

The XENON1T EXPERIMENT AT LNGS

Elena Aprile Columbia University DM2012 - 02/24/12

Friday, February 24, 2012

The XENON Dark Matter Program

XENON10 Achieved (2007) σ_{SI} =8.8 x10⁻⁴⁴ cm²

XENON100

Achieved (2011) $\sigma_{s1}=7.0 \times 10^{-45} \text{ cm}^2$ Projected (2012) $\sigma_{s1} \sim 2 \times 10^{-45} \text{ cm}^2$

XENON1T Projected (2017) $\sigma_{SI} \sim 10^{-47} \text{ cm}^2$

XENON1T: OVERVIEW

- Detector: 1m drift TPC with 2.2 ton LXe target
- Shield: ~10 m x 10 m Water Cherenkov Muon Veto
- Background: 0.01 mdru (100 lower than XENON100
- Location: approved by INFN for LNGS Hall B
- Capital Cost: ~11 M\$ (50% US and 50% non-US)
- Status: Construction start in Fall 2012
- Science Run: projected to start in 2015
- Sensitivity: $2 \times 10^{-47} \text{ cm}^2$ at 50 GeV with 2.2 ton-years

Friday, February 24, 2012

The XENON1T Science Case

The XENON1T Science Case

F-SU(5) Supersymmetry Dimitri Nanopoulos Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

Howard Baer^a, Vernon Barger^b and Azar Mustafayev^c

Expected Backgrounds in XENON1T

Expected Backgrounds in XENON1T

Expected Backgrounds in XENON1T

(100 Year Simulation Livetime)

0.07 γ / year

0.1 n / year

1.1 ton

1.1 ton

Expected Backgrounds in XENON1T (100 Year Simulation Livetime)

Expected Backgrounds in XENON1T (100 Year Simulation Livetime)

Effectiveness of Self Shielding

ark Matter Project

LNGS Underground Laboratory – Hall B

LNGS Underground Laboratory – Hall B

Friday, February 24, 2012

LNGS Underground Laboratory – Hall B

WEIZMANN INSTITUTE OF SCIENCE

INFN-LNGS

Friday, February 24, 2012

XENON1T Water Cherenkov Shield

650 m³ Water Tank Instrumented with 8" PMTs as Active Veto

Muon-induced neutrons are the dominant external background

(n and γ from radioactivity well shielded by ~4.5 m water buffer)

Flux @ LNGS generated with G4, normalized to Mei-Hime, PRD 73 053004 (2006) (conservative estimate: GEANT4 predicts a ~6 times lower neutron yield)

With ~85% efficiency for tagging neutrons entering the Water Tank, we expect a rate of 0.01 neutrons/ year in LXe fiducial volume well below the signal rate from 100 GeV WIMP with 10⁻⁴⁷ cm².

XENON1T CRYOSTAT

Double walled vacuum insulated vessel 1.3 m diameter x 1.5 m height Holds 2.5 tons of Xenon @ -100°C Holds instrumented TPC Made of low-background Ti Manufactured according to ASME code Heat load < 50WHexapod Support Structure inside tank Linear actuators for leveling to 100µm Must satisfy buoyancy loaded condition & LNGS seismic environment `

XENON1T CRYOSTAT & SUPPORT

XENON1T TPC

16

XENON1T PMT ARRAYS

XENON1T PMTs

LT bialkali photocathode; 12 stage box and linear focused style dynode structure

QE > 35% at 178 nm

50 Hz dark count rate

Cathode linear to <5% at LXe temp. up to 2 nA; anode linear to <5% up to 80nA

XENON1T GAS SUPPLY

2.5 tons of HP Xe procured by Coll.

All gas with <1 ppm O2 equivalent impurities and < 10 ppb Kr/Xe

Purity level of each Xe bottle validated with dedicated measurements at MPIK

Gas cylinders stored underground to minimize activation

Friday, February 24, 2012

XENON1T GAS/LIQUID STORAGE SYSTEM

XENON1T CRYOGENIC INFRASTRUCTURE 阏 0 Manual valve Prossure Sensor LXa 丙 High pressure GXe Flow controller F. manual valve LN_2 Rupture disk ▰ 協切 Air compressor valve GNa N_Ventilation Vicuum pump m 网 Regulator 24 LN, from lab Cooling System C\$33 LN-from lab 宓 (J) LN: Dowo! F LN: 100 2401 Demar 000046 ≫ LTO 10001 3 tana, 2.6 m² Cooling System Heat ÷X exch ang er 180//*2 8 ŝ 云ね ő Charcoulfiber (Rn-Removal) ğ Heat 🔫 2000 E enchanger -₽₽ ₽₽ ¢× exchanger ŵ 181 영 GN. R bottle N₂ Ventilation Circulation **Circulation** Pump Pump ⊖ ⊗ LXe Xonon buffer I GXe Ealte 2,4 jans Buffer Buffer (2-2) SACE. Kr.Romeval LN₂ both SAES Mono Terr Column for sense to the wey! PE4 MISOR XENOH1T

Storage&Recovery System

Partflication of stored Kenos

Parification System

Delector

XENON1T COOLING SYSTEM

- Use the same remote cooling principle as used in XENON100, with a cooling tower outside the water tank. LXe flows back into the detector vessel via gravity.
- Composed of three independent cooling towers: 2 for PTRs, 1 for emergency cooling.
- Each PTR can be serviced without exposing the inside volume to air (like XENON100).
- Each cooling tower has an independent vacuum cryostat.
- The novelty is the ability to replace a PTR while the other is in operation or while the emergency cooling is in operation.
- A junction box outside of the water tank will provide enough surface area for the many ports needed for pressure and temperature sensors, rupture disks, etc.

XENON1T COOLING SYSTEM

- Each 200W PTR tower has a heat exchanger (HE) tower where incoming GXe from recirculation is liquefied by outgoing LXe
- Enables recirculation flow rates of >100 SLPM
- Most of the ~1.1KW cooling power required to liquefy GXe at this flow rate provided by outgoing LXe
- Demonstrated 96% efficiency with two HEs
- At 114 SLPM available cooling power left is ~130 W

XENON1T Demonstrator Facility @ Columbia

 Demonstrate high flow rate purification (~100 SLPM) for long drift in LXe

ark Matter Project

- Demonstrate performance of a 100 kV feedthrough made of low radioactivity materials
- Demonstrate performance in LXe of new PMTs (R11410 and QUPID)
- Validate these technologies in a dual-phaseTPC like XENON100 but with 1 meter drift and 1 kV/cm field

E N O N ark Matter Project

XENON1T CRYOGENIC INFRASTRUCTURE

XENON1T Prototype Purification Facility @ Munster

- ¹/₂ inch gas lines
- VCR connections
- Orbitally Welded
- Pneumatic valves
- SAES PS4-MT50 getter
- QDrive and KNF pumps
- Dedicated devices for ppb H_2O/Xe
- Custom ^{83m}Kr detector

Xe²²²Rn Removal in Online Purification

Rn can be removed by cryo-adsorption on charcoal Demonstrated in Borexino (for LN₂) and GERDA (for LAr)

Xenon purification loop with large charcoal tower

Optimization of purification efficiency by selection of charcoal with appropriate micro-pore structure

Mobile Radon Extraction unit (MoREx) @ MPIK to test efficiency of various charcoals for Rn removal from Xe

Ink Matter Project

Cryogenic Distillation Column for Kr

Columbia Atom Trap to Measure Kr Contamination

Measurement Technique

- Traditional laser cooling and trapping techniques allow single ⁸⁴Kr* atoms to be counted with extremely high isotopic selectivity
- Will measure ⁸⁴Kr/Xe < 1 ppt in ~several hours
- Amount of ⁸⁵Kr/Xe extrapolated from known ratio of ⁸⁵Kr/⁸⁴Kr

CU Atom Trap to Measure Kr Contamination

31

Current Status

- Atom trap operational and efficient for Ar*
- RF discharge source cooling implemented
- Single Ar* atom detection and Kr* calibration Mid 2012
- First Kr/Xe measurements for XENON100 by Fall 2012

MPIK Mass Spectrometer to Measure Kr Contamination

Rare Gas Mass Spectrometer (RGMS)

gas chromatograph to separate Kr from Xe sample

- Kr separated from Xe sample by chromatography
- Kr gas loaded into the UHV RGMS
- Sensitivity to 1 ppt Kr/Xe
- System fully operational

Pipette to inject gas sample

Materials Screening for XENON1T

Access to various ultralow background screening facilities in above-ground, shallow depth and deep underground labs, amongst them:

* GeMPIs @ LNGS (MPIK) * GATOR @ LNGS (UZH) for gamma-ray screening with ~10 µBq/kg sensitivity

* Gas counting systems @ LNGS and @ MPIK for ²²²Rn emanation measurement with a few atom sensitivity

Summary and Prospects

- We have entered a data driven era for Dark Matter : direct detection, the LHC, indirect detection
- Combination of large target mass, low background and innovative sensor technology has advanced noble liquids to the forefront of direct detection
- Exciting time for XENON100 with 200 days of data to be unveiled soon: original goal of 2 x 10⁻⁴⁵ cm² within reach in 2012
- The next generation experiment, XENON1T, will have two orders of magnitude better sensitivity enabling to test many models
- Realistic WIMP discovery potential by the middle of this decade