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(Minimal) supersymmetric standard model

O The minimal supersymmetric standard model (MSSM)
provides an attractive scheme for physics beyond the SM

features:
¢ (maximal) extension of Poincaré symmetry
e dark matter candidate (w/ 74"
e gauge hierarchy stabilization
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O Running couplings in the (minimal) supersymmetric
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I—Supersymmetric standard model and grand unification

SU() and SO(10)
SU(5) grand unified theories (GUTs) ...
0 explain charge quantization

O simplify matter content
SM generation = 10 +5

further simplification of matter sector Fritzsch & Minkowski (1975)

SO(10) > SU(5)
16 10e501
SM generation with ‘right-handed’ neutrino

O One of the main assumptions in this talk: this is not an
accident
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I—Supersymmetric standard model and grand unification

Problems of the MSSM

00 Gauge invariant superpotential terms up to order 4 include

/= ,quHu +KiLiHu
+ YéjLinEj + Yfij QinEj + Y;J QiHuUj
+ /lijk LiLjEk + /ll/‘jk Linﬁk + /ll/j/‘k Uiﬁjﬁk

+ Kl('JQ) H,L; H,Lj + Kl(‘}]g[ Q:Q;QrL, + Kl(fk){’ ﬁiﬁjﬁkﬁg

L1/10% GeV
in order to
explain see-saw
suppressed
v Masses
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Problems of the MSSM

00 Gauge invariant superpotential terms up to order 4 include

W = uHgH, + i LH ,

+ Yeij LinEj + Yg QinEj7+ Y;J QiHuUj
+ /lijk LiLjEk + /l;jk Linﬁk + /l;;k Uiﬁjﬁk

+ Kg?) H,L;i HuLj + Kl(‘}]g[ QinQka + K£]2k)[ UinEkE[

O Problematic terms
@ u/Bu problem(s)
Why does u know about the electroweak scale?
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Problems of the MSSM

00 Gauge invariant superpotential terms up to order 4 include

W = uHyH, + «; LiH,
+YY L,H.E; + Y9 Q:H,D; + YY Q:H,U;
+ A LiL;Ey, + Ay, LiQ;Dy + Afy, U;D;Dy,
+ k) H,Li H,L; + ), QiQQuLy + k9, U;UDEy

[0 Problematic terms
@ u/Bu problem(s)
& dimension four and five proton decay operators
@ CP and flavor problems not addressed in this talk

e ...

O Supersymmetry alone seems not to be enough
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I—Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

00 Gauge invariant superpotential terms up to order 4 include

W = puHyH, +x; LiH,
+YY LHEN YY QH.D; + YY QH,U;
+ Aij LiLiEy + Ay LiQ;Dy + 1, U;D;Dy,

+ 9 H ok + o QiQiQLe + k5, U U,DLE,

forbidden by moTTem

Farrar and Fayet (1978) ; Dimopoulos et al. (1982)
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Traditional cure of proton decay problems

00 Gauge invariant superpotential terms up to order 4 include

/= pHdHu +Kl'LiHu
+YY L;H,E; + YY) QH.D; + Y! QH,U;
+ Ajp LiILE), + /lljkL Q,Dk + A U-ﬁﬁk
+ &) H, L H,L; + ), @iQ;QkLy + ), U;UD4E,

ijk

forbidden by baryon triality >

lodhez and Ross (1992)



http://inspirehep.net/search?p=Ibanez:1991pr
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I—Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

00 Gauge invariant superpotential terms up to order 4 include

/= pHdHu + K; LiHu
+ Yéj LinEj Yg Qinl_)j + YLJ QiHuUj
+ Aijr LiLjEk + AN Linﬁk + /lz{]/'k Eﬁjﬁk

+ k) Hot H, Ly + R QiQiQuLe + <), UUDiE,

< forbidden by proton hexality

Babu et al. (2003b) ; Dreiner et al. (2006)

O Proton hexality = matter parity + baryon friality

Ibéfez and Ross (1992)
Dreiner et al. (2006)


http://inspirehep.net/search?p=Babu:2003qh
http://inspirehep.net/search?p=Dreiner:2005rd
http://inspirehep.net/search?p=Ibanez:1991pr
http://inspirehep.net/search?p=Dreiner:2005rd
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Ibdanez and Ross (1992) ; Babu et al. (2003b) ; Dreiner et al. (2006)
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O Appealing features
2 forbids dimension four and five proton decay operators

allows Yukawa couplings & Weinberg operator « H,L; H,L;

© © 0O

unique anomaly-free symmetry with the above features
... with the common notion of anomaly freedom
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Traditional cure: proton hexality

Ibdanez and Ross (1992) ; Babu et al. (2003b) ; Dreiner et al. (2006)

O Proton hexality Pg = matter parity ZQ" x baryon friality Bs
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O Appealing features
2 forbids dimension four and five proton decay operators
allows Yukawa couplings & Weinberg operator « H,L; H,L;

© © 0O

unique anomaly-free symmetry with the above features

0 However:
@ not consistent with unification for Matter qe. inconsistent with universai

discrete charges for all matter fields)
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Proton hexality

O Disturbing aspects of proton hexality

© not consistent with (grand) unification for matter

& does not address i problem

W = uHgH, +« LiH,
+YY LiH.E; + YY QHD, + YY Q:H,U,
+ Ay LiliEy, + X, LiQDy + 1}, U:D;Dy,

+ ) H,L H,L; + ), QiQQiL¢ + ), U;U;DE, +
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Proton hexality

O Disturbing aspects of proton hexality
© not consistent with (grand) unification for martter

& does not address i problem

W = deHu + K; LiHu
+ Yeij LinEj Yg QinEj + Y,ltj QiHuﬁj
+ Aij LiLjEk + Linﬁk + /l;j/,‘k Eﬁjﬁk

+Kg-))H HyLi + ») QinQk [+K£/2]3[ UinEkE[+...

@o be strongly suppressed
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I—Supersymmetric standard model and grand unification

Proton hexality

O Disturbing aspects of proton hexality

© not consistent with (grand) unification for martter

& does not address i problem

W = deHu +KiLiHu
eij LinEj + Yg QinEj + Y,ltj QiHuﬁj
L;L 'Ek + /lzjk L'Qjﬁk + /l;;k ﬁﬁﬁk

L H L + KLka Q QijL[ + Kz/k[ U UjﬁkE[ +

+/lij

0
Kij

@eds to be suppressed as V\D
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Outline

[] Introduction & Motivation V4

[1 Anomaly-free discrete symmetries & unification

e anomaly cancellation

e consistency with unification
e unique ZE symmetry

e no-go theorems in 4D

1 String model(s)

L] Summary



Anamaly-free
discrete symmetries

and

grand unificatian

e anomaly cancellation
e consistency with unification
e unique ZE symmetry

e No—go theorems in 4D
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Prejudices and assumptions

Assumptions:

O SO(10) unification of matter is not an accident
O wuterm is forbidden by a symmetry

O symmetries need to be anomaly-free

Important ingredient :

O Green-Schwarz anomaly cancellation
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Anomaly freedom

Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

Chen et al. (2012)


http://inspirehep.net/search?p=Chen:2012jg
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Anomaly freedom

Chen et al. (2012)
Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

— “Anomaly universality”


http://inspirehep.net/search?p=Chen:2012jg

Supersymmetric unification and R symmetries Anomaly freedom

Anomaly freedom

Chen et al. (2012)
Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

— “Anomaly universality”

Example: anomaly coefficients for Zy
symmetry

Ag gy = S.00.q0
f

lqgmv2 -Zn = Zq(m)
m


http://inspirehep.net/search?p=Chen:2012jg
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Anomaly freedom

Chen et al. (2012)
Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

— “Anomaly universality”

Example: anomaly coefficients for Zy

symmetry [ sum over all ]
representations of G
Ag g, = Zg(f) g P

Zuum over all fermions )

lqgmv2 ~Zn



http://inspirehep.net/search?p=Chen:2012jg
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Anomaly freedom

Chen et al. (2012)
Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

— “Anomaly universality”

Example: anomaly coefficients for Zy

1
Symmetry Dynkin index
Apgy = Shgie —— ——
f \_[discre’re charges )

Agravz—ZN = Zq(m)
m



http://inspirehep.net/search?p=Chen:2012jg
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Anomaly freedom

Chen et al. (2012)

Anomaly freedom
+
Grand unification . . o
N — “Anomaly universality
Green-Schwarz
anomaly cancellation

traditional anomaly

freedom:
all A coefficients vanish

Example: anomaly coefficients for Zy

symmetry L N for N odd
| 7=\ N/2 forN even

Agry, = Zf(f) g =0 mod n Ibénez and Ross (1991)

7 Banks and Dine (1992)

Agravi-zy = Zq(m) =0 mod n
m


http://inspirehep.net/search?p=Chen:2012jg
http://inspirehep.net/search?p=Ibanez:1991hv
http://inspirehep.net/search?p=Banks:1991xj
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Anomaly freedom

Chen et al. (2012)
Anomaly freedom
+
Grand unification
+
Green-Schwarz
anomaly cancellation

— “Anomaly universality”

traditional anomaly

Example: anomaly coefficients for Zy Ik
symmetry all A coefficients vanish
|
Aggy = D (0-qP=p mody O o o O O
f

anomaly “universality”:

AgTavz—ZN = Zq(m) = p mod 7
m Agu@p-zy = Asuez-zy

if SU(3) x SU(2)

c SU(5) or Eg


http://inspirehep.net/search?p=Chen:2012jg
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0 Working assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level
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(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons
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Anomaly-free sysnmetries, u and unification

0 Working assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

O Will prove:

1. assuming (i) & SU(5) relations:
~ only R symmetries can forbid the u term
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0 Working assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

O Will prove:
1. assuming (i) & SU(5) relations:
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~ unique ZE symmetry
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I—Anomuly—free symmetries, 4 and unification

Anomaly-free sysnmetries, u and unification

0 Working assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

O Will prove:

1. assuming (i) & SU(5) relations:

~ only R symmetries can forbid the u term
2. assuming ()—iii) & SO(10) relations:

~ unique ZE symmetry

3. R symmetries are not available in 4D GUTs
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Non-R symmetries do not do the job

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

3
Asu@p-zy = % Z (3(151;0 + Q%)
g=1

1< 1
ASU(Q)Z-ZN ) Z 361% + Q‘g) + 3 (QH.L + QHd)

charge of Higgs
g™ 5-plet 4 charges

charge of
g™ 10-plet
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I—Anomuly—free symmetries, 4 and unification

Non-R symmetries do not do the job

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

1g .
Asvep-zy = 5 (3q£fo + q%)
g=1
IR 1
Asuep-zy = ) (3q10 + q‘%) tg (qm, +qn,)
g=1

[0 Anomaly universality: Aguey-zy —Asu@p-zy = 0

1( +qm,) = 0 mod N  for N odd
~ g\ A = N/2 for N even
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I—Anomuly—free symmetries, 4 and unification

Non-R symmetries do not do the job

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

1g .
Asvep-zy = 5 (3q£fo + q%)
g=1
IR 1
Asuep-zy = ) (3q10 + q‘%) tg (qm, +qn,)
g=1

[0 Anomaly universality: Aguey-zy —Asu@p-zy = 0

1( +qm,) = 0 mod N  for N odd
~ g\ A = N/2 for N even

bottom-line:
non-R Zy symmetry cannot forbid p term
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I—Anomuly—free symmetries, 4 and unification

Only discrete R symmetries may do the job

[0 Obvious: if anomaly-free discrete non-R symmetries
cannot forbid the u term, this also applies to continuous
non-R symmetries

[0 There are no anomaly-free continuous R symmetries in the
MSSM

Chamseddine and Dreiner (1996)

0 Only remaining option: discrete R symmetries


http://inspirehep.net/search?p=Chamseddine:1995gb
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= ’t Hooft anomaly matching for R symmetries

‘t Hooft anomaly matching for R symmetries

Chen et al. (2012)

0 Powerful tool: anomaly matching


http://inspirehep.net/search?p=Chen:2012jg
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= ’t Hooft anomaly matching for R symmetries

‘t Hooft anomaly matching for R symmetries

Chen et al. (2012)

0 Powerful tool: anomaly matching

O Afthe SU(5) level: one anomaly coefficient

_ matter extra
Asup-af, = ASU(5)2—Z§ +ASU(5)2—Z§ +5¢g
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Chen et al. (2012)

0 Powerful tool: anomaly matching
O Afthe SU(5) level: one anomaly coefficient

_ matter extra
Asup-af, = ASU(5)2—Z§ +ASU(5)2—Z§ +5¢

0 Consider the SU(3) and SU(2) subgroups

SU(5) matter extra 1
ASU(3)Z—Z§ = ASU(S)Z—Zg +As%(3)2_zﬁ +3q9+5-2-2-qp
SUG
ASUEZ;Z—Zﬁ = % +A§)t(§1(r§)2_ + 290+ 5 -2} 3-qq

extra
gauginos
fromX,Y
bosons

SM gauginos )
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0 Powerful tool: anomaly matching
O Afthe SU(5) level: one anomaly coefficient

_ matter extra
Asup-af, = ASU(5)2—Z§ +ASU(5)2—Z§ +5¢

0 Consider the SU(3) and SU(2) subgroups
SU(5) _ tt t
ASU(3)Z—Z§ = Arsrll?(si‘g—zg +A§){Jf§)2—zﬁ +3qs +M
SU(5) _ tt t
ASU(Z)Z—Zfl = Arsnl?(zt)e;—zg +Ag)l(Jl(f;)2—Zﬁ +2q4 +M

O Assume now that somme mechanism eliminates the extra
gauginos
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‘t Hooft anomaly matching for R symmetries

Chen et al. (2012)

0 Powerful tool: anomaly matching
O Afthe SU(5) level: one anomaly coefficient

_ matter extra
Asup-af, = ASU(5)2—Z§ +ASU(5)2—Z§ +5¢

0 Consider the SU(3) and SU(2) subgroups
SU(5) _ tt t
ASU(3)Z—Z§ = Arsrll?(si‘g—zg +A§%€§)2—Zf4 +3q0 +M
SU(5) _ tt t
ASU(Z)Z—Zfl = Arsnl?(zt)e;—zg +A§){J1(p2a)hzfl +2q0 +M

O Assume now that somme mechanism eliminates the extra
gauginos

0 Extra stuff must be non-universal (split multiplets)
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‘t Hooft anomaly matching for R symmetries

Chen et al. (2012)

0 Powerful tool: anomaly matching
O Afthe SU(5) level: one anomaly coefficient

_ matter extra
Asup-af, = ASU(5)2—Z§ +ASU(5)2—Z§ +5¢

0 Consider the SU(3) and SU(2) subgroups

SU(5) matter extra
ASU(3)Z—Z§ ASU(S)Z—Zﬁ +As)fj(3)27zf§4 +3q0 +M

SU(5) _ tt t
ASU(Z)Z—Zfl = Arsnl?(zt)e;—zg +A§){J1(p2a)hzfl +2q0 +M

bottom-line:

't Hooft anomaly matching for (discrete) R sysnmetries implies
the presence of split multiplets below the GUT scale!
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I—Unique Zf symmetry

SO(10) implies unique symmetry

Lee et al. (2011) ; Chen et al. (2012)

0 Consider Zﬁ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢
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0 Consider Zﬁ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢

O existence of u- and d-type Yukawas requires that

29 +qu, = 299 mod M and 2q+qpy qo mod M

superpotential
has R charge 2q,

/d297/ c ¥

R charge of
superspace
coordinate 6



http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg

Supersymmetric unification and R symmetries Anomaly freedom

I—Unique Zf symmetry

SO(10) implies unique symmetry

Lee et al. (2011) ; Chen et al. (2012)

0 Consider Zﬁ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢

O existence of u- and d-type Yukawas requires that
29 +qu, = 2990 mod M and 2g+qy, = 299 mod M

Ny qH, —9H, = 0 mod M


http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg

Supersymmetric unification and R symmetries Anomaly freedom

I—Unique Zf symmetry

SO(10) implies unique symmetry

Lee et al. (2011) ; Chen et al. (2012)

0 Consider Zﬁ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢

O existence of u- and d-type Yukawas requires that
29 +qu, = 2990 mod M and 2g+qy, = 299 mod M

Ny qH, —9H, = 0 mod M

O u-type Yukawa and Weinberg operator requires that

29 +qu, = 299 mod M and 2q+2gy, = 29, mod M


http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg

Supersymmetric unification and R symmetries Anomaly freedom

I—Unique Zf symmetry

SO(10) implies unique symmetry

Lee et al. (2011) ; Chen et al. (2012)

0 Consider Zﬁ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢

O existence of u- and d-type Yukawas requires that
29 +qu, = 2990 mod M and 2g+qy, = 299 mod M
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I—Unique Zf symmetry

SO(10) implies unique symmetry

Lee et al. (2011) ; Chen et al. (2012)

0 Consider ZRI;[ symmetry which commutes with SO(10)
i.e. quarks and leptons have universal charge ¢

O existence of u- and d-type Yukawas requires that
29 +qu, = 2990 mod M and 2g+qy, = 299 mod M

~ (4, —9H;,; = 0 mod M
O u-type Yukawa and Weinberg operator requires that

29 +qu, = 299 mod M and 2q+2gy, = 29, mod M

~ qm, = 0 mod M

bottom-line:
qgr, = qu, = 0 mod M &g = gy mod M



http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012jg

Supersymmetric unification and R symmetries Anomaly freedom

I—Unique Zf symmetry
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Lee et al. (2011) ; Chen et al. (2012)

*q =49
00 We know already ’rho’r{ eqy = qu, = 0 mod M
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Unique ZE symmetry

Lee et al. (2011) ; Chen et al. (2012)

*q =49
00 We know already ’rho’r{ eqy = qu, = 0 mod M

0 Simplest possibility: M = 4 & g = g4 = 1 ~ ZE symmetry
M = 2 does not work since this is not an R symmetry
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I—Unique Zf symmetry

Unique ZE symmetry

Lee et al. (2011) ; Chen et al. (2012)

*q =49
00 We know already ’rho’r{ eqy = qu, = 0 mod M

0 Simplest possibility: M = 4 & g = g4 = 1 ~ ZE symmetry
0 Alternatives: ZE  symmetry withg =gs=m & m e N

[0 However: these are only trivial extensions s for os the Mssvi is concemed

bottom-line:

unique symmetry : ZE w/ g =qy=1& gy, =qu, =0

first discussed in Babu et al. (2003a)
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I—Unique Zf symmetry

Unigue ZE symmetry & GS anomaly cancellation

O Anomaly coefficients

69 — 39y = 1gy mod 4/2

ASU(3)2—fo

1
6q + 5 (qu, +qm,) —5q0 = 1gs mod 4/2

Agyep-zt

0 Consistent with anomaly universality

bottom-line:

Z% is anomaly-free via non-trivial GS
mechanism
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I—GS anomaly cancellation and implications

Implication of GS anomaly cancellation

0 GS axion a contained in superfield S (w/ Sly—o = s +ia)

O Since a = Im S|y-o shifts under the Zﬁ,[ transformation,
non-invariant superpotential ferms can be made invariant
by multiplying them with e~

0 Main example
uH, H,; forbidden
but
Be™®SH, H, allowed (for appropriate b)

bottom-line:
holomorphic e~®S terms appear to violate fol symmetry
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I—GS anomaly cancellation and implications

Interpretation

0 GS anomaly cancellation requires coupling

Z D /dQGfSSWQW“

00 s =ReS|y-o contributes to 1/g2

0 holomorphic Be % terms can be interpreted as
non-perturbative effects (e.g. “retrofitting”) Dine e al. (2006)


http://inspirehep.net/search?p=Dine:2006gm
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I—GS anomaly cancellation and implications

Interpretation
0 GS anomaly cancellation requires coupling
Z > /dzefsSWqW"

00 s =ReS|y-o contributes to 1/g2

0 holomorphic Be % terms can be interpreted as
non-perturbative effects (e.g. “retrofitting”) Dine e al. (2006)

bottom-line:

e compatibility w/ SO(10)
e anomaly freedom

u term appears
non-perturbatively
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Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= deHu + K; LiHu
+ YéjLinEj + Yfij Qinl_)j + YLJ Ql’HuUj
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Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= /lHdHu+K'LiHu

+ Aij L; 'Ek + "'k Linﬁk + /lz{]/'k Eﬁjﬁk

+ k) Hhe HaL + N, QiQQpLy + 1), U;UDE, + ...

mden at the perturbative level
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Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= /lHdHu+KiLiHu

+ /lijk Li 'Ek + /ll/'jk Linﬁk + /ll/'J/'k Eﬁjﬁk

i + Kfjl]gl QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

< appear af non-perturbative level
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W o= deH +KlLH

also forbidden at
non-perturbative level by
"non-anomalous” Zs subgroup
which is equivalent
to matter parity
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= deH +KlLH

+/lijkL . k +/lykL Q]Dk +/lle UDDk
& K QQQkLe + k%), UiUDiE, + ...

term from Giudice-Masiero mechanism (optional)
‘ 8 holomorphic ‘non-perturbative’ ferm

—

O order parameter for R symmetry breaking: superpotential
VEV (#')

O u~mgpg = (W) M
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= pHdHu+KiLiHu

+YY LiH.E; + Y] Q:H,D; + YY QH,U;

+ /lijk LiLjEk + /ll/'jk Linﬁk + A% Eﬁjﬁk

+ Kgn H,L; HuLj + K(llgl QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

Y

ijk

non-perturbatively
generated terms harmless
Kp) ~ ma /Mg < 1078/ Mp

—
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0 We have seen that only R symmetries can forbid the u term

e anomaly freedom

e consistency with SU(5) can forbid the x term
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in the MSSM

[0 However: R symmetries are not available in 4D SUSY GUTs

Fallbacher et al. (2011)
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= No-Go for R symmetries in 4D GUTs

R symmetries vs. 4D GUTs

0 We have seen that only R symmetries can forbid the u term

only R symmetries
can forbid the i ferm

e anomaly freedom } ~
in the MSSM

e consistency with SU(5)

[0 However: R symmetries are not available in 4D SUSY GUTs

Fallbacher et al. (2011)

O Assumptions:
(H GUT model in four dimensions based on G > SU(5)
(i) GUT symmetry breaking is spontaneous
(i) Only finite number of fields

O One can prove that it is impossible to get low—-energy
effective theory with both:

1. just the MSSM field content
2. residual R symmetries
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[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)o®(1,8)0 @ (3.2)-5 @ (3.2)5 @ (1, 1)o



Supersymmetric unification and R symmetries Anomaly freedom

= No-Go for R symmetries in 4D GUTs

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)o®(1,8)0 @ (3.2)-5s ® (3.2)5 ® (1, 1)o

R charge 0



Supersymmetric unification and R symmetries Anomaly freedom

= No-Go for R symmetries in 4D GUTs

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)9® (1.3)0® (3.2)_5, ® (3.2)s, & (1, 1)o

R charge 0

extra massless states




Supersymmetric unification and R symmetries Anomaly freedom

= No-Go for R symmetries in 4D GUTs

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)9® (1.3)0® (3.2)_5, ® (3.2)s, & (1, 1)o

R charge 0

extra massless states

0 Infroducing exfra 24-pletfs with R charge 2 does not help
because this would lead to massless (3, 2)_s @ (3, 2)s/6
representations



Supersymmetric unification and R symmetries Anomaly freedom

= No-Go for R symmetries in 4D GUTs

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)9® (1.3)0® (3.2)_5, ® (3.2)s, & (1, 1)o

R charge 0

extra massless states

0 Infroducing exfra 24-pletfs with R charge 2 does not help
because this would lead to massless (3, 2)_s @ (3, 2)s/6
representations

O Iterating this argument shows that with a finite number of
24-plets one will always have massless exotics
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= No-Go for R symmetries in 4D GUTs

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1)9® (1.3)0® (3.2)_5, ® (3.2)s, & (1, 1)o

R charge 0

extra massless states

0 Infroducing exfra 24-pletfs with R charge 2 does not help
because this would lead to massless (3, 2)_s @ (3, 2)s/6
representations

O Iterating this argument shows that with a finite number of
24-plets one will always have massless exotics

0 Loophole for infinitely many 24—-plets

cf. Goodman and Witten (1986)


http://inspirehep.net/search?p=Goodman:1985bw
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= No-Go for R symmetries in 4D GUTs

Generalizing the basic argument

O Itis possible to generalize the basic argument to
e arbifrary SU(5) representations
e larger GUT groups G > SU(5)
e singlet extensions of the MSSM

for details see Fallbacher et al. (2011)
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are not available in four dimensions!
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= No-Go for R symmetries in 4D GUTs

Discussion

O A ‘natural’ solution of the y and/or doublet-triplet splitting
problem requires a symmetry that forbids u

0 We learned that:
© only R symmetries can forbid the y term
® anomaly matching requires the existence of split multiplets

©® R symmetries are not available in 4D GUTs

bottom-line:

‘Natural” solutions to the
u and/or doublet-triplet splitting problems
are not available in four dimensions!

O Need to go to extra dimensions/strings



String madel(s)

¢ evading the no—-go theorem
« origin of Z&
¢ higher-dimensional operators (effective u term etc.)
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I—(;rund unification in higher dimensions

Grand unification in higher dimensions

O Well known: higher-dimensional GUTs appear more
“appealing”

O New possibilities of symmetry breaking arise

Witten (1985) ; Breit et al. (1985)

O KK towers provide us with infinitely many states and allow us
to evade the no-go theorem

0O Even more, R symmetries have a clear geometric
inferpretation in terms of the Lorentz symmetry of compact
dimensions
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http://inspirehep.net/search?p=Breit:1985ud

Supersymmetric unification and R symmetries String model(s)

= Discrete R symmetries from orbifolds

Discrete R symmetries from orbifolds

O R symmetries are available in higher-dimensional/stringy
GUTs



Supersymmetric unification and R symmetries String model(s)

= Discrete R symmetries from orbifolds

Discrete R symmetries from orbifolds

O R symmetries are available in higher-dimensional/stringy
GUTs

O Discrete R symmetries arise as remnants of the Lorentz
symmetry of compact dimensions

and are arguably on the same footing as the fundamental
symmetriesC,Pand T
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I—Lr.w:ul grand unification & Zf

Local grand unification & 7%

Buchmuller et al. (2005)

Glt Grt
®

78 (bottom-up)

7E charge
matter 1
Higgs 0

SM generation(s):

localized in region with
SO(10) symmetry

Higgs doublets:
live in the ‘bulk’
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Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

‘vacuum’
means a field
configuration
that preserves

supersymmetry

perturbatively


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features
v non-local GUT breaking


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features

v non-local GUT breaking
v no ‘fractionally charged exofics’


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features

v non-local GUT breaking

v no ‘fractionally charged exofics’

v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by Zf


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features
v non-local GUT breaking
v no ‘fractionally charged exofics’
v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by Zf
v non-trivial full-rank Yukawa couplings


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features
v non-local GUT breaking
v no ‘fractionally charged exofics’
v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by Zf
v non-trivial full-rank Yukawa couplings
v/ gauge-top unification


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features

v non-local GUT breaking

v no ‘fractionally charged exofics’

v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by Zf

v non-trivial full-rank Yukawa couplings

v/ gauge-top unification

v SU(b) relation y. ~ y,


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

L Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features

v non-local GUT breaking

v no ‘fractionally charged exofics’

v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by Zf

v non-trivial full-rank Yukawa couplings

v/ gauge-top unification

v SU(b) relation y. ~ y,

© However:
e SU(5) Yukawa relations also for light generations
e hidden sector gauge group only SU(3)
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[

Zf from Zg x Zg orbifold models

ZE from a Zg x 7 orbifold model

Blaszczyk et al. (2010) ; Kappl et al. (2011)

0 We constructed models with the exact MSSM spectrum
based on Zg x Zgy orbifolds

[ We succeeded in finding vacua with the 7% symmetry

© Various good features

v non-local GUT breaking

v no ‘fractionally charged exofics’

v (most) exotics decouple at the linear level in SM singlets, i.e.
jUST MSSM below GUT scale with massiessness of Higgs fields ensured by fo

v non-trivial full-rank Yukawa couplings

v/ gauge-top unification

v SU(b) relation y. ~ y,

bottom-line:
Successful string embedding of Z£ possible!



http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu

Supersymmetric unification and R symmetries String model(s)

L susy vacua with zf

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial


http://inspirehep.net/search?p=Luty:1995sd

Supersymmetric unification and R symmetries String model(s)

L susy vacua with zf

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial

0 However: (#') # 0 generically


http://inspirehep.net/search?p=Luty:1995sd

Supersymmetric unification and R symmetries String model(s)
Lsusy vacua with z®

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial

0 However: (#') # 0 generically

0 Vacua with residual ZE are slightly different


http://inspirehep.net/search?p=Luty:1995sd

Supersymmetric unification and R symmetries String model(s)
Lsusy vacua with z®

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial

0 However: (#') # 0 generically
0 Vacua with residual ZE are slightly different

0 Example: consider one field ¢y with R-charge O and one
field ¢o with R-charge 2

W= ¢o-fldo) +O(de®)  with (#) = 0 automatic


http://inspirehep.net/search?p=Luty:1995sd

Supersymmetric unification and R symmetries String model(s)
Lsusy vacua with z®

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial

0 However: (#') # 0 generically
0 Vacua with residual ZE are slightly different

0 Example: consider one field ¢y with R-charge O and one
field ¢o with R-charge 2

W= ¢o-fldo) +O(de®)  with (#) = 0 automatic

o
Fy, = 8o o f'($0) +0(¢2°) = 0 @y = 0


http://inspirehep.net/search?p=Luty:1995sd

Supersymmetric unification and R symmetries String model(s)
Lsusy vacua with z®

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty and Taylor (1996)

solutions of D—-equations N solutions of F—equations = non-trivial

0 However: (#') # 0 generically
0 Vacua with residual ZE are slightly different

0 Example: consider one field ¢y with R-charge O and one
field ¢o with R-charge 2

W= ¢o-fldo) +O(de®)  with (#) = 0 automatic

o

F, = o = 2 f'($0) +O(¢2°) = 0 @2 = 0
bo
o ! .

F,, = = f(¢o) = 0 fixes ¢o

b2 %
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L susy vacua with sz

SUSY vacua with Z£ (cont'd)

[ Generalization: consider N fields oY) with R-charge 0 and M
fields ¢(2’) with R-charge 2

o= 600+
i
Fd)g) = 0 automatically

Fp=0 ~ f2%,..)=0 ~ Mconstaintson N fields

0 expect solutions for N > M
0 M non-trivial mass terms (also for T- and Z-modulil)

0 Have identified configurations with N > M in our Zsg x Zsg
model(s)
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Summary

O Assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

0 Have shown:

1. assuming (i) & SU(5) relations:
~ only R symmetries can forbid the u term

2. assuming (H-C(iii) & SO(10) relations:
~ unique ZE symmetry

3. R symmetries are not available in 4D GUTs
~ no ‘natural” solution to doublet-triplet splitting in 4D!
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= Field theory

Summary

L A simple anomaly-free ZE symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators

universal anomaly coefficients

universal charges for matter
forbid u @ tree-level » ~ unique Z&

allow Yukawa couplings

dllow Weinberg operator

dim. 4 proton decay operators completely forbidden
fo ~ dim. 5 proton decay operators highly suppressed
1 appears non-perturbatively
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Supersymmetric unification and R symmetries Summary
I—String theory

Summary

[] Embedding into string theory allows us to understand
where the Z{ symmetry comes from: it may arise as a
discrete remmnant of Lorentz symmetry in extra dimensions

[] Guided by the (unique) ZF symmetry we have constructed
a globally consistent string model with:

e exact MSSM spectrum

non-local/Wilson line GUT breaking

non-trivial full-rank Yukawa couplings

e exact matter parity

& U~ Mg

e dimension five proton decay operators sufficiently suppressed
H Arguments for supersymmetric Minkowski vacua

(@ perturbative level) where most moduli attain large
supersymmetric masses



Thank you
very much!
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Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry transformation of the
fermions g — el*@om ) the path integral measure
exhibits non-trivial fransformation Fuikawa (1979) ; Fujkawa (1980)

Z)‘P1<¢ - %&zﬁ with non-trivi (q\)

[po‘rh integral meosureT[JoMnfiniTesimol) poromeTer]



http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Fujikawa:1980eg
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Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry transformation of the
fermions g — el*@om ) the path integral measure
exhibits non-trivial fransformation Fuikawa (1979) ; Fujkawa (1980)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a -
Ao%onomoly WAC&C\;U(I)MQI‘I\

[onomoly coefficien‘rs] [e.g. SU(3) c GSM][‘onomolous’ U(l)]
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L (Discrete) Green-Schwarz anomaly cancellation

Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry transformation of the
fermions g — el*@om ) the path integral measure
exhibits non-trivial fransformation Fuikawa (1979) ; Fujkawa (1980)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a .
Ao%onomcﬂy = WFaFaAGfoU(l)anom

0 Provided the Lagrangean also includes axion couplings
a ~
7 - —F°F*
° 78

AZanomaly CAN e compensated by a shift of the axion a

Green and Schwarz (1984)


http://inspirehep.net/search?p=Fujikawa:1979ay
http://inspirehep.net/search?p=Fujikawa:1980eg
http://inspirehep.net/search?p=Green:1984sg
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L (Discrete) Green-Schwarz anomaly cancellation

Discrete GS anomaly cancellation in SUSY

O Analysis applies also for discrete symmetries
O Specifically for a Zy fransformation
o) - ¥ o
the dilaton (containing the axion) has to transform as

i
—Anc
S —>S+2 GS

where

N if N odd
aNAgs = Ag_g-z, mod n where n = { N/2 ifN even
O If SU(3) x SU(2) x U(1) c SU(5) the anomaly coefficients

need to be universal
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L (Discrete) Green-Schwarz anomaly cancellation

Comments on discrete GS mechanism

© Although the GS mechanism plays a prominent role in string
theory, it does not rely on strings.

® Unlike in the continuous case, for discrete symmetries the
transformation of the axion is only fixed modulo 7.

® In the continuous case, the axion has to be massless for the
shift symmmetry to be a symmetry of the Lagrangean. That is,
the axion potential needs to be flat. By contrast, in the
discrete case the potential is only required to be periodic,
i.e. invariant under the discrete shift. Therefore the axion

may have a non-trivial mass prior to the breakdown of the
symmetry.
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I—Anamuly universality

Anomaly universality

0 Universality condition Ag,—¢,-U()uem = P

[0 Obviously: even in the presence of multiple axions, there is
only one unigque linear combination a that shifts under a
given U(1)anom. Zn OF Zfl transformation

[0 However, a may have different couplings ¢; to different field
strengths of the SM gauge group

a ~
Laxion D Zci ngbFlb

[0 no anomaly universality in general

different ¢; are inconsistent with an underlying GUT symmetry

e a non-trivial VEV of the scalar partner of a will destroy gauge
coupling unification
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I—Demils of the Zg x Zg model

Zo X 79 Orbifold example

Blaszczyk et al. (2010) ; Kappl et al. (2011)

SU(5) SU(5)
® ®

@ ®
SU(5) SU(5)

O step: 6 generation Zsy x Zy model with SU(5) symmetry


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu
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I—Demils of the Zg x Zg model

Zo X 79 Orbifold example

Blaszczyk et al. (2010) ; Kappl et al. (2011)

SuU(5) SU(5) SU(5)
®

non-local
breaking
SU(5)
l
Gsm

@ ® @
SU(5) SU(5) SU(5)

O step: 6 generation Zs x Zy model with SU(5) symmetry

O step: mod out a freely acting Zg sysnmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard and Donagi (2006)
Braun et al. (2005)


http://inspirehep.net/search?p=Blaszczyk:2009in
http://inspirehep.net/search?p=Kappl:2010yu
http://inspirehep.net/search?p=Bouchard:2005ag
http://inspirehep.net/search?p=Braun:2005ux
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Main features

0 GUT symmetry breaking non-local
~ (almost) no ‘logarithmic running above the GUT scale’

Hebecker and Trapletti (2005) ; Anandakrishnan and Raby (2012)


http://inspirehep.net/search?p=Hebecker:2004ce
http://inspirehep.net/search?p=Anandakrishnan:2012ii
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I—Demils of the Zg x Zg model

Main features

0 GUT symmetry breaking non-local

0 No localized flux in hypercharge direction
~ complete blow-up without breaking SM gauge
symmetry in principle possible
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Main features

0 GUT symmetry breaking non-local
0 No localized flux in hypercharge direction

0 4D gauge group:
SU(3)e x SU(2)L, x U(1)y x [SU(8) x SU(2)? x U(1)®]
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I—Demils of the Zg x Zg model

Main features

0 GUT symmetry breaking non-local
0 No localized flux in hypercharge direction

0 4D gauge group:
SU(3)e x SU(2)L, x U(1)y x [SU(8) x SU(2)? x U(1)®]

O massless spectrum

(1,1;1,1,2)0

# | representation | label # | representation | label
3 3.2,1,1,1), | @ 3| (3.1;1,1, 1)_ U
3| G111y |D 3| 1LzLLy, |L
3| (.1;1,1,1);, |E 37| (1.1;1,1,1), |s
6| (1.2,1,1,1) +, | A 6| (1.2,1,1,1), | A
3| 3.1;1,1,1)y, |6 3| 3.1;1,1,1) 4, |6
3| (1.1;3,1,1) |« 5| (1.1;3,1,1), |*x
6 y 6| (1.1;1,2,1), |z
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Main features

0 GUT symmetry breaking non-local
0 No localized flux in hypercharge direction

0 4D gauge group:
SU(3)e x SU(2)L, x U(1)y x [SU(8) x SU(2)? x U(1)®]

O massless spectrum

spectrum = 3 x generation + vector-like



Supersymmetric unification and R symmetries Backup slides

I—Demils of the Zg x Zg model

Spectrum and 7%

# | representation | label # | representation | label
3 3.2,1,1,1), | @ 3] 3.1;1,1,1) 5, LU
3| G.1;,1,1,1), //5 3 L
3| (1,1;1,1,1) /E 37 s
6 h 6 ; h
3 5 /& (3.1:1,1,1) ,, ;5
5 x 1 5 (1,1;3,1, 1))% x
6 6| (1.1;1,2,1 z

matter
with 7ZE
charge 1

Higgs/exotics
with Z% charge 0 or 2
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# | representation | label # | representation | label
3| 3.2,1,1,1), | @ 3] 3.1;,1,1,1), |U

3| 3.1,1,1,1), |D 3| (1,2;1,1,1)., | L

3| (1.1;1,1,1);, |E 37| (1.1;1,1,1), |s

6| (1,2;1,1,1)., | A 6| (1.2,1,1,1), |A

3| B 1,1,1,1)y |o 3| G111, |6

5| (1.1;3,1,1), |« 5| (1.1;3,1,1), |x

6| (1.1;1,1,2), |y 6| (1.1;1,2,1), |z

OO Many other good features:
no fractionally charged exotics (ai sm charged fields come in SU() muttiplets)

e non-trivial full-rank Yukawa couplings
e gauge-top unification
e SU(D) relation Y+ = Yp (outalso for light generations)
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7ZE charges

0 SM fields

|Qi ﬁz|5i|Lz|Ez

ZEL T [ 1 [ 1 [ 17
O Exoftics S
| hy | ho | ks | ha | ks | he | ha | ho | ks | ha | Bs | he
ZF|0|2|0]2]0|0]0|2]0|0]2]2

|51|52|53 61 | 02 | 03

ZF[0 22200
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Higgs candidate mass matrix
he E} ﬁé ﬁé ﬁ; ﬁ% Eg
2 0 0 2 2

hl hg h3 h4 h5
zZ# 0 2 0 2 0 0 O

O Mass matrix for exotic doublets k; and EJ

0 o6 0 ¢4 O 0
¢1 0 ¢2 0 d1z du

B 0 ¢+ 0 ¢ 0 O
Mix=10 ¢ 0 4 0 0

#® 0 ¢ O o8 ¢

~3

p~0_ b 0 o s

X i
(Wsinglem with zero 7 m
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Higgs candidate mass matrix

hi hs hs hs hs he hi hs hs hs hs he
Z® 0 2 0 2 0 0 0 2 0 0 2 2

O Mass matrix for exotic doublets k; and EJ

0 o6 0 ¢4 O 0

¢1 0 ¢2 0 d1z du

B 0 ¢+ 0 ¢ 0 O
Mhh = 9 '(53 0 ;55 0 9
»#® 0 ¢ O 93 ¢

~3
¢ 0 ¢ 0 ¢ ¢
0 One massless linear combination (= Higgs pair)

ai El + Qg Eg +a3l:4
blh1+b2h3+b3h5+b4h6

H,
H,
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Triplet mass matrix

§1 0y &3 01 62 O3
zZ8 0 2 2 2 0 O

O Mass matrix for exotic color triplet

® 0 0
Ms= | 0 ¢s ¢
0 ¢« s

< SMisinglefs with zero Z& charge >
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Triplet mass matrix

§1 0y &3 01 62 O3
zZ8 0 2 2 2 0 O

O Mass matrix for exotic color triplet

® 0 0
Ms= | 0 ¢s ¢
0 ¢ ¢s

0 Note: exotic friplets cannot mediate proton decay
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I—Demils of the Zg x Zg model

Triplet mass matrix

§1 0y &3 01 62 O3
zZ8 0 2 2 2 0 O

O Mass matrix for exotic color triplet

® 0 0
Ms= | 0 ¢s ¢
0 ¢ ¢s

0 Note: exotic friplets cannot mediate proton decay

O The fact that the numbers of massless doublet and triplet
pairs differ is not an accident but already follows from
anomaly matching
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Effective Yukawa couplings

O Effective superpotential
rro= > |(¥0)F QTghi]
1=1,3,4

) {(Yl(z)) QDghi+ (YO)¥ LiEgh
1=1,3,5,6



Supersymmetric unification and R symmetries Backup slides

I—Demils of the Zg x Zg model

Effective Yukawa couplings

O Effective superpotential

rro= X [(00)" @ Tk

1=1,3,4
W& = . —
) {(Yz(il)) Q@ Dyhi+ (YO LyEghy

i=1,3,5,6

[0 Effective Yukawa matrices (examples)

@2 gt g8
YW = (54 pe: 56)

1 4% ¢t
Yz(¢3) — 266 1 2&4
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Effective Yukawa couplings

O Effective superpotential

rro= X [(00) @ Tk

i=1,3,4

i fg — N f —
upy {(Yéz)) Qr Dghi + (Ye())gLnghi}
i=1,3,5,6

[0 Effective Yukawa matrices (examples)

g¢ g8 4
Y® = (Yz(i5))T _ (56 @1

95 ¢ 1
o) - ()
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