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SM + massive ns�
After the decennium mirabilis of neutrino physics: � 4
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FIG. 1: Global 3ν oscillation analysis. Bounds on the mass-mixing oscillation parameters, in terms of standard deviations from
the best fit. Solid (dashed) lines refer to the case with old (new) reactor neutrino fluxes. Note the > 3σ evidence for θ13 > 0.

Figure 2 breaks down the global evidence for sin2 θ13 > 0 into two separate contributions coming from the data
sets sensitive to either δm2 (Solar+KamLAND) or ∆m2 (ATM+LBL+CHOOZ), assuming old and new reactor fluxes
(left and right panels, respectively). Remarkably, the two data sets agree very well, with best fits rather close to each
other in both panels, and with nearly gaussian uncertainties in all cases. The bounds from combined (ALL) data
appear to be currently dominated by ∆m2-sensitive experiments—not surprisingly, since the T2K appearance results
alone account for more than 2σ [23]. The T2K experiment, currently limited by statistics rather than by systematics,
is expected to improve significantly the bounds on θ13 in future physics runs [23]. We also find it useful to summarize
the ±1σ ranges of sin2 θ13 in a different format in Fig. 3, where the solid and dashed error bars refer to old and new
reactor neutrino fluxes, respectively.
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FIG. 2: Breakdown of the evidence for θ13 > 0 from the global fit (ALL) into contributions coming from δm2-sensitive data
(Solar+KamLAND) and from ∆m2-sensitive data (ATM+LBL+CHOOZ). The left and right panels refer to old and new fluxes,
respectively.

Fogli et al (after T2K and MINOS)�

CKM seems to work also for the leptons (although CP violation is still to be found !)�
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Outlier I: LSND anomaly �
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LSND vs KARMEN �

Appearance signal with very different �

20 MeV ≤ En ≤ 200 MeV �



MiniBOONE- n	
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Low energy excess…but not expected if LSND right �

Neutrino run � 200 MeV ≤ En ≤ 3 GeV �



MiniBOONE-n	
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Compatible with LSND ! �

Anti-Neutrino run �

475-1250MeV	

 1250-3000MeV	


Excess	

 20.9 ±13.9	

 3.8±5.8	


LSND-best fit	

 22	

 3.5	



–	
  



In order to accommodate a new �

•  Need at least four (ns ≥1) distinct eigenstates�

•  Apparently CP violating effect needed (signal LSND/MB anti-n not MB n) �
  ns ≥ 2                                          Sorel, Conrad, Shaevitz�

•  Tension appearance (signal) and disappearance (no signal) ?�

•  Tension with cosmology ?�

|∆m2
LSND| � O(1eV )



Outlier II: reactor anomaly �

Re-calculation of reactor fluxes:	
   old fluxes underestimated by 3%: �

Mueller et al, ArXiv: 1101.2663 �



Outlier III: Cosmology�

Sterile species favoured by LSS and CMB �

Nucleosynthesis: �

Hamann et al, ArXiv: 1006.5276 �

Izotov, Thuan �



3+2 neutrino mixing model�
Parametrized in terms of a general unitary 5x5 mixing matrix �
(9 angles, >6 phases physical)�
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Figure 3: Global constraints on sterile neutrinos in the 3+1
model. We show the allowed regions at 90% and 99% CL from
a combined analysis of the LSND [3] and MiniBooNE anti-
neutrino [4] signals (filled regions), as well as the constraints
from the null results of KARMEN [20], NOMAD [21] and
MiniBooNE neutrino [19] appearance searches (blue contour).
The limit from disappearance experiments (green contours)
includes data from CDHS [22], atmospheric neutrinos, and
from the SBL reactor experiments. For the latter we compare
the results for the new anti-neutrino flux prediction from [5]
(solid) and the previous ones [6] (dashed). The region to the
right of the curves is excluded at 99% CL.

atmospheric neutrinos. Technical details of our analysis
can be found in [8, 10] and references therein.

In the 3+1 scheme the SBL experiments depend on
the three parameters ∆m2

41, |Ue4|, and |Uµ4|. Since
only one mass-scale is relevant in this case it is not
possible to obtain CP violation. Therefore, oscillations
involving one sterile neutrino are not capable of rec-
onciling the different results for neutrino (MiniBooNE)
and anti-neutrino (LSND and MiniBooNE) appearance
searches. Fig. 3 compares the allowed regions from LSND
and MiniBooNE anti-neutrino data to the constraints
from the other experiments in the 3+1 model. Note
that, even though reactor analyses using the new flux
prediction prefer non-zero Ue4, no closed regions ap-
pear for the disappearance bound (solid curve), since
sin2 2θSBL = 4|Ue4|2|Uµ4|2 can still become zero if
Uµ4 = 0. We find that the parameter region favored by
LSND and MiniBooNE anti-neutrino data is ruled out by
other experiments, except for a tiny overlap of the three
99% CL contours around ∆m2

41 ≈ 1 eV2. Note that in
this region the constraint from disappearance data does
not change significantly due to the new reactor flux pre-
dictions. Using the PG test from [23] we find a compat-
ibility of the LSND+MiniBooNE(ν̄) signal with the rest
of the data only of about 10−5, with χ2

PG
= 21.5(24.2)

∆m2
41 |Ue4| |Uµ4| ∆m2

51 |Ue5| |Uµ5| δ/π χ2/dof

3+2 0.47 0.128 0.165 0.87 0.138 0.148 1.64 110.1/130

1+3+1 0.47 0.129 0.154 0.87 0.142 0.163 0.35 106.1/130

Table II: Parameter values and χ2 at the global best fit
points for 3+2 and 1+3+1 oscillations (∆m2’s in eV2).

0.3 0.6 0.9 1.2 1.5 3
E
#
CCQE  [GeV]

0

0.2

0.4

0.6

0.8

1

ex
ce

ss
 e

ve
nt

s

0.3 0.6 0.9 1.2 1.5 3
E
#
CCQE  [GeV]

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

P LS
N

D
  [

%
]

MiniBooNE
(neutrinos)

MiniBooNE
(anti-neutrinos)

LSND

Figure 4: Predicted spectra for MiniBooNE data and the
transition probability for LSND (inset). Solid histograms re-
fer to the 3+2 global best fit point (Tab. II), dashed his-
tograms correspond to the best fit of appearance data only
(LSND, MiniBooNE ν/ν̄, KARMEN, NOMAD). For Mini-
BooNE we fit only data above 475 MeV.

for new (old) reactor fluxes. Hence we conclude that the
3+1 scenario does not provide a satisfactory description
of the data despite the new hint coming from reactors.
Let us move now to the 3+2 model, where SBL exper-

iments depend on the seven parameters listed in Tab. II.
In addition to the two mass-squared differences and the
moduli of the mixing matrix elements, also a physical
complex phase enters, δ ≡ arg(Uµ4U

∗

e4U
∗

µ5Ue5). This
phase leads to CP violation in SBL oscillations [8, 24],
allowing to reconcile differing neutrino and anti-neutrino
results from MiniBooNE/LSND. Tab. II shows the para-
meter values at the global best fit point and the corre-
sponding χ2 value. Changing from the previous to the
new reactor flux calculations the χ2 decreases by 10.6
units, indicating a significant improvement of the descrip-
tion of the data, see also upper panel of Fig. 2. From that
figure follows also that going from 3+1 to 3+2 leads to
a significant improvement of the fit with the new reactor
fluxes, which was not the case with the old ones. The
χ2 improves by 11.2 units, which means that 3+1 is dis-
favoured at the 97.6% CL (4 dof) with respect to 3+2,
compared to ∆χ2 = 6.3 (82% CL) for old fluxes.
In Fig. 1 we show the prediction for the Bugey spectra

at the global best fit point as dashed curves. Clearly they
are very similar to the best fit of reactor data only. Fig. 4
shows the predicted spectra for MiniBooNE neutrino and
anti-neutrino data, as well as the LSND ν̄µ → ν̄e transi-
tion probability. Again we find an acceptable fit to the

Kopp, Maltoni, Schwetz (KMS) arXiv:1103.4570 �
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FIG. 4. Exclusion curves in the sin2 2ϑeµ–∆m2
41 plane ob-

tained from the separate constraints in Figs. 2 and 3 (blue
dashed line and green dotted line) and the combined con-
straint given by Eq. (10) (red solid line) from disappearance
experiments (Dis). The regions allowed by LSND and Mini-
BooNE antineutrino data are delimited by dark-blue long-
dashed lines.

Figures 6 and 7 show the allowed regions in the
sin2 2ϑeµ–∆m2

41, sin2 2ϑee–∆m2
41 and sin2 2ϑµµ–∆m2

41

planes and the marginal ∆χ2’s for ∆m2
41, sin2 2ϑeµ,

sin2 2ϑee and sin2 2ϑµµ. The best-fit values of the os-

3+1 3+2
χ2
min 100.2 91.6

NDF 104 100
GoF 59% 71%

∆m2
41 [eV

2] 0.89 0.90
|Ue4|

2 0.025 0.017
|Uµ4|

2 0.023 0.018
∆m2

51 [eV
2] 1.60

|Ue5|
2 0.017

|Uµ5|
2 0.0064

η 1.52π
∆χ2

PG 24.1 22.2
NDFPG 2 5
PGoF 6× 10−6 5× 10−4

TABLE I. Values of χ2, number of degrees of freedom (NDF),
goodness-of-fit (GoF) and best-fit values of the mixing pa-
rameters obtained in our 3+1 and 3+2 fits of short-baseline
oscillation data. The last three lines give the results of the
parameter goodness-of-fit test [42]: ∆χ2

PG, number of degrees
of freedom (NDFPG) and parameter goodness-of-fit (PGoF).
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FIG. 5. Exclusion curve in the sin2 2ϑeµ–∆m2
41 plane ob-

tained with the addition to the disappearance constraint in
Fig. 4 of the constraints obtained from KARMEN [40] (KAR),
NOMAD [41] (NOM) and MiniBooNE neutrino [27] (MBν)
data (red solid line). The regions allowed by LSND and Mini-
BooNE antineutrino data are delimited by dark-blue long-
dashed lines.

cillation amplitudes are

sin2 2ϑeµ = 0.0023 , (11)

sin2 2ϑee = 0.098 , (12)

sin2 2ϑµµ = 0.091 . (13)

From Fig. 6 one can see that the allowed regions are
compatible with those allowed by appearance data (the
ν̄µ → ν̄e data of the LSND [2], KARMEN [40] and Mini-
BooNE [1] experiments and the νµ → νe data of the
NOMAD [41] and MiniBooNE [27] experiments) and are
slightly pushed towards the left by the disappearance
constraints. Future experiments aimed at checking the
LSND [2] and MiniBooNE [1] ν̄µ → ν̄e oscillation signal
(as those in Refs. [48–50]) should aim at exploring these
regions.
Figure 7 shows that the allowed regions in the

sin2 2ϑee–∆m2
41 and sin2 2ϑµµ–∆m2

41 planes lie just on
the left of the disappearance constraints, as expected.
From the left panel in Fig. 7 one can see that the al-
lowed regions in the sin2 2ϑee–∆m2

41 plane are compati-
ble with the area indicated by the Gallium anomaly [12].
The allowed region around the best- fit point and the
isolated region at ∆m2

41 " 6 eV2 are also compatible
with the recent results in Ref. [51]. If the 3+1 neu-
trino mixing scheme is realized in nature, future exper-

iments searching for short-baseline
(−)
νe disappearance (as

Giunti, Laveder, (GL) arXiv:1107.1452 �

Significant improvement over 3n scenario, but tension appearance/disappearance 
remains�
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SM + massive ns�

Neutrinos are massive -> need to add the other helicity states �

   New elementary dofs -> sterile n	



                  or�

     Majorana mass terms 	





SM + massive ns�
Majorana neutrinos + gauge invariance�

-> new dofs at L	



But model dependent…�

Weinberg’s operator (d=5) �



SM + sterile ns�
Massive majorana singlet neutrinos �

Many models (Type I Seesaw, Inverse Seesaw, Direct Seesaw) 
involve sterile n	



Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow…�



SM + sterile ns�
Most general (renormalizable) Lagrangian compatible with SM �
gauge symmetries: �

Y: 3 x nR     MN: nRx nR  �

L = LSM −
nR�

i=1

l̄αLY
αiΦ̃νiR −

nR�

i,j=1

1

2
ν̄icRM ij

N νjR + h.c.

Phenomenology and cosmo implications strongly depend on �
 nR, MN and  global symmetries (patterns in Y and MN) �

Mν =

�
0 Y v
Y v MN

�



Type I seesaw:  MN >> Y v �
mn	



ms�

Hierarchy
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Important to understand how data breaks this Y, MN degeneracy�

GUT	
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Type I + (approx) Lepton number�

mn	


M2

N/
m	



Inverse	
  Seesaw	
  

Y  unsuppressed:      -> LFV effects at LHC, large m-> e g, etc �
                          -> heavier spectrum MN, Y v �

Yv MN/m	



Direct	
  Seesaw	
  




0 Y v µ
Y v 0 MN

µ MN 0







0 Y v 0
Y v 0 MN

0 MN µ








0 Y v 0
Y v 0 MN

0 MN 0





mn	



nR	
  

L=	
  	
  +1	
  	
  	
  	
  	
  	
  -­‐1	
  	
  	
  	
  	
  +1	
  

Wyler, Wolfenstein; Mohapatra, Valle; �
Branco, Grimus, Lavoura, Malinsky, Romao,…�

Cirigliano et al; Kersten,Smirnov; Abada et al; Gavela,et al�



Most models of neutrino masses involve sterile neutrinos…�

•  what are the minimal models that can explain 
confirmed neutrino masses ie 3 n mixing scenario ? �

•  what are those that can account for any of the 
neutrino anomalies eg. 3+2 n mixing model ?�



Minimal models�
Most general (renormalizable) Lagrangian compatible with SM �
gauge symmetries: �

Y: 3 x nR            MN: nRx nR  �

nR Li # zero modes # masses # angles # CP phases

1 - 2 2 2 0

+1 2 1 2 0

2 - 1 4 4 3

(+1,+1) 1 2 3 1

(+1,-1) 3 1 3 1

3 - 0 6 6 6

(+1,+1,+1) 0 3 3 1

(+1,-1,+1) 2 2 6 4

(+1,-1,-1) 4 1 4 1

Table 1: Spectrum and number of independent angles and phases for the models with nR = 1, 2
without and with global lepton number symmetries. The second column shows the lepton number,
L, charge assignments of the extra singlets., Li Only charge assignments were none of the extra
singlets gets completely decoupled are considered.

and atmospheric oscillations. On the other hand the model without the global symmetry

contains in principle sufficient parameters (two mass eigenstates and two angles) to explain

both oscillations lengths.

The model with nR = 2 and no lepton number symmetries, gives rise to a spectrum

including four massive and one massless neutrino. There are also four physical angles and

three CP violating phases.

Simplifications also occur when lepton number symmetries are imposed. For nR = 2

there are two choices for the lepton number charge assignments that allow renormalizable

couplings between the extra singlet fermions and the SM neutrinos. One obvious choice

is to give both of the sterile fields lepton number charge +1. In this case, the spectrum

degenerates into a massless neutrino and two massive Dirac neutrinos. The number of

physical angles gets reduced to three and there is only one physical CP phase. Obviously

this choice is as good as the standard three-neutrino mixing model to accommodate existing

oscillation data.

The other choice for the charge assignments is to give charge +1 only to one of the extra

fields and -1 to the other. In this case, the spectrum consist of three massless neutrinos and

one massive Dirac one. The number of physical angles is reduced to two and there is no

CP violation. This model with just one mass cannot explain oscillation data. However, a

small perturbation that breaks the lepton number symmetry is again as rich as the generic

case of nR = 2, but with some strong hierarchies, naturally preserved by the approximate

lepton number symmetry. This is the minimal flavour violating seesaw model considered

in [?] (see also [?]). For nR = 3, there are many more possibilities, listed in Table ??.

3. Parametrization

Consider the generic mass matrix corresponding to the model with three left-handed neu-

– 5 –

Number	
  of	
  Physical	
  Parameters	
  

L = LSM −
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Pheno 3+ns mixing models  ?�
They assume a general mass matrix for 3+ns neutrinos: what is that model ? �

�
MLL MLR

MT
LR MRR

�Example 1:	
   3xns	
  



They assume a general mass matrix for 3+ns neutrinos: �

�
MLL MLR

MT
LR MRR

�Gauge	
  invariance	
  

Effective theory: MLL parametrizes our ignorance about the  �
                     underlying dynamics (eg. a model with nR > ns, where �
                     the heavier states are integrated out)�

Example 1:	
  

Pheno 3+ns mixing models  ?�



Pheno 3+ns mixing models  ?�

  requires to add 3+2 ns Weyl sterile fermions to the SM, �
with specific lepton number assigments (3+ns:+1, ns:-1) ! �

Example 2:	
  Dirac�

�
0 MLR

MT
LR 0

�

These cannot be the minimal models…�

(3+ns)x(3+ns)	
  



3+ns pheno vs 3+nR minimal  ?�
For the same ns=nR many more parameters…less predictive�

	
  	
  	
  #	
  Angles	
   	
  	
  	
  #	
  CP	
  Phases	
   	
  	
  #	
  Dm2	
  

	
  3+1	
  pheno	
   	
  	
  	
  	
  	
  	
  	
  	
  6	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
   	
  	
  	
  	
  	
  	
  	
  3	
  

	
  3+1	
  minimal	
   	
  	
  	
  	
  	
  	
  	
  	
  2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
   	
  	
  	
  	
  	
  	
  	
  2	
  

	
  3+2	
  pheno	
   	
  	
  	
  	
  	
  	
  	
  	
  9	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
   	
  	
  	
  	
  	
  	
  	
  4	
  

3+2	
  minimal	
   	
  	
  	
  	
  	
  	
  	
  	
  4	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
   	
  	
  	
  	
  	
  	
  	
  4	
  

This work: Minimal 3+1, 3+2 confronted with data (neutrino experiments)�

Earlier work: � De Gouvea, hep-ph/0501039 �
De Gouvea, J. Jenkins, Vasudevan hep-ph/0608147 �



On parametrizations �
• Physical parameters only �
• Convenient to impose existing constraints�

General	
  	
   Casas-Ibarra (mD << MN)�

Mν =

�
0 mD

mT
D MN

�

mD = U∗(θ12, θ13, θ23, δ)




0 0
m2 0
0 m3



V †(θ45,α1,α2)

MN	
  =diag(M1,M2,…)	
  

mD = U∗(θ13, θ23)




0
0
m




3+1	
  

3+2	
  

Standard	
  PMNS	
  only	
  if	
  Dirac/degenerate	
  N	
  

Mν =

�
U �
−�†U 1

�
Diag(0,m2,m3,M1,M2)

�
U �
−�†U 1

�T

� = U




0 0

m1/2
2 0

0 m1/2
3



R†(θ45)M
−1/2
N

standard	
  PMNS	
  

3+2	
  



Minimal 3+1 �
Two massless +two massive eigenstates, only two physical angles, �
no CP violation �
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Minimal 3+2	
  

Simplification: degenerate case M1 = M2 = M, 3 angles, no CP violation �
Parameters: 1 massless, 4 massive eigenstates, 4 angles, 2 CP phases �
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SOLAR data�
Excludes all exotic Type III, IV, V solutions�

Excludes all the intermediate Type I solutions�
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SOLAR data: MQD
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  Impressive sensitivity of solar neutrinos to tiny departures from �
diracness!	
  

See also De Gouvea, Huang, Jenkins arXiv: 0906.1611 �



SOLAR data: MQD
max�
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Figure 14: For the NH, Pee (red), Pea = Pee+Peµ+Peτ (blue) at day time as a function of neutrino
energy for solar neutrinos (B) in the quasi-Dirac region for three values of M = 10−9, 10−6, 10−5eV
and normal hierarchy. The dashed curves correspond to the standard 3ν solution (Dirac limit) near
the best fit and the solid lines are the exact results in the quasi-Dirac for the same values of the
parameters. The production point has been averaged out.

values of M , the vacuum oscillations are seen at all energies, and for M ≤ MQD
max the Dirac

limit is obtained.
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Figure 15: The same as Fig. 14 for the IH.

9. Conclusions and Outlook

Probably the simplest explanation of neutrino masses involves the addition of singlet

fermions to the SM. Such is the case in very different models ranging from Dirac neu-

trinos, to type I seesaws, inverse seesaw, etc. All these possibilities, that have very dif-

ferent phenomenological implications for flavour physics, correspond to different numbers

of extra species and/or different global symmetries. It is important to study the present

constraints on models with singlet fermions in increasing order of complexity, where com-

plexity is measured by the number of extra degrees of freedom (Weyl fermions), nR, and

not by the physical spectrum, because the latter can depend also on the global symmetries

imposed. With this perspective in mind, we have considered in the present work the two

simplest possibilities, that of one or two extra Weyl fermions, nR = 1, 2. The first case has

sufficient free parameters (two masses and two mixing angles) to fit in principle the two
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Adiabatic approx.�IH	
  

Note that for energies above the MSW resonance Pee is 1/2 of the Dirac result, so, to the

extent that the adiabatic approximation is valid, the result for M != 0 is physically very

different to the Dirac limit.

A similar analysis in the IH case is a bit more complicated, because in this case the

problem involves the two pairs of degenerate states and not just one pair as before. The

final result is

Pee|IH →

{

sin2 θ13
2 A0 # AMSW ,

cos4 θ13
2 + sin4 θ13

2 A0 $ AMSW .
, (8.7)

where the MSW condition is the usual one with the change m2
D− → m2

D+ −m2
D− . Note

that in our parametrization, θ13 is the solar angle for the IH case. In this case, the result

is half of the Dirac result both above and below MSW.

Obviously we expect the limit M → 0 to be smooth and this means that adiabaticity

must break down for small enough M . We show that this is indeed the case.

8.1 Adiabaticity limit

Adiabaticity is lost in the propagation inside the sun when

|µ(M)
1 − µ(M)

2 |
2Eν

<

∣

∣

∣

∣

v(M)
1 ·

d

dA
v(M)
2

dA

dr

∣

∣

∣

∣

, (8.8)

where r is the radial distance. For mD± large compared to the other scales we have

|µ(M)
1 − µ(M)

2 | &
√

4M2m2
D− +A2 cos4 θ12

∣

∣

∣

∣

v(M)
1 ·

d

dA
v(M)
2

∣

∣

∣

∣

&
MmD− cos2 θ12

4M2m2
D− +A2 cos4 θ12

(8.9)

The variation of A can be approximated by

dA

dr
& −αA/R!, (8.10)

where α & 10− 15 and R! is the solar radius.

The right term in eq. (??) is maximal at the point in the evolution where

A2 cos4 θ12 ∼ 4M2m2
D− . (8.11)

At this point the non-adiabaticity condition reads

M ≤
Eνα

4
√
2R!mD−

. (8.12)

The result for the IH is the same with the change θ12 → θ13, but since mD− ∼
√

∆m2
sol

for NH and mD− ∼
√

∆m2
atm for the IH, the value of M for which the adiabaticity limit is

reached is lower for IH than for NH, by the ratio of solar to atmospheric mass splittings.

The rough estimates are

M(eV) <

{

10−7 ×Eν(MeV) NH,

2× 10−8 × Eν(MeV) IH.
(8.13)
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Adiabaticity limit: �

Vaccuum oscillations:   � Losc ∼
Eν

MmD−



LBL data: MSS
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Other constraints on MSS
min ?�

Neutrinoless double-beta decay: mee = 0  (M << 100MeV) �

Tritium: presently no constraint (small mixing of heavy states)�

SBL reactor: �

KMS
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Figure 10: The P̄µe antineutrino oscillation probability at L = 541 m as a function of Eν for the
NH (red, M = 0.6 eV) and IH (blue, M = 1.4 eV). The best fit result of [?] is labelled KMS. The
dashed lines correspond to the perturbative results.
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Figure 11: Exclusion region at 99%CL from the experiments Bugey-3 (left) and CDHSW (right).
The lines correspond to the expectation as a function of M in the degenerate case. The intersection
of the IH curve and the Bugey-3 exclusion region is at M ∼ 1.6 eV.

tritium β-decay [?, ?], which is sensitive to the combination2

me =

√

∑

i

|Uei|2m2
νi ≤ 2 eV, (6.12)

2It is assumed that all mi ! ∆E, where ∆E is the energy resolution near the end-point. When non

degenerate neutrinos are considered the analysis is more complicated [?] and cannot be cast as an upper

bound on the combination me.
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LSND/MB + reactor anomaly ?�

Λ0"Λ1

Λ2

Λ3
Λ4

NH

eV

0.0

0.2

0.4

0.6

0.8

Λ0
Λ1"Λ2

Λ3"Λ4
IH

eV

0.0

0.5

1.0

1.5

we have

(Umix)e4 = s13s34,

(Umix)e5 = c13s12s25,

(Umix)µ4 = c13s23s34,

(Umix)µ5 = (c12c23 − s12s13s23)s25, (6.1)

with

s25 ≈ mD−/M, s34 ≈ −mD+/M, (6.2)

for M in the eV range.

Concerning the massive states, their masses are: (∼ m2
D−/M,∼ m2

D+/M,∼ M,∼ M).

Therefore, after taking into account the results from the above sections, the only parameter

we can play with is the Majorana mass M , and therefore in the degenerate case it is not

easy to accommodate two distinct eV masses. On the other hand the matrix elements

Ue4/5 are intriguingly in the right ballpark.

In order to have a more explicit prediction we have evaluated the Pee and Peµ oscillation

probabilities in the mini-seesaw regime analytically via a perturbative expansion in the

small parameters

ε− =
(mD−

M

)2
, ε+ =

(mD+

M

)2
. (6.3)

At second order in ε± we get for the ten mass differences:

∆m2
ij = O(ε2M2), ∆m2

4i ∼ ∆m2
5i ∼ M2(1 +O(ε2)), ∆m2

54 ∼ O(εM2), i, j = 1, 3.(6.4)

At the same order in ε± the mixing angles are:

sin2 θ25 = ε− − 3ε2−, sin
2 θ34 = ε+ − 3ε2+,

and finally the oscillation probability is

PSS
eµ = 4 sin2

(

M2L

4Eν

)

(

ε2+A44 + 2ε+ε−A54 + ε2−A55
)

+O(ε3±), (6.5)

where

A44 = cos2 θ13 sin
2 θ13 sin

2 θ23,

A54 = cos2 θ13 sin θ12 sin θ13 sin θ23(cos θ12 cos θ23 − sin θ12 sin θ13 sin θ23), (6.6)

A55 = cos2 θ13 sin
2 θ12(cos θ12 cos θ23 − sin θ12 sin θ13 sin θ23)

2.

In the normal hierarchy case, θ13 is small and will introduce a suppression of the A44 and

A54 coefficients with respect to A55. For vanishing θ13 we get:

PSS,NH
eµ = 4 sin2

(

M2L

4Eν

)

ε2−ANH +O(ε3±), (6.7)
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U ~0.1 (right ballpark for IH) ! �NH:	
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Figure 3: Global constraints on sterile neutrinos in the 3+1
model. We show the allowed regions at 90% and 99% CL from
a combined analysis of the LSND [3] and MiniBooNE anti-
neutrino [4] signals (filled regions), as well as the constraints
from the null results of KARMEN [20], NOMAD [21] and
MiniBooNE neutrino [19] appearance searches (blue contour).
The limit from disappearance experiments (green contours)
includes data from CDHS [22], atmospheric neutrinos, and
from the SBL reactor experiments. For the latter we compare
the results for the new anti-neutrino flux prediction from [5]
(solid) and the previous ones [6] (dashed). The region to the
right of the curves is excluded at 99% CL.

atmospheric neutrinos. Technical details of our analysis
can be found in [8, 10] and references therein.

In the 3+1 scheme the SBL experiments depend on
the three parameters ∆m2

41, |Ue4|, and |Uµ4|. Since
only one mass-scale is relevant in this case it is not
possible to obtain CP violation. Therefore, oscillations
involving one sterile neutrino are not capable of rec-
onciling the different results for neutrino (MiniBooNE)
and anti-neutrino (LSND and MiniBooNE) appearance
searches. Fig. 3 compares the allowed regions from LSND
and MiniBooNE anti-neutrino data to the constraints
from the other experiments in the 3+1 model. Note
that, even though reactor analyses using the new flux
prediction prefer non-zero Ue4, no closed regions ap-
pear for the disappearance bound (solid curve), since
sin2 2θSBL = 4|Ue4|2|Uµ4|2 can still become zero if
Uµ4 = 0. We find that the parameter region favored by
LSND and MiniBooNE anti-neutrino data is ruled out by
other experiments, except for a tiny overlap of the three
99% CL contours around ∆m2

41 ≈ 1 eV2. Note that in
this region the constraint from disappearance data does
not change significantly due to the new reactor flux pre-
dictions. Using the PG test from [23] we find a compat-
ibility of the LSND+MiniBooNE(ν̄) signal with the rest
of the data only of about 10−5, with χ2

PG
= 21.5(24.2)

∆m2
41 |Ue4| |Uµ4| ∆m2

51 |Ue5| |Uµ5| δ/π χ2/dof

3+2 0.47 0.128 0.165 0.87 0.138 0.148 1.64 110.1/130

1+3+1 0.47 0.129 0.154 0.87 0.142 0.163 0.35 106.1/130

Table II: Parameter values and χ2 at the global best fit
points for 3+2 and 1+3+1 oscillations (∆m2’s in eV2).
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Figure 4: Predicted spectra for MiniBooNE data and the
transition probability for LSND (inset). Solid histograms re-
fer to the 3+2 global best fit point (Tab. II), dashed his-
tograms correspond to the best fit of appearance data only
(LSND, MiniBooNE ν/ν̄, KARMEN, NOMAD). For Mini-
BooNE we fit only data above 475 MeV.

for new (old) reactor fluxes. Hence we conclude that the
3+1 scenario does not provide a satisfactory description
of the data despite the new hint coming from reactors.
Let us move now to the 3+2 model, where SBL exper-

iments depend on the seven parameters listed in Tab. II.
In addition to the two mass-squared differences and the
moduli of the mixing matrix elements, also a physical
complex phase enters, δ ≡ arg(Uµ4U

∗

e4U
∗

µ5Ue5). This
phase leads to CP violation in SBL oscillations [8, 24],
allowing to reconcile differing neutrino and anti-neutrino
results from MiniBooNE/LSND. Tab. II shows the para-
meter values at the global best fit point and the corre-
sponding χ2 value. Changing from the previous to the
new reactor flux calculations the χ2 decreases by 10.6
units, indicating a significant improvement of the descrip-
tion of the data, see also upper panel of Fig. 2. From that
figure follows also that going from 3+1 to 3+2 leads to
a significant improvement of the fit with the new reactor
fluxes, which was not the case with the old ones. The
χ2 improves by 11.2 units, which means that 3+1 is dis-
favoured at the 97.6% CL (4 dof) with respect to 3+2,
compared to ∆χ2 = 6.3 (82% CL) for old fluxes.
In Fig. 1 we show the prediction for the Bugey spectra

at the global best fit point as dashed curves. Clearly they
are very similar to the best fit of reactor data only. Fig. 4
shows the predicted spectra for MiniBooNE neutrino and
anti-neutrino data, as well as the LSND ν̄µ → ν̄e transi-
tion probability. Again we find an acceptable fit to the

Kopp, Maltoni, Schwetz�



No, for degenerate case�
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Beyond the degenerate case�
In Casas&Ibarra parametrization: (q13,q23,q12,d, m1=0,m2,m3, q45

r, q45i, M1, M2) �

|Ue4| �
����

�
m2

M1
s12c13 cos(θ

r
45 − iθi45) +

�
m3

M1
e−iδs13 sin(θ

r
45 − iθi45)

����

|Ue5| �
����−

�
m2

M2
s12c13 sin(θ

r
45 − iθi45) +

�
m3

M2
e−iδs13 cos(θ

r
45 − iθi45)

����

Eg: NH	
  

A detailed fit to the data is underway…	
  

	
  |Ue4|	
   |Um4|	

 |Ue5|	
   |Um5|	
   f	


3+2	
  KMS	
   	
  0.128	
   0.165	
   	
  0.138	
   0.148	
   1.62	
  p	


3+2	
  	
  (IH)	
  	
   	
  0.136	
   0.20	
   	
  0.162	
   0.14	
   1.59	
  p	


3+2	
  (NH)	
  	
   	
  0.095	
   0.17	
   0.082	
   0.149	
   1.74	
  p	



3+2	
  	
  GL	
   	
  0.130	
   0.134	
  	
   0.130	
   0.08	
   1.52 p	


3+2	
  (IH)	
   	
  0.133	
   0.137	
   0.167	
   0.09	
   1.44	
  p	



∆m2
41 � M2

1

∆m2
51 � M2
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3+2 minimal (IH) vs KMS/GL best fits �
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Conclusions�
•  Most models of neutrino masses add sterile Weyl fermions to the SM (seesaw 

type I, inverse, direct…)�

•  Complexity/predictivity of those models depend on nR and global (e.g. lepton number) symmetry�

•  nR=1 excluded by reactor and accelerator LBL data�

•  nR=2 (in degenerate limit), excluded for   �
          10-9 (10-11) eV < M < 1.4 eV     NH (IH) �

•  nR=2 with two masses ~eV could explain LSND/MiniBOONE at similar level as 
3+2 pheno (if IH !) with less free parameters ? (all mixings determined in 
terms of one complex angle and d)	



•  It is important to exclude simpler models before going to more complex ones…    �


