Vacuum Energy decay




~ Is the vacuum energy stable?

Abbott and Deser: Classical stability

(Fluctuations within the horizon)




Naively, quantum interactions
destabilize the vacuum (spin not
importat at this level)

Momentum is not conserved at vertices




No universal definition of vacuum
state; no energetic argument

Width = V.T only true in some frames
~ (Fermi)

S-matrix not well defined; nor.are
particles to be decayed 1into

- Back to basics:




INaive analytic continuation

From de Sitter...

No imaginary part in a one-loop BF
computation (EA & RV)




‘Survival amplitude =Self-overlap

Cauchy-Schwarz:

Aty )| < 1
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[(T) = —7 Log |A(ts,t;) |

Were it independent of T=tf-ti, it
would have been a true width; otherwise
1t 1s an useful observable




Introducing sources
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Schrodinger functional (Feynman kernel)
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Vacuum wavefunctional




Scrodinger's functional
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.There 1s also a contrlbutlon from the

wavefunctional
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~All boundary terms:
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B.C. For the propagator
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The classical field reads

¢°(x) = /dnx’AT(x,x')J(x')

After some arrangement the action
can be written as
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The interacting Schrodinger's
functional reads
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Free Schrodinger Functional

The free case
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Fields 1n de Sitter space

Field redefinition

The lagrangian now reads (remember, now ¢ = ¢ cy)
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There 1s a new boundary term only 1in the

de Sitter case
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Finite time Feynman boundary
conditions

New boundary conditions in flat
space owing to de sitter boundary
terms after field redefinition
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Schrodinger's functional: Diagrams
with finite-time de Sitter
propagators
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Asymptotic berhavior of free diagram
_(should include particle creation)
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Mass insertion: transients

Mass insertion: asymptotics




Self interaction:asymptotics
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The integrals can be bound by Z-
1ndependent constants




Final Comments

Not fully conclusive results; positive
Lndications in higher dimensions

Other vacua; other coordinates
should be studied




Consistency with semiclassical
equations of motion ?

This points towards inconsistency at

freezing quantum-gravitational degrees
of freedom |

Full theory diff invariant: Need
for a gauge invariant definition
of vacuum decay




