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☞ The minimal supersymmetric standard model (MSSM)
provides an attractive scheme for physics beyond the SM

︸                                                   ︷︷                                                   ︸
SM particles

︸                                                   ︷︷                                                   ︸
superpartners

matter parity even matter parity odd

distin-
guished
by ZM2

features:

• (maximal) extension of Poincaré symmetry

• dark matter candidate (w/ ZM2 )

• gauge hierarchy stabilization

• . . .



Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Gauge coupling unification in the MSSM

☞ Running couplings in the (minimal) supersymmetric
standard model (MSSM) Dimopoulos, Raby, Wilczek (1981)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0.6

0.8

1

1.2

g i

g1

g2

g3



Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Gauge coupling unification in the MSSM

☞ Running couplings in the (minimal) supersymmetric
standard model (MSSM) Dimopoulos, Raby, Wilczek (1981)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0.6

0.8

1

1.2

g i

g1

g2

g3

Unification
scale (MGUT)

☞ Gauge coupling unification might be a consequence of
GSM = SU(3) × SU(2) ×U(1) ⊂ SU(5)



Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Gauge coupling unification in the MSSM

☞ Running couplings in the (minimal) supersymmetric
standard model (MSSM) Dimopoulos, Raby, Wilczek (1981)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0.6

0.8

1

1.2

g i

g1

g2

g3

Unification
scale (MGUT)

☞ Gauge coupling unification might be a consequence of
GSM = SU(3) × SU(2) ×U(1) ⊂ SU(5)

hierarchy stabilized by SUSY
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SU(5) and SO(10)

SU(5) grand unified theories (GUTs) . . .

☞ explain charge quantization

☞ simplify matter content

SM generation = 10 + 5

further simplification of matter sector Fritzsch & Minkowski (1975)

SO(10) ⊃ SU(5)

16 = 10 ⊕ 5 ⊕ 1

= SM generation with ‘right–handed’ neutrino

☞ One of the main assumptions in this talk: this is not an
accident
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Problems of the MSSM

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

!
∼ 1/1015 GeV
in order to

explain see–saw
suppressed
νmasses
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§ µ/Bµ problem(s)

§ dimension four and five proton decay operators

§ CP and flavor problems not addressed in this talk

§ . . .

➥ Supersymmetry alone seems not to be enough
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Ibáñez and Ross (1992) ; Babu et al. (2003b) ; Dreiner et al. (2006)

☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3

Q Ū D̄ L Ē Hu Hd ν̄

Z

M
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☞ Appealing features

© forbids dimension four and five proton decay operators

© allows Yukawa couplings & Weinberg operator κ(0)
ij HuLi HuLj

© unique anomaly–free symmetry with the above features

☞ However:
§ not consistent with unification for matter (i.e. inconsistent with universal

discrete charges for all matter fields)

http://inspirehep.net/search?p=Ibanez:1991pr
http://inspirehep.net/search?p=Babu:2003qh
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Proton hexality

☞ Disturbing aspects of proton hexality

§ not consistent with (grand) unification for matter

§ does not address µ problem

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y
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u QiHuUj

+ λijk LiLjEk + λ
′
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+ κ
(0)
ij HuLi HuLj + κ

(1)
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(2)
ijkℓ UiUjDkEℓ + . . .

needs to be suppressed as well. . .
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Outline

➊ Introduction & Motivation X

➋ Anomaly–free discrete symmetries & unification
• anomaly cancellation
• consistency with unification
• unique ZR

4 symmetry
• no–go theorems in 4D

➌ String model(s)

➍ Summary



• anomaly cancellation

• consistency with unification

• unique ZR
4 symmetry

• no–go theorems in 4D



Supersymmetric unification and R symmetries Anomaly–free discrete symmetries & unification

Prejudices and assumptions

Assumptions:

☞ SO(10) unification of matter is not an accident

☞ µ term is forbidden by a symmetry

☞ symmetries need to be anomaly–free

Important ingredient :

☞ Green–Schwarz anomaly cancellation
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

→ “Anomaly universality”

Example: anomaly coefficients for ZN

symmetry

AG2−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav2−ZN
=

∑

m

q(m)

sum over all
representations of G

sum over all fermions

http://inspirehep.net/search?p=Chen:2012jg
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Chen et al. (2012)

Anomaly freedom
+

Grand unification
+

Green–Schwarz
anomaly cancellation
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
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→ “Anomaly universality”

Example: anomaly coefficients for ZN

symmetry

AG2−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav2−ZN
=

∑

m

q(m)

Dynkin index

discrete charges

http://inspirehep.net/search?p=Chen:2012jg
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Anomaly freedom
Chen et al. (2012)

Anomaly freedom
+

Grand unification
+

Green–Schwarz
anomaly cancellation






→ “Anomaly universality”

Example: anomaly coefficients for ZN

symmetry

AG2−ZN
=

∑

f

ℓ(f ) · q(f ) !
= 0 mod η

Agrav2−ZN
=

∑

m

q(m) !
= 0 mod η

traditional anomaly
freedom:

all A coefficients vanish

η :=

{
N for N odd
N/2 for N even

Ibáñez and Ross (1991)

Banks and Dine (1992)

http://inspirehep.net/search?p=Chen:2012jg
http://inspirehep.net/search?p=Ibanez:1991hv
http://inspirehep.net/search?p=Banks:1991xj
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Anomaly freedom
Chen et al. (2012)

Anomaly freedom
+

Grand unification
+

Green–Schwarz
anomaly cancellation






→ “Anomaly universality”

Example: anomaly coefficients for ZN

symmetry

AG2−ZN
=

∑

f

ℓ(f ) · q(f ) !
= ρ mod η

Agrav2−ZN
=

∑

m

q(m) !
= ρ mod η

traditional anomaly
freedom:

all A coefficients vanish

➨ ➨ ➨ ➨ ➨

anomaly “universality”:

ASU(3)2−ZN
= ASU(2)2−ZN

if SU(3) × SU(2)
⊂ SU(5) or E8

http://inspirehep.net/search?p=Chen:2012jg
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☞ Working assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & SU(5) relations:
y only R symmetries can forbid the µ term
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Anomaly–free symmetries, µ and unification

☞ Working assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)
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2. assuming (i)–(iii) & SO(10) relations:
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Anomaly–free symmetries, µ and unification

☞ Working assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & SU(5) relations:
y only R symmetries can forbid the µ term

2. assuming (i)–(iii) & SO(10) relations:
y unique ZR

4 symmetry

3. R symmetries are not available in 4D GUTs
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Anomaly–free symmetries, µ and unification

Non–R symmetries do not do the job

☞ Anomaly coefficients for non–R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)

ASU(2)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)
+
1

2

(
qHu
+ qHd

)

charge of
gth 10–plet

charge of

gth 5–plet
Higgs

charges
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Non–R symmetries do not do the job

☞ Anomaly coefficients for non–R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)

ASU(2)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)
+
1

2

(
qHu
+ qHd

)

☞ Anomaly universality: ASU(2)2−ZN
− ASU(3)2−ZN

= 0

y

1

2

(
qHu
+ qHd

)
= 0 mod

{
N for N odd
N/2 for N even
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Anomaly–free symmetries, µ and unification

Non–R symmetries do not do the job

☞ Anomaly coefficients for non–R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)

ASU(2)2−ZN
=

1

2

3∑

g=1

(
3q

g
10
+ q

g

5

)
+
1

2

(
qHu
+ qHd

)

☞ Anomaly universality: ASU(2)2−ZN
− ASU(3)2−ZN

= 0

y

1

2

(
qHu
+ qHd

)
= 0 mod

{
N for N odd
N/2 for N even

bottom–line:

non–R ZN symmetry cannot forbid µ term
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Anomaly–free symmetries, µ and unification

Only discrete R symmetries may do the job

☞ Obvious: if anomaly–free discrete non–R symmetries
cannot forbid the µ term, this also applies to continuous
non–R symmetries

☞ There are no anomaly–free continuous R symmetries in the
MSSM

Chamseddine and Dreiner (1996)

➥ Only remaining option: discrete R symmetries

http://inspirehep.net/search?p=Chamseddine:1995gb
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☞ At the SU(5) level: one anomaly coefficient

ASU(5)2−ZR
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= Amatter

SU(5)2−ZR
M

+ Aextra
SU(5)2−ZR

M

+ 5qθ

matter extra gauginos
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’t Hooft anomaly matching for R symmetries
Chen et al. (2012)

☞ Powerful tool: anomaly matching

☞ At the SU(5) level: one anomaly coefficient

ASU(5)2−ZR
M
= Amatter

SU(5)2−ZR
M

+ Aextra
SU(5)2−ZR

M

+ 5qθ

☞ Consider the SU(3) and SU(2) subgroups

A
SU(5)
SU(3)2−ZR

M

= Amatter
SU(3)2−ZR

M

+ Aextra
SU(3)2−ZR

M

+ 3qθ +
1
2
· 2 · 2 · qθ

A
SU(5)
SU(2)2−ZR

M

= Amatter
SU(2)2−ZR

M

+ Aextra
SU(2)2−ZR

M

+ 2qθ +
1
2
· 2 · 3 · qθ

universal SM gauginos

extra
gauginos
from X,Y

bosons

http://inspirehep.net/search?p=Chen:2012jg
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☞ Powerful tool: anomaly matching

☞ At the SU(5) level: one anomaly coefficient

ASU(5)2−ZR
M
= Amatter

SU(5)2−ZR
M

+ Aextra
SU(5)2−ZR

M

+ 5qθ
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✘
✘
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☞ Assume now that some mechanism eliminates the extra
gauginos
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’t Hooft anomaly matching for R symmetries
Chen et al. (2012)

☞ Powerful tool: anomaly matching

☞ At the SU(5) level: one anomaly coefficient

ASU(5)2−ZR
M
= Amatter

SU(5)2−ZR
M

+ Aextra
SU(5)2−ZR

M

+ 5qθ

☞ Consider the SU(3) and SU(2) subgroups

A
SU(5)
SU(3)2−ZR

M

= Amatter
SU(3)2−ZR

M

+ Aextra
SU(3)2−ZR

M

+ 3qθ +
✘
✘
✘
✘
✘❳

❳
❳
❳
❳

1
2
· 2 · 2 · qθ

A
SU(5)
SU(2)2−ZR

M

= Amatter
SU(2)2−ZR

M

+ Aextra
SU(2)2−ZR

M

+ 2qθ +
✘
✘
✘
✘
✘❳

❳
❳
❳
❳

1
2
· 2 · 3 · qθ

☞ Assume now that some mechanism eliminates the extra
gauginos

➥ Extra stuff must be non–universal (split multiplets)

bottom–line:

’t Hooft anomaly matching for (discrete) R symmetries implies
the presence of split multiplets below the GUT scale!

http://inspirehep.net/search?p=Chen:2012jg
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☞ Consider ZR
M symmetry which commutes with SO(10)

i.e. quarks and leptons have universal charge q

☞ existence of u- and d–type Yukawas requires that

2q + qHu
= 2qθ mod M and 2q + qHd

= 2qθ mod M

R charge of
superspace
coordinate θ

superpotential
has R charge 2qθ∫

d2θW ⊂ L
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UniqueZR

4
symmetry

SO(10) implies unique symmetry
Lee et al. (2011) ; Chen et al. (2012)

☞ Consider ZR
M symmetry which commutes with SO(10)

i.e. quarks and leptons have universal charge q

☞ existence of u- and d–type Yukawas requires that

2q + qHu
= 2qθ mod M and 2q + qHd

= 2qθ mod M

y qHu
− qHd

= 0 mod M

☞ u–type Yukawa and Weinberg operator requires that

2q + qHu
= 2qθ mod M and 2q + 2qHu

= 2qθ mod M

y qHu
= 0 mod M

bottom–line:

qHu
= qHd

= 0 mod M & q = qθ mod M

http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg
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Unique ZR
4 symmetry

Lee et al. (2011) ; Chen et al. (2012)

☞ We know already that

{
• q = qθ
• qHu

= qHd
= 0 mod M

☞ Simplest possibility: M = 4 & q = qθ = 1y Z

R
4 symmetry

M = 2 does not work since this is not an R symmetry
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UniqueZR

4
symmetry

Unique ZR
4 symmetry

Lee et al. (2011) ; Chen et al. (2012)

☞ We know already that

{
• q = qθ
• qHu

= qHd
= 0 mod M

☞ Simplest possibility: M = 4 & q = qθ = 1y Z

R
4 symmetry

☞ Alternatives: ZR
4m symmetry with q = qθ = m & m ∈ N

☞ However: these are only trivial extensions (as far as the MSSM is concerned)

bottom–line:

unique symmetry : ZR
4 w/ q = qθ = 1 & qHu

= qHd
= 0

first discussed in Babu et al. (2003a)

http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg
http://inspirehep.net/search?p=Babu:2002tx
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UniqueZR

4
symmetry

Unique ZR
4 symmetry & GS anomaly cancellation

☞ Anomaly coefficients

ASU(3)2−ZR
4
= 6q − 3qθ = 1qθ mod 4/2

ASU(2)2−ZR
4
= 6q +

1

2

(
qHu
+ qHd

)
− 5qθ = 1qθ mod 4/2

➥ Consistent with anomaly universality

bottom-line:

Z

R
4 is anomaly–free via non–trivial GS

mechanism
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GS anomaly cancellation and implications

Implication of GS anomaly cancellation

☞ GS axion a contained in superfield S (w/ S|θ=0 = s + i a)

☞ Since a = ImS|θ=0 shifts under the Z
R
M transformation,

non–invariant superpotential terms can be made invariant
by multiplying them with e−bS

☞ Main example

µHu Hd forbidden

but

B e−bSHu Hd allowed (for appropriate b)

bottom–line:

holomorphic e−bS terms appear to violate ZR
M symmetry
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Interpretation

☞ GS anomaly cancellation requires coupling

L ⊃

∫
d2θ fS SWαW

α

➥ s = ReS|θ=0 contributes to 1/g2

➥ holomorphic B e−bS terms can be interpreted as
non–perturbative effects (e.g. “retrofitting”) Dine et al. (2006)

http://inspirehep.net/search?p=Dine:2006gm
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GS anomaly cancellation and implications

Interpretation

☞ GS anomaly cancellation requires coupling

L ⊃

∫
d2θ fS SWαW

α

➥ s = ReS|θ=0 contributes to 1/g2

➥ holomorphic B e−bS terms can be interpreted as
non–perturbative effects (e.g. “retrofitting”) Dine et al. (2006)

bottom–line:

• compatibility w/ SO(10)
• anomaly freedom

}
y

{
µ term appears

non–perturbatively

http://inspirehep.net/search?p=Dine:2006gm
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4

Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .
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Implications ofZR

4

Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

also forbidden at
non–perturbative level by

“non–anomalous” Z2 subgroup
which is equivalent
to matter parity



Supersymmetric unification and R symmetries Anomaly freedom

Implications ofZR

4

Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

µ term from

{
Giudice–Masiero mechanism (optional)
holomorphic ‘non–perturbative’ term

☞ order parameter for R symmetry breaking: superpotential
VEV 〈W 〉

➥ µ ∼ m3/2 ≃ 〈W 〉/M
2
P
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Implications ofZR

4

Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

non–perturbatively
generated terms harmless

κ
(1,2)
ijkℓ ∼ m3/2/M

2
P ≪ 10−8/MP
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• anomaly freedom
• consistency with SU(5)

}
y






only R symmetries
can forbid the µ term
in the MSSM

☞ However: R symmetries are not available in 4D SUSY GUTs

Fallbacher et al. (2011)

☞ Assumptions:

(i) GUT model in four dimensions based on G ⊃ SU(5)

(ii) GUT symmetry breaking is spontaneous

(iii) Only finite number of fields

☞ One can prove that it is impossible to get low–energy
effective theory with both:

1. just the MSSM field content

2. residual R symmetries

http://inspirehep.net/search?p=Fallbacher:2011xg
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No–Go for R symmetries in 4D GUTs

The basic argument

☞ Consider SU(5) model with an (arbitrary) R symmetry and
a 24–plet breaking SU(5)→ GSM

24 → (8,1)0 ⊕ (1,3)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6 ⊕ (1,1)0

R charge 0 get eaten

extra massless states

☞ Introducing extra 24–plets with R charge 2 does not help
because this would lead to massless (3,2)−5/6 ⊕ (3,2)5/6
representations

☞ Iterating this argument shows that with a finite number of
24–plets one will always have massless exotics

☞ Loophole for infinitely many 24–plets

cf. Goodman and Witten (1986)

http://inspirehep.net/search?p=Goodman:1985bw
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Generalizing the basic argument

☞ It is possible to generalize the basic argument to

• arbitrary SU(5) representations

• larger GUT groups G ⊃ SU(5)

• singlet extensions of the MSSM

for details see Fallbacher et al. (2011)

http://inspirehep.net/search?p=Fallbacher:2011xg
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No–Go for R symmetries in 4D GUTs

Discussion

☞ A ‘natural’ solution of the µ and/or doublet–triplet splitting
problem requires a symmetry that forbids µ

☞ We learned that:

1 only R symmetries can forbid the µ term

2 anomaly matching requires the existence of split multiplets

3 R symmetries are not available in 4D GUTs

bottom–line:

‘Natural’ solutions to the
µ and/or doublet–triplet splitting problems
are not available in four dimensions!

➥ Need to go to extra dimensions/strings



• evading the no–go theorem

• origin of ZR
4

• higher–dimensional operators (effective µ term etc.)
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Grand unification in higher dimensions

☞ Well known: higher–dimensional GUTs appear more
“appealing”

☞ New possibilities of symmetry breaking arise

Witten (1985) ; Breit et al. (1985)

☞ KK towers provide us with infinitely many states and allow us
to evade the no–go theorem

☞ Even more, R symmetries have a clear geometric
interpretation in terms of the Lorentz symmetry of compact
dimensions

http://inspirehep.net/search?p=Witten:1985xc
http://inspirehep.net/search?p=Breit:1985ud
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☞ R symmetries are available in higher–dimensional/stringy
GUTs

☞ Discrete R symmetries arise as remnants of the Lorentz
symmetry of compact dimensions
and are arguably on the same footing as the fundamental
symmetries C, P and T
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Z

R
4 charges

bulk fields
have even

Z

R
4 charges
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Local grand unification &ZR

4

Local grand unification & Z

R
4

Buchmuller et al. (2005)

bcb
SO(10)

16 bcb
Grb

bcb
Glt bcb

Grt

E8 × E8

Z

R
4 (bottom–up)

Z

R
4 charge

matter 1
Higgs 0

SM generation(s):

localized in region with
SO(10) symmetry

Higgs doublets:

live in the ‘bulk’

http://inspirehep.net/search?p=Buchmuller:2005sh
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Blaszczyk et al. (2010) ; Kappl et al. (2011)

☞ We constructed models with the exact MSSM spectrum
based on Z2 × Z2 orbifolds details

☞ We succeeded in finding vacua with the ZR
4 symmetry

© Various good features

X non–local GUT breaking
X no ‘fractionally charged exotics’
X (most) exotics decouple at the linear level in SM singlets, i.e.

just MSSM below GUT scale with masslessness of Higgs fields ensured by ZR
4

X non–trivial full–rank Yukawa couplings
X gauge–top unification
X SU(5) relation yτ ≃ yb

§ However:

• SU(5) Yukawa relations also for light generations
• hidden sector gauge group only SU(3)

bottom–line:

Successful string embedding of ZR
4 possible!

http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu
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SUSY vacua with ZR
4

☞ Recall: situation for gauge theories with generic
superpotential e.g. Luty and Taylor (1996)

solutions of D–equations ∩ solutions of F–equations = non–trivial

☞ However: 〈W 〉 , 0 generically

☞ Vacua with residual ZR
4 are slightly different

☞ Example: consider one field φ0 with R-charge 0 and one
field φ2 with R-charge 2

W = φ2 · f (φ0) + O(φ23) with 〈W 〉 = 0 automatic

Fφ0 =
∂W

∂φ0
= φ2 · f

′(φ0) + O(φ23) = 0 @ φ2 = 0

Fφ2 =
∂W

∂φ2
= f (φ0)

!
= 0 fixes φ0

http://inspirehep.net/search?p=Luty:1995sd
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SUSY vacua with ZR
4 (cont’d)

☞ Generalization: consider N fields φ(i)
0 with R-charge 0 and M

fields φ
(j)
2 with R-charge 2

W =

∑

j

φ
(j)
2 · f

(j)(φ(1)
0 , . . . ) + . . .

F
φ

(i)
0
= 0 automatically

F
φ

(j)
2
= 0 y f (j)(φ(1)

0 , . . . )
!
= 0 y M constraints on N fields

➥ expect solutions for N ≥M

➥ M non–trivial mass terms (also for T- and Z–moduli!)

☞ Have identified configurations with N ≥M in our Z2 × Z2

model(s)





Supersymmetric unification and R symmetries Summary

Field theory

Summary

☞ Assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons
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Summary

☞ Assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

☞ Have shown:

1. assuming (i) & SU(5) relations:
y only R symmetries can forbid the µ term

2. assuming (i)–(iii) & SO(10) relations:
y unique ZR

4 symmetry

3. R symmetries are not available in 4D GUTs

y no ‘natural’ solution to doublet–triplet splitting in 4D!
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Field theory

Summary

☞ A simple anomaly–free ZR
4 symmetry can

• provide a solution to the µ problem
• suppress proton decay operators

universal anomaly coefficients
universal charges for matter

forbid µ @ tree–level
allow Yukawa couplings
allow Weinberg operator





y unique ZR
4

Z

R
4 y






dim. 4 proton decay operators completely forbidden
dim. 5 proton decay operators highly suppressed
µ appears non–perturbatively
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Supersymmetric unification and R symmetries Summary

String theory

Summary

☞ Embedding into string theory allows us to understand
where the ZR

4 symmetry comes from: it may arise as a
discrete remnant of Lorentz symmetry in extra dimensions

☞ Guided by the (unique) ZR
4 symmetry we have constructed

a globally consistent string model with:
• exact MSSM spectrum

• non–local/Wilson line GUT breaking

• non–trivial full–rank Yukawa couplings

• exact matter parity

• µ ∼ m3/2

• dimension five proton decay operators sufficiently suppressed

☞ Arguments for supersymmetric Minkowski vacua
(@ perturbative level) where most moduli attain large
supersymmetric masses





• (Discrete) Green–Schwarz anomaly cancellation

• Anomaly universality

• Blaszczyk model
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(Discrete) Green–Schwarz anomaly cancellation

Green–Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry transformation of the

fermions ψ(f ) → eiαQ
(f )
anom ψ(f ) the path integral measure

exhibits non–trivial transformation Fujikawa (1979) ; Fujikawa (1980)

DΨDΨ → J(α)DΨDΨ with non–trivial J(α)

path integral measure Jacobian (infinitesimal) parameter

http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Fujikawa:1980eg
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Green–Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry transformation of the

fermions ψ(f ) → eiαQ
(f )
anom ψ(f ) the path integral measure

exhibits non–trivial transformation Fujikawa (1979) ; Fujikawa (1980)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FaF̃a AG−G−U(1)anom

anomaly coefficients e.g. SU(3) ⊂ GSM ‘anomalous’ U(1)

http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Fujikawa:1980eg
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(Discrete) Green–Schwarz anomaly cancellation

Green–Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry transformation of the

fermions ψ(f ) → eiαQ
(f )
anom ψ(f ) the path integral measure

exhibits non–trivial transformation Fujikawa (1979) ; Fujikawa (1980)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FaF̃a AG−G−U(1)anom

☞ Provided the Lagrangean also includes axion couplings

L ⊃ −
a

8
FaF̃a

∆Lanomaly can be compensated by a shift of the axion a
Green and Schwarz (1984)

http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Fujikawa:1980eg
http://inspirehep.net/search?p=Green:1984sg
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(Discrete) Green–Schwarz anomaly cancellation

Discrete GS anomaly cancellation in SUSY

☞ Analysis applies also for discrete symmetries

☞ Specifically for a ZN transformation

Φ
(f ) → e−i

2π
N

q(f )
Φ

(f )

the dilaton (containing the axion) has to transform as

S → S +
i

2
∆GS

where

πN ∆GS ≡ AG−G−ZN
mod η where η =

{
N if N odd
N/2 if N even

☞ If SU(3) × SU(2) ×U(1) ⊂ SU(5) the anomaly coefficients
need to be universal
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(Discrete) Green–Schwarz anomaly cancellation

Comments on discrete GS mechanism

1 Although the GS mechanism plays a prominent role in string
theory, it does not rely on strings.

2 Unlike in the continuous case, for discrete symmetries the
transformation of the axion is only fixed modulo η.

3 In the continuous case, the axion has to be massless for the
shift symmetry to be a symmetry of the Lagrangean. That is,
the axion potential needs to be flat. By contrast, in the
discrete case the potential is only required to be periodic,
i.e. invariant under the discrete shift. Therefore the axion
may have a non–trivial mass prior to the breakdown of the
symmetry.
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Anomaly universality

Anomaly universality
back

☞ Universality condition AGi−Gi−U(1)anom = ρ

☞ Obviously: even in the presence of multiple axions, there is
only one unique linear combination a that shifts under a
given U(1)anom, ZN or ZR

M transformation

☞ However, a may have different couplings ci to different field
strengths of the SM gauge group

Laxion ⊃
∑

i

ci
a

8
Fb
i F̃

b
i

➥ no anomaly universality in general

however:

• different ci are inconsistent with an underlying GUT symmetry

• a non–trivial VEV of the scalar partner of a will destroy gauge
coupling unification
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Details of theZ2 ×Z2 model

Z2 × Z2 orbifold example

Blaszczyk et al. (2010) ; Kappl et al. (2011)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6)

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu
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Details of theZ2 ×Z2 model

Z2 × Z2 orbifold example
Blaszczyk et al. (2010) ; Kappl et al. (2011)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard and Donagi (2006)

Braun et al. (2005)

http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu
http://inspirehep.net/search?p=Bouchard:2005ag
http://inspirehep.net/search?p=Braun:2005ux


Supersymmetric unification and R symmetries Backup slides

Details of theZ2 ×Z2 model

Main features

➊ GUT symmetry breaking non-local
y (almost) no ‘logarithmic running above the GUT scale’

Hebecker and Trapletti (2005) ; Anandakrishnan and Raby (2012)

http://inspirehep.net/search?p=Hebecker:2004ce
http://inspirehep.net/search?p=Anandakrishnan:2012ii
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Details of theZ2 ×Z2 model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction
y complete blow–up without breaking SM gauge
symmetry in principle possible
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Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y × [SU(3) × SU(2)2 × U(1)8]
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Details of theZ2 ×Z2 model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y × [SU(3) × SU(2)2 × U(1)8]

➍ massless spectrum

# representation label # representation label

3 (3,2;1,1,1)1/6 Q 3 (3,1;1,1,1)− 2
3

U

3 (3,1;1,1,1)1/3 D 3 (1,2;1,1,1)− 1
2

L

3 (1,1;1,1,1)1 E 37 (1,1;1,1,1)0 s

6 (1,2;1,1,1)−1/2 h 6 (1,2;1,1,1)1/2 h

3 (3,1;1,1,1)1/3 δ 3 (3,1;1,1,1)−1/3 δ

3 (1,1;3,1,1)0 x 5 (1,1;3,1,1)0 x

6 (1,1;1,1,2)0 y 6 (1,1;1,2,1)0 z
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Details of theZ2 ×Z2 model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y × [SU(3) × SU(2)2 × U(1)8]

➍ massless spectrum

spectrum = 3 × generation + vector-like
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Details of theZ2 ×Z2 model

Spectrum and ZR
4

# representation label # representation label

3 (3,2;1,1,1)1/6 Q 3 (3,1;1,1,1)−2/3 U

3 (3,1;1,1,1)1/3 D 3 (1,2;1,1,1)−1/2 L

3 (1,1;1,1,1)1 E 37 (1,1;1,1,1)0 s

6 (1,2;1,1,1)−1/2 h 6 (1,2;1,1,1)1/2 h

3 (3,1;1,1,1)1/3 δ 3 (3,1;1,1,1)−1/3 δ

5 (1,1;3,1,1)0 x 5 (1,1;3,1,1)0 x

6 (1,1;1,1,2)0 y 6 (1,1;1,2,1)0 z

Z

R
4 : discriminate between

matter
with ZR

4

charge 1
and

Higgs/exotics
with ZR

4 charge 0 or 2
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Details of theZ2 ×Z2 model

Spectrum and ZR
4

# representation label # representation label

3 (3,2;1,1,1)1/6 Q 3 (3,1;1,1,1)−2/3 U

3 (3,1;1,1,1)1/3 D 3 (1,2;1,1,1)−1/2 L

3 (1,1;1,1,1)1 E 37 (1,1;1,1,1)0 s

6 (1,2;1,1,1)−1/2 h 6 (1,2;1,1,1)1/2 h

3 (3,1;1,1,1)1/3 δ 3 (3,1;1,1,1)−1/3 δ

5 (1,1;3,1,1)0 x 5 (1,1;3,1,1)0 x

6 (1,1;1,1,2)0 y 6 (1,1;1,2,1)0 z

☞ Many other good features:

• no fractionally charged exotics (all SM charged fields come in SU(5) multiplets)
• non–trivial full–rank Yukawa couplings
• gauge–top unification
• SU(5) relation yτ ≃ yb (but also for light generations)
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Details of theZ2 ×Z2 model

Z

R
4 charges

☞ SM fields

Qi Ui Di Li Ei

Z

R
4 1 1 1 1 1

☞ Exotics

h1 h2 h3 h4 h5 h6 h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

Z

R
4 0 2 0 2 0 0 0 2 0 0 2 2

δ1 δ2 δ3 δ̄1 δ̄2 δ̄3

Z

R
4 0 2 2 2 0 0
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Details of theZ2 ×Z2 model

Higgs candidate mass matrix

h1 h2 h3 h4 h5 h6 h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

Z

R
4 0 2 0 2 0 0 0 2 0 0 2 2

☞ Mass matrix for exotic doublets hi and h̄j

Mhh̄ =




0 φ6 0 φ4 0 0

φ7 0 φ2 0 φ13 φ14

0 φ1 0 φ̃3 0 0

0 φ̃3 0 φ̃5 0 0

φ̃3 0 φ11 0 φ8 φ̃3

φ̃
3

0 φ12 0 φ̃
3

φ8




SM singlets with zero ZR
4 charge
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Details of theZ2 ×Z2 model

Higgs candidate mass matrix

h1 h2 h3 h4 h5 h6 h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

Z

R
4 0 2 0 2 0 0 0 2 0 0 2 2

☞ Mass matrix for exotic doublets hi and h̄j

Mhh̄ =




0 φ6 0 φ4 0 0

φ7 0 φ2 0 φ13 φ14

0 φ1 0 φ̃3 0 0

0 φ̃3 0 φ̃5 0 0

φ̃3 0 φ11 0 φ8 φ̃3

φ̃
3

0 φ12 0 φ̃
3

φ8




☞ One massless linear combination (= Higgs pair)

Hu = a1 h̄1 + a2 h̄3 + a3h̄4

Hd = b1 h1 + b2 h3 + b3 h5 + b4 h6
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Details of theZ2 ×Z2 model

Triplet mass matrix

δ1 δ2 δ3 δ̄1 δ̄2 δ̄3
Z

R
4 0 2 2 2 0 0

☞ Mass matrix for exotic color triplet

Mδ =




φ̃5 0 0

0 φ8 φ̃3

0 φ̃3 φ8





SM singlets with zero ZR
4 charge
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Details of theZ2 ×Z2 model

Triplet mass matrix

δ1 δ2 δ3 δ̄1 δ̄2 δ̄3
Z

R
4 0 2 2 2 0 0

☞ Mass matrix for exotic color triplet

Mδ =




φ̃5 0 0

0 φ8 φ̃3

0 φ̃3 φ8





☞ Note: exotic triplets cannot mediate proton decay

3H 3
′

H

qj

qi

ℓk

qℓ

✚✚✚✚



Supersymmetric unification and R symmetries Backup slides

Details of theZ2 ×Z2 model

Triplet mass matrix

δ1 δ2 δ3 δ̄1 δ̄2 δ̄3
Z

R
4 0 2 2 2 0 0

☞ Mass matrix for exotic color triplet

Mδ =




φ̃5 0 0

0 φ8 φ̃3

0 φ̃3 φ8





☞ Note: exotic triplets cannot mediate proton decay

☞ The fact that the numbers of massless doublet and triplet
pairs differ is not an accident but already follows from
anomaly matching
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Details of theZ2 ×Z2 model

Effective Yukawa couplings

☞ Effective superpotential

WY =

∑

i=1,3,4

[ (
Y (i)
u

)fg
Qf Ug h̄i

]

+

∑

i=1,3,5,6

[ (
Y

(i)
d

)fg

Qf Dg hi +
(
Y (i)
e

)fg
Lf Eg hi

]
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Details of theZ2 ×Z2 model

Effective Yukawa couplings

☞ Effective superpotential

WY =

∑

i=1,3,4

[ (
Y (i)
u

)fg
Qf Ug h̄i

]

+

∑

i=1,3,5,6

[ (
Y

(i)
d

)fg

Qf Dg hi +
(
Y (i)
e

)fg
Lf Eg hi

]

☞ Effective Yukawa matrices (examples)

Y (1)
u =




φ̃2 φ̃4 φ̃6

φ̃4 φ̃2 φ̃6

φ̃6 φ̃6 1




Y (3)
u =




1 φ̃6 φ̃4

φ̃6 1 φ̃4

φ̃4 φ̃4 φ̃2




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Details of theZ2 ×Z2 model

Effective Yukawa couplings

☞ Effective superpotential

WY =

∑

i=1,3,4

[ (
Y (i)
u

)fg
Qf Ug h̄i

]

+

∑

i=1,3,5,6

[ (
Y

(i)
d

)fg

Qf Dg hi +
(
Y (i)
e

)fg
Lf Eg hi

]

☞ Effective Yukawa matrices (examples)

Y (5)
e =

(
Y

(5)
d

)T

=




φ̃6 φ̃6 φ̃6

φ̃6 φ̃6 1

φ̃6 1 φ̃4




Y (6)
e =

(
Y

(6)
d

)T

=




φ̃6 φ̃6 1

φ̃6 φ̃6 φ̃6

1 φ̃6 φ̃4




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