

where ∆2
h and ∆2

R are the spectra of primordial gravity waves
and curvature perturbation respectively.

Assuming slow-roll approximation (i.e. (ε, |η|)� 1), the
spectral index ns and the tensor to scalar ratio r are given by

ns ' 1− 6ε+ 2η, r ' 16ε.



The tensor to scalar ratio r can be related to the energy scale
of inflation via

V (φ0)1/4 = 3.3× 1016 r1/4 GeV.

The amplitude of the curvature perturbation is given by

∆2
R = 1

24π2

(
V/m4

p

ε

)
φ=φ0

= 2.43× 10−9 (WMAP7 normalization).

The spectrum of the tensor perturbation is given by

∆2
h = 2

3π2

(
V
m4
P

)
φ=φ0

.

The number of e-folds after the comoving scale l0 = 2π/k0

has crossed the horizon is given by

N0 = 1
m2
p

∫ φ0

φe

(
V
V ′

)
dφ.

Inflation ends when max[ε(φe), |η(φe)|] = 1.



BICEP 2 Result

BICEP 2 a few months ago surprised many people with their
results that r ∼ 0.2 (0.16).

Some tension with the Planck upper bound r < 0.11.

Somewhat earlier WMAP 9 stated that r < 0.13.



WMAP nine year data
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SM Higgs Inflation?
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Figure 2. Upper: RG evolution of λ (left) and of βλ (right) varying Mt, α3(MZ), Mh by

±3σ. Lower: same as above, with more “physical” normalisations. The Higgs quartic coupling

is compared with the top Yukawa and weak gauge coupling through the ratios sign(λ)
√

4|λ|/yt

and sign(λ)
√

8|λ|/g2, which correspond to the ratios of running masses mh/mt and mh/mW , re-

spectively (left). The Higgs quartic β-function is shown in units of its top contribution, βλ(top

contribution) = −3y4
t /8π2 (right). The grey shadings cover values of the RG scale above the

Planck mass MPl ≈ 1.2 × 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/
√

8π.

left). Indeed, λ is the only SM coupling that is allowed to change sign during the RG

evolution because it is not multiplicatively renormalised. For all other SM couplings, the

β functions are proportional to their respective couplings and crossing zero is not possible.

This corresponds to the fact that λ = 0 is not a point of enhanced symmetry.

In figure 2 (lower left) we compare the size of λ with the top Yukawa coupling yt and

the gauge coupling g2, choosing a normalisation such that each coupling is equal to the

corresponding particle mass, up to the same proportionality constant. In other words, we
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Supersymmetry

Resolution of the gauge hierarchy problem

Predicts plethora of new particles which LHC should find

Unification of the SM gauge couplings at

MGUT ∼ 2× 1016 GeV

Cold dark matter candidate (LSP)

Radiative electroweak breaking

String theory requires supersymmetry (SUSY)

Alas, SUSY not yet seen at LHC



Why Supersymmetry?

MSSMΑ1
-1

Α2
-1

Α3
-1

2 4 6 8 10 12 14 16

10

20

30

40

50

60

Log10@L�GeVD

Α
i-
1



A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Phys. Lett. B 708, 162 (2012)



SUSY Higgs (Hybrid) Inflation

[Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands ’94]

[Lazarides, Schaefer, Shafi ’97][Senoguz, Shafi ’04; Linde, Riotto ’97]

Attractive scenario in which inflation can be associated with
symmetry breaking G −→ H

Simplest inflation model is based on

W = κS (Φ Φ−M2)

S = gauge singlet superfield, (Φ ,Φ) belong to suitable
representation of G

Need Φ ,Φ pair in order to preserve SUSY while breaking
G −→ H at scale M � TeV, SUSY breaking scale.

R-symmetry

Φ Φ→ Φ Φ, S → eiα S, W → eiαW

⇒ W is a unique renormalizable superpotential



Some examples of gauge groups:

G = U(1)B−L, (Supersymmetric superconductor)

G = SU(5)× U(1), (Φ = 10), (Flipped SU(5))

G = 3c × 2L × 2R × 1B−L, (Φ = (1, 1, 2,+1))

G = 4c × 2L × 2R, (Φ = (4, 1, 2)),

G = SO(10), (Φ = 16)



At renormalizable level the SM displays an ‘accidental’ global
U(1)B−L symmetry.

Next let us ‘gauge’ this symmetry, so that U(1)B−L is now
promoted to a local symmetry. In order to cancel the gauge
anomalies, one may introduce 3 SM singlet (right-handed)
neutrinos.

This has several advantages:

See-saw mechanism is automatic and neutrino oscillations can
be understood.



RH neutrinos acquire masses only after U(1)B−L is
spontaneously broken; Neutrino oscillations require that RH
neutrino masses are . 1014GeV.

RH neutrinos can trigger leptogenesis after inflation, which
subsequently gives rise to the observed baryon asymmetry;

Last but not least, the presence of local U(1)B−L symmetry
enables one to explain the origin of Z2 ’matter’ parity of
MSSM. (It is contained in U(1)B−L × U(1)Y , if B − L is
broken by a scalar vev, with the scalar carrying two units of
B − L charge.)



Tree Level Potential

VF = κ2 (M2 − |Φ2|)2 + 2κ2|S|2|Φ|2

SUSY vacua
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Take into account radiative corrections (because during inflation
V 6= 0 and SUSY is broken by FS = −κM2)

Mass splitting in Φ− Φ

m2
± = κ2 S2 ± κ2M2, m2

F = κ2 S2

One-loop radiative corrections

∆V1loop = 1
64π2 Str[M4(S)(ln M

2(S)
Q2 − 3

2)]

In the inflationary valley (Φ = 0)

V ' κ2M4
(

1 + κ2N
8π2 F (x)

)

where x = |S|/M and

F (x) = 1
4

((
x4 + 1

)
ln

(x4−1)
x4 + 2x2 ln x2+1

x2−1 + 2 ln κ2M2x2

Q2 − 3

)



Full Story

Also include supergravity corrections + soft SUSY breaking terms

The minimal Kähler potential can be expanded as

K = |S|2 + |Φ|2 +
∣∣Φ
∣∣2

The SUGRA scalar potential is given by

VF = eK/m
2
p

(
K−1
ij DziWDz∗j

W ∗ − 3m−2
p |W |2

)

where we have defined

DziW ≡ ∂W
∂zi

+m−2
p

∂K
∂zi
W ; Kij ≡ ∂2K

∂zi∂z∗j

and zi ∈ {Φ,Φ, S, ...}



[Senoguz, Shafi ’04; Jeannerot, Postma ’05]

Take into account sugra corrections, radiative corrections and
soft SUSY breaking terms:

V '
κ2M4

(
1 +

(
M
mp

)4
x4

2 + κ2N
8π2 F (x) + as

(
m3/2x

κM

)
+
(
m3/2x

κM

)2
)

where as = 2 |2−A| cos[argS + arg(2−A)], x = |S|/M and
S � mP .

Note: No ‘η problem’ with minimal (canonical) Kähler potential !



Results

[Pallis, Shafi, 2013; Rehman, Shafi, Wickman, 2010]
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Non-Minimal SUSY Hybrid Inflation and Tensor Modes

Minimal SUSY hybrid inflation model yields tiny r values
. 10−10

A more general analysis with a non-minimal Kähler potential
can lead to larger r-values;

The Kähler potential can be expanded as:

K = |S|2 + |Φ|2 + |Φ|2 + κS
4
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4
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+
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The scalar potential becomes

V ' κ2M4

(
1− κS

(
M

mP

)2

x2 + γS
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)4 x4

2
+
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with (leading order) non-minimal Kähler, SUGRA, radiative, and
soft SUSY-breaking corrections, and where

γS ≡ 1− 7

2
κS + 2κ2

S − 3κSS
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While radiative corrections are subdominant at large r, they play a
crucial role in limiting the size of r. This limiting behavior comes
in indirectly via the number of e-foldings N0.



Tree Level Gauge Singlet Higgs Inflation

[Kallosh and Linde, 07; Rehman, Shafi and Wickman, 08]

Consider the following Higgs Potential:

V (φ) = V0

[
1−

(
φ
M

)2
]2

←− (tree level)

Here φ is a gauge singlet field.

M

Φ

V HΦL

Above vev HAVL

inflation
Below vev HBVL

inflation

WMAP/Planck data favors BV inflation (r . 0.1).
BUT now BICEP2 may have found r ≈ 0.2.



Inflation of the B-L scalar field:

V = 1
4λ(φ2 − v2)2 , where φ/

√
2 = R[φ]

We consider inflation with the initial inflation VEV: φ < v



Coleman–Weinberg Potential:

ns vs. r for Coleman–Weinberg potential. The dashed portions are for φ > v. N is taken as 50 (left
curves) and 60 (right curves).



Radiatively Corrected φ2 Potential:

ns vs. r for radiatively corrected φ2 potential. The dashed portions are for κ < 0. The one loop
radiative correction is larger than the tree level potential in the portions displayed in gray. N is taken
as 50 (left curves) and 60 (right curves).



Radiatively Corrected φ4 Potential:

ns vs. r for radiatively corrected φ4 potential. The dashed portions are for κ < 0. The one loop
radiative correction is larger than the tree level potential in the portions displayed in gray. N is taken
as 50 (left curves) and 60 (right curves).



Quartic Inflation with non-minimal coupling to gravity

We consider a quartic inflaton potential with a non-minimal
gravitational coupling.

The basic action of non-minimal φ4 inflation is given in the
Jordan frame

The inflation potential in the Einstein frame is



Quartic Inflation with non-minimal coupling to gravity



Summary

If r lies close to 0.15, with ns around 0.96, then chaotic
inflation with φ2 potential is an especially simple scenario.
However, transplanckian field values remain a concern.

If r ∼ 0.1− 0.05, then inflation models based on the Higgs /
Coleman-Weinberg potentials can provide simple / realistic
frameworks for inflation.

If r ≤ 0.01, then supersymmetric hybrid inflation models are
especially interesting. These work with inflaton field values
below MPlanck, and supergravity corrections are under control.
The simplest versions employ TeV scale SUSY, and hopefully
LHC 14 will find it.


