A DARK FORCE FOR BARYONS

lan Shoemaker **PACIFC 2011** September 8, 2011

with Michael Graesser and Luca Vecchi

Saturday, September 10, 2011

Dark matter à la Occam

lex parsimoniae

Visible sector $\sim 17\%$

Dark sector $\sim 83\%$

2

The WIMP "miracle"

?

 $\chi\chi\leftrightarrow ar{f}f$

$$\Omega_{DM}h^2 = 0.1 \left(\frac{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle}\right)$$

3

What do we really know about DM?

I. Cosmological abundance.

2. It's stable (or at least very long-lived).

Clue #1:WMAP

The amounts of dark and visible matter are comparable. WMAP 7 tells us:

 $\Omega_{DM}h^2 = 0.1109 \pm 0.0056$

 $\Omega_B h^2 = 0.02258^{+0.00057}_{-0.00056}$

DMB ratio: $\frac{\Omega_{DM}}{\Omega_B} \approx 5$

This could be

I. A remarkable coincidence.

2. An anthropic selection effect? [Freivogel (2008)]

3. An indication of an underlying origin.

Asymmetric dark matter

- Perhaps DM carries a particle anti-particle asymmetry like baryons.
- Earliest attempts made use of EW sphalerons (Nussinov 1985; Barr, Chivukula, Farhi 1990; Kaplan 1992).
- Modern version makes use of higher dimensional operators to transfer the asymmetry (Kaplan, Luty, Zurek 2009).
- ADM models prefer GeV scale masses, but can accommodate weak scale masses (Buckley, Randall 2010), or sub-GeV masses (Falkowski, Ruderman, Volansky 2011).

What to call it?

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (2011)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R.Volkas (2011)]

What to call it?

- Darkogenesis? [J. Shelton, K. Zurek (2010)]
- Xogensis? [M. Buckley, L. Randall (2010)]
- Aidnogenesis? [Blennow, et al. (2010)]
- Hylogenesis? [H. Davoudiasal et al. (2010)]
- Cladogenesis? [R. Allahverdi, B. Dutta, K. Sinha (2011)]
- Pangenesis. [N. Bell, K. Petraki, I.M.S., R. Volkas (2011)]

Clue #2: BSM physics has a love/hate relationship with the proton

New physics models often predict an intriguing signal...

The only problem is...

Super Kamiokande says:

The proton is stable.

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo,

Saturday, September 10, 2011

The proton is stable

• What does this imply? $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{eff}$ $\mathcal{L}_{eff} \subset \frac{QQQL}{\Lambda^2}$

Baryon number is an unreasonably good symmetry $p \longrightarrow e^+ \pi^0$ $\tau_p > 10^{33} yr$

 $\Lambda > 10^{15} \mathrm{GeV!}$

Think globally? Act locally.

Promote $U(I)_B$ to a local gauge symmetry.

- New quarks to cancel anomalies.
- To avoid stable colored particles, introduce new particle X to facilitate their decay.
- X is automatically stable.
- Baryogenesis requires a DM asymmetry.
- Shared gauge interactions with baryons predict novel signatures: monojets and low mass DD.

Gauging baryon number

- Older examples:
 - Bailey and Davidson 1995; Carone and Murayama 1998; Aranda and Carone 1998.
- More recently:
 - Dulaney, Fileviez-Perez and Wise (2010); Buckley, Fileviez-Perez, Hooper, and Neil (2011).

An anomaly-free example

New chiral states

	$SU(3)_C$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
Q_i'	3	2	$+\frac{1}{6}$	$-\frac{1}{N}$
u_{ci}'	3	1	$-\frac{2}{3}$	$+\frac{1}{N}$
d_{ci}'	3	1	$+\frac{1}{3}$	$+\frac{1}{N}$
L'_i	1	2	$-\frac{1}{2}$	0
ν_{ci}'	1	1	0	0
e_{ci}'	1	1	+1	0

 $N\,$ dark generations

• Spontaneously break $U(1)_B$

S^+	1	1	0	+B(S)
S^{-}	1	1	0	-B(S)

Not your typical 4th generation

Gauge symmetry forbids mass mixing.

* No tree-level flavor changing processes, decay modes not like conventional 4th gen.

• New quarks carry their own global $U(1)_{B_{q'}}$

* The lightest particle in Q'-sector will be stable.

Absence of stable colored particles

• Exotic quarks must decay...

Introduce: $X^{\pm} \sim \left(1, 1, 0, \pm \left(\frac{2}{3} - \frac{1}{N}\right)\right)$

$$\mathcal{L} \supset \frac{u_c d_c d'_c X}{\Lambda} \qquad \overline{q'} \to qqX$$

Decay operator \leftrightarrow asymmetry transfer operator

Baryogenesis implies a DM asymmetry

 The only global symmetry is a non-anomalous U(1)_D:

 $D = B_q + B_{q'}$ $n_B \neq n_{\overline{B}} \implies n_X \neq n_{\overline{X}}$

- Unlike conventional ADM, the asymmetries are generated simultaneously.
- Recent work by: Bell, Petraki, IMS, Volkas [1105.3730]. See Kallia's talk.

Super example: Affleck-Dine

• Affleck-Dine simplified:

$$n_B = \dot{\theta} |\phi|^2$$

- Acquire a large VEV.
- Kick the field in the phase direction.

Affleck, Dine (1985); Dine, Randall, Thomas (1995).

Similar asymmetries yield similar masses

Generically: $\frac{\eta_B}{\eta_X} = \mathcal{O}(1)$

For the model $\frac{\eta_B}{\eta_X} \lesssim 6$ introduced above: $\frac{\eta_B}{\eta_X}$

$$\frac{m_X}{m_p} \left(\frac{n_+ - n_-}{n_+ + n_-} \right) = \frac{\eta_B}{\eta_X} \frac{\Omega_{DM}}{\Omega_B}$$

Light DM is generic in ADM models.

Abundance via annihilation

Minimal assumption: annihilation dominantly from s-channel ZB

$$\langle \sigma_{ann} v \rangle = \sum_{f} \frac{N_c}{2\pi} m_X^2 \left(\frac{g_B^2}{m_B^2} \frac{q_X}{3} \right)^2 \frac{\left(2 + \frac{m_f^2}{m_X^2} \right)}{\left(1 - \frac{4m_X^2}{m_B^2} \right)^2 + \frac{\Gamma_B^2}{m_B^2}} \sqrt{1 - \frac{m_f^2}{m_X^2}}$$
$$\simeq \frac{N_f}{3\pi} m_X^2 \left(q_X \frac{g_B^2}{m_B^2} \right)^2 \left[\left(1 - \frac{4m_X^2}{m_B^2} \right)^2 + \frac{\Gamma_B^2}{m_B^2} \right]^{-1}$$

On the origin of asymmetric species

(M. Graesser, I.MS., L. Vecchi. [arXiv:1103:2771])

$X\overline{X} \leftrightarrow f\overline{f}$

If an asymmetry exists prior to thermal freeze-out, must solve coupled Boltzmann eqs. for abundances.

Large	$\langle \sigma v \rangle$
Laise	1/

 $\Omega_{DM} \propto \eta$

Small $\langle \sigma v \rangle$

 $\Omega_{DM} \propto \langle \sigma v \rangle^{-1}$

More generally: $\Omega_{DM} = f(\eta, \langle \sigma v \rangle, m)$ $\langle \sigma v \rangle \ge 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$

ADM can have WIMP sized cross sections!

DIRECT DETECTION BOUNDS

annihilation physics DM-quark scattering

RECOIL SPECTRUM

astrophysics/N-body

$$\frac{dR}{dE_R} = \frac{N_T \rho_{\odot}}{m_X} \int_{|\vec{v}| > v_{min}} d^3 v \ v f(\vec{v}, \vec{v}_{\oplus}) \frac{d\sigma}{dE_R}$$

particle physics

 Velocity distribution must be consistent with NFW:

$$f(v) \propto \left[\exp\left(\frac{v_{esc}^2 - v^2}{kv_0^2}\right) - 1 \right]^k$$
 [Lisanti, Strigari, Wacker, Wechsler (2010)]

High-velocity tail is important for light DM.

RECOIL SPECTRUM

VECTOR CASE: $\frac{d\sigma}{dE_R} = \frac{m_N A^2}{2\pi v^2} \left(\frac{q_V g_B^2}{m_B^2}\right)^2 F^2(E_R)$

DD imposes: $m_X \lesssim \text{few GeV}$

AXIAL CASE:

$$\frac{d\sigma}{dE_R} = \frac{m_N A^2}{8\pi v^2} \left(\frac{q_A g_B^2}{m_B^2}\right)^2 \left[Av^2 + Bq^2\right] F^2(E_R)$$
DD imposes:
no bound

BARYONIC DARK FORCES AND COLLIDERS

ATRIFECTA OF EXPERIMENTS

- BaBar: invisible/hadronic upsilon decays.
- LEP: hadronic width of the Z boson.
- Tevatron: monojets + missing energy.

B-FACTORY CONSTRAINTS

If $m_X \lesssim m_{\Upsilon}/2$, the upsilon can decay to DM.

$$\Upsilon(1S) \to Z_B \to \overline{X}X$$

BaBar constrains:

 $\mathcal{BR}(\Upsilon(1S) \to \text{``invisible''}) < 3 \times 10^{-4}$

$$\frac{\mathcal{BR}(\Upsilon(1S) \to \text{``invisible'')}}{\mathcal{BR}(\Upsilon(1S) \to \mu^+\mu^-)} = \left(q_V^2 + q_A^2\right) \left[\frac{g_B^2}{e^2} \frac{m_\Upsilon^2}{m_B^2 - m_\Upsilon^2}\right]^2 < 1.2 \times 10^{-2}$$

BOUNDING A BARYONIC GAUGE BOSON WITH LEPTONS

Kinetic mixing:

$$\mathcal{L}_{kin} = -\frac{1}{4} \left(Z_B^{\mu\nu} Z_B^{\mu\nu} - 2c_Z s_W Z_B^{\mu\nu} Z^{\mu\nu} + 2c_\gamma c_W Z_B^{\mu\nu} A^{\mu\nu} \right)$$

$$\frac{\Delta\Gamma_{had}}{\Gamma_{had}} \approx 1.193 \frac{g_B}{\sqrt{4\pi}} c_Z(m_Z) \frac{m_Z^2}{m_Z^2 - m_B^2} \lesssim \pm 1.1 \times 10^{-3}$$

Experimental constraints: LEP + B-factories

Monojets at the Tevatron

• For light DM, the Tevatron and the LHC are the world's best DD experiments [Goodman, et al. (2010); Bai, Fox, Harnik (2010)].

 $p\overline{p} \to E_T + j$

SM monojet backgrounds

Cut at high Pt to get rid of background.

Simple counting experiment.

Given SM pred + uncertainty: $\sigma < 0.3 \text{ pb}$

MONOJET BOUNDS

[July 18, 2011: ATLAS-CONF-2011-096]

Tevatron proj.

6

8

10

Saturday, September 10, 2011

0.04

0.02

0.00

0

 $\Omega_{\rm DM} h^2 = 0.11$

2

4

 $m_B(\text{GeV})$

 $D^{\mu}X = \partial^{\mu}X + ig_B\left(q_V + q_A\gamma^5\right)Z_B^{\mu}X$

 $m_{DM} = 10 \text{ GeV}$

CONCLUSIONS

- Gauging baryon number saves the proton + automatic DM candidate.
- Simultaneous generation of dark and visible asymmetries via Affleck-Dine.
- Consistent with bounds from B-factories, LEP, mono-jet Tevatron searches, and direct detection for:
 - GeV-scale DM with a GeV-scale mediator.
- LHC and direct detection will probe most of the remaining parameter space.